Open, closed and continuous function in bi-pre-supra topological space

Taha H. Jasim

University of Tikrit ,College of Computer Science and Mathematics, Department of Mathematics Ghaith F Abbas

University of Tikrit, College of Education, Department of Mathematics Abstract

In this paper we construction a new space called bi-pre-supra topological space. Many concepts ($\mathcal{T}, \mathcal{PT}$)-open set ,($\mathcal{T}, \mathcal{P^*T}$)-open set , bi-open set) were introduced. At last through this paper we introduced a new class of functions (open , closed and continuous) in bi-pre-supra topological space. We study and investigate some properties and characterization of above concepts.

Keywords: $(\mathcal{T}, \mathcal{PT})$ -open function , $(\mathcal{T}, \mathcal{P}^*\mathcal{T})$ -open function , bi-open function $(\mathcal{T}, \mathcal{PT})$ - closed function , $(\mathcal{T}, \mathcal{PT})$ - continuous function , $(\mathcal{T}, \mathcal{PT})$ -continuous function , $(\mathcal{T}, \mathcal{PT})$ -continuous function , bi-continuous function .

الملخص: في هذا البحث قدمنا نوع جديد من الفضاءات اطلق عليه (bi-pre-supra topological space) حيث تم التعرف على مجموعة مفاهيم في هذا الفضاء مثل المجموعه المفتوحه المزدوجه كما تم تقديم نوع جديد من الدوال (مفتوحه , مغلقه ومستمره) في هذا الفضاء الجديد كما تم دراسة بعض الخواص والصفات للمفاهيم السابقة .

1-Introduction

In 1963 Kelley J. C. [5] was first introduced the concept of bi-topological spaces, where X is a non-empty set and T_1 , T_2 are topologies on X. In 1982 Almashhor [1] introduced the concept of pre-open sets in topological space. By using this concept, several authors' [4], [6], [7] defined and studies stronger or weaker types of topological concept.

In this paper , we introduced the concepts of bi-pre-supra topological space , via $(\mathcal{T}, \mathcal{PT})$ -open set $(\mathcal{T}, \mathcal{P^*T})$ -open set and bi-open set in bi-pre-supra topological space , and we study their basic properties and relationships with other concepts of sets. At last through this paper we introduced a new class of functions (open , closed and continuous) in bi-pre-supra topological space . We study and investigate some properties and characterization of above concepts .

2-Preliminaries

Definition 2.1 [1] A subset A of a space (X, \mathcal{T}) is called pre-open, if $A \subseteq int (cl(A))$. The complement of pre-open set is said to be pre-closed.

Definition 2.2 [2] A subfamily T of a family of subset of X is said to be a supra topology on X if:

1) X, $\emptyset \in \mathcal{T}$

2) If $A_i \in \mathcal{T}$ for all $i \in I$ then $\bigcup A_i \in \mathcal{T}$

 (X, \mathcal{T}) is called a supra topological space. The element of \mathcal{T} are called supra open set in (X, \mathcal{T}) and complement of a supra open set is called a supra closed set.

Definition 2.3 [7] Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a bi-topological space, and let G be a subset of X. Then G is said to be (i,j)-open set if G=AUB where A $\in \mathcal{T}_1$ and B $\in \mathcal{T}_2$. The complement of (i,j)-open set is called (i,j)-closed set.

Remark 2.4 [7] Notice that (i,j)-open set need not necessarily form a topology .

Definition 2.4 [3] A subset A of a bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is called (i,j)-neighborhood of a point x in X if there exists an (i,j)-open set G such that $x \in G \subseteq A$. And denoted (i,j)-nbd.

Definition 2.5 [3] Let A be a subset of bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$. A point x in X is said to (i,j)-limit point of A if for each (i, j)-open set G containing x such that A \cap (G $(x_i) \neq \emptyset$. The set of all (i,j)-limit point of A is called (i,j)-derived set of A and denoted by (i,j)-d(A).

Definition 2.6 [7] Let A be a subset of bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$. Then the (i,j)closure of G denoted by (i,j)-cl(A), is defined by $\bigcap \{ F : A \subseteq F \text{ and } F \text{ is } (i,j)\text{-closed set } \}$.**Definition 2.7** [7] Let A be a subset of bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$. Then the (i,j)interior of A denoted by (i,j)-int(A), is defined by $\bigcup \{ G : G \subseteq A \text{ and } F \text{ is } (i,j)\text{-open set } \}$

Definition 2.8 [8] A function $f:(X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ is called open function if the image of every open set is open.

Definition 2.9 [8] A function $f:(X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ is called closed function if the image of every closed set is closed.

Definition 2.10 [8]

A function $f:(X, \mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y)$ is called continuous function if the inverse image of any \mathcal{T}_Y -open set G is \mathcal{T}_X -open set.

3-Bi-pre-supra topological spaces

Definition 3.1 Let X be a non-empty set, let \mathcal{T} be a topology on X and let \mathcal{PT} is the set of all pre-open subset of X (for short Po(X)), then We say that $(X, \mathcal{T}, \mathcal{PT})$ is a bi-pre-supra topological space.

Now the deference between bi-topological space [Kelly] and bi-pre-supra topological space \mathcal{PT} is supra topology not topology.

Example 3.2 Let $X = \{1,2,3,4\}$ $\mathcal{T} = \{\emptyset, X, \{1\}, \{2,3\}, \{1,2,3\}\}$ $\mathcal{P}oX = \mathcal{PT} = \{\emptyset, X, \{1\}, \{2,3\}, \{1,2,3\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{1,2,4\}, \{1,3,4\}\}$ $(X, \mathcal{T}, \mathcal{PT})$ is bi-pre-supra topological space

Definition 3.3 Let $(X, \mathcal{T}, \mathcal{PT})$ be a bi-pre-supra topological space, and let G be a subset of X. Then

- i) G is said to be $(\mathcal{T}, \mathcal{PT})$ -open set if G=AUB where A $\in \mathcal{T}$ and B $\in \mathcal{PT}$.
- ii) The complement of $(\mathcal{T}, \mathcal{PT})$ -open set is called $(\mathcal{T}, \mathcal{PT})$ -closed set.
- iii) G is said to be $(\mathcal{T}, \mathcal{PT})^*$ -open set if G=AUB where A $\in \mathcal{T}$, B $\in \mathcal{PT}$ and B $\notin \mathcal{T}$.
- iv) The complement of $(\mathcal{T}, \mathcal{PT})^*$ -open set is called $(\mathcal{T}, \mathcal{PT})^*$ -closed set.

- v) G is said to be bi-open set if G = A where $A \in \mathcal{T}$ and $A \in \mathcal{PT}$.
- vi) The complement of bi-open set is called bi-closed set.

Proposition 3.4

- 1) Every bi-open set is $(\mathcal{T}, \mathcal{PT})$ -open set and every bi-closed set is $(\mathcal{T}, \mathcal{PT})$ -closed set but the converse is not true.
- 2) Every $(\mathcal{T}, \mathcal{PT})^*$ -open set is $(\mathcal{T}, \mathcal{PT})$ -open set and every $(\mathcal{T}, \mathcal{PT})^*$ -closed set is $(\mathcal{T}, \mathcal{PT})$ -closed set but the converse is not true.

Example 3.5

Let $X = \{1,2,3,4\}$ $\mathcal{T} = \{\emptyset, X, \{2\}, \{1,3\}, \{1,2,3\}\}$ $\mathcal{T}^{c} = \{\emptyset, X, \{1,3,4\}, \{2,4\}, \{4\}\}$ $\mathcal{P}\mathcal{T} = \{\emptyset, X, \{2\}, \{1,3\}, \{1,2,3\}, \{1\}, \{3\}, \{1,2\}, \{2,3\}, \{1,2,4\}, \{2,3,4\}\}$ $(\mathcal{T}, \mathcal{P}\mathcal{T})$ -open sets = $\{\emptyset, X, \{2\}, \{1,2,3\}, \{2,3\}, \{1,2\}, \{1,3\}, \{1,2,4\}, \{2,3,4\}\}$ $(\mathcal{T}, \mathcal{P}\mathcal{T})$ -closed sets = $\{\emptyset, X, \{1,3,4\}, \{4\}, \{1,4\}, \{3,4\}, \{2,4\}, \{3\}, \{1\}\}\}$ $(\mathcal{T}, \mathcal{P}\mathcal{T})^*$ -open set= $\{\emptyset, X, \{1,2\}, \{2,3\}, \{1,2,4\}, \{2,3,4\}, \{1,3\}, \{1,2,3\}\}$ $(\mathcal{T}, \mathcal{P}\mathcal{T})^*$ -closed sets = $\{\emptyset, X, \{3,4\}, \{1,4\}, \{3\}, \{1\}, \{2,4\}, \{4\}\}\}$ bi-open sets = $\{\emptyset, X, \{1,3,4\}, \{2,4\}, \{4\}\}$

Definition 3.6 Let $(X, \mathcal{T}, \mathcal{PT})$ be a bi-pre-supra topological space, and let A be a subset of X. Then

- i. The $(\mathcal{T}, \mathcal{PT})$ -closure of G denoted by $(\mathcal{T}, \mathcal{PT})$ -cl(A), is defined by $\bigcap \{ F : A \subseteq F \text{ and } F \text{ is } (\mathcal{T}, \mathcal{PT})$ -closed set $\}$
- ii. The $(\mathcal{T}, \mathcal{PT})^*$ -closure of A denoted by $(\mathcal{T}, \mathcal{PT})^*$ -cl(A), is defined by $\bigcap \{ F : A \subseteq F \text{ and } F \text{ is } (\mathcal{T}, \mathcal{PT})^*$ -closed set $\}$
- iii. The bi- closure of A denoted by bi-cl(A), is defined by $\bigcap \{ F : A \subseteq F \text{ and } F \text{ is } bi-closed \text{ set } \}$

```
Example 3.7 Let X = \{1, 2, 3, 4\}
```

```
 \mathcal{T} = \{\emptyset, X, \{4\}, \{1,3\}, \{1,3,4\} \} 
\mathcal{T}^{c} = \{\emptyset, X, \{4\}, \{1,3\}, \{2,4\}, \{2\} \} 
\mathcal{P}\mathcal{T} = \{\emptyset, X, \{4\}, \{1,3\}, \{1,3,4\}, \{1\}, \{3\}, \{1,4\}, \{3,4\}, \{1,2,4\}, \{2,3,4\} \} 
(\mathcal{T}, \mathcal{P}\mathcal{T}) \text{-open sets} = \{\emptyset, X, \{4\}, \{1,3,4\}, \{1,4\}, \{3,4\}, \{1,2,4\}, \{2,3,4\}, \{1,3\} \} 
(\mathcal{T}, \mathcal{P}\mathcal{T}) \text{-closed sets} = \{\emptyset, X, \{1,2,3\}, \{2\}, \{2,3\}, \{1,2\}, \{3\}, \{1\}, \{2,4\} \} 
(\mathcal{T}, \mathcal{P}\mathcal{T})^{*} \text{-open sets} = \{\emptyset, X, \{1,4\}, \{3,4\}, \{1,2,4\}, \{2,3,4\}, \{1,3\}, \{1,3,4\} \} 
(\mathcal{T}, \mathcal{P}\mathcal{T})^{*} \text{-closed sets} = \{\emptyset, X, \{2,3\}, \{1,2\}, \{3\}, \{1\}, \{2,4\}, \{2\} \} 
\text{bi-open sets} = \{\emptyset, X, \{4\}, \{1,3\}, \{1,3,4\} \} 
\text{bi-closed sets} = \{\emptyset, X, \{1,2,3\}, \{2,4\}, \{2\} \} 
\text{transformed of the sets} = \{\emptyset, X, \{1,2,3\}, \{2,4\}, \{2\} \} 
\text{Transformed of the sets} = \{\emptyset, X, \{1,2,3\}, \{2,4\}, \{2\} \} 
\text{transformed of the sets} = \{1,2\}, H = \{1,2,3\} 
(\mathcal{T}, \mathcal{P}\mathcal{T}) \text{-cl}(H) = \{1,2,3\} 
(\mathcal{T}, \mathcal{P}\mathcal{T})^{*} \text{-cl}(H) = X
```

Definition 3.8 Let $(X, \mathcal{T}, \mathcal{PT})$ be a bi-pre-supra topological space, and let A be a subset of X. Then :

- (i) The $(\mathcal{T}, \mathcal{PT})$ -interior of A denoted by $(\mathcal{T}, \mathcal{PT})$ -int(A), is defined by $\cup \{ F : F \subseteq A \text{ and } F \text{ is } (\mathcal{T}, \mathcal{PT})$ -open set $\}$
- (ii) The $(\mathcal{T}, \mathcal{PT})^*$ -interior of A denoted by $(\mathcal{T}, \mathcal{PT})^*$ -int(A), is defined by $\cup \{F : F \subseteq A \text{ and } F \text{ is } (\mathcal{T}, \mathcal{PT})^*$ -open set $\}$
- (iii) The bi-interior of A denoted by bi-int(A), is defined by $\cup \{ F : F \subseteq A \text{ and } F \text{ is bi-open set } \}$

Example 3.9 Let $X = \{1,2,3,4\}$ $\mathcal{T} = \{\emptyset, X, \{1\}, \{2,4\}, \{1,2,4\}\}$ $\mathcal{T}^{c} = \{\emptyset, X, \{2,3,4\}, \{1,3\}, \{3\}\}$ $\mathcal{PT} = \{\emptyset, X, \{1\}, \{2,4\}, \{1,2,4\}, \{2\}, \{4\}, \{1,2\}, \{1,4\}, \{1,2,3\}, \{1,3,4\}\}$ $(\mathcal{T}, \mathcal{PT})$ -open sets = $\{\emptyset, X, \{1\}, \{1,2,4\}, \{1,2\}, \{1,4\}, \{1,2,3\}, \{1,3,4\}, \{2,4\}\}$ $(\mathcal{T}, \mathcal{PT})^{*}$ -open sets = $\{\emptyset, X, \{1,2,4\}, \{1,2\}, \{1,4\}, \{1,2,3\}, \{1,3,4\}, \{2,4\}\}$ bi-open sets = $\{\emptyset, X, \{1\}, \{2,4\}, \{1,2\}, \{1,4\}, \{1,2,3\}, \{1,3,4\}, \{2,4\}\}$ Take G = $\{1,2,3\}$ $(\mathcal{T}, \mathcal{PT})^{*}$ -int(G) = $\{1,2,3\}$ $(\mathcal{T}, \mathcal{PT})^{*}$ -int(G) = $\{1,2,3\}$ bi-int(G) = $\{1\}$

4-Open and closed function in bi-pre-supra topological space

In this section we introduce a new class of open and closed function in bi-pre-supra topological space.

Definition 4.1 A function $f:(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is called

- 1- bi- $(\mathcal{T}, \mathcal{PT})$ -open function if the image of every $(\mathcal{T}_X, \mathcal{PT}_X)$ -open set is $(\mathcal{T}_Y, \mathcal{P} \mathcal{T}_Y)$ -open.
- 2- bi- $(\mathcal{T}, \mathcal{PT})^*$ -open function if the image of every $(\mathcal{T}_X, \mathcal{PT}_X)^*$ -open set is $(\mathcal{T}_Y, \mathcal{PT}_Y)^*$ -open.
- 3- bi-open function if the image of every bi-open set is bi-open

Definition 4.2 A function $f:(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is called

- 1- bi- $(\mathcal{T}, \mathcal{PT})$ -closed function if the image of every $(\mathcal{T}_X, \mathcal{PT}_X)$ -closed set is $(\mathcal{T}_Y, \mathcal{PT}_Y)$ -closed.
- 2- bi- $(\mathcal{T}, \mathcal{PT})^*$ -closed function if the image of every $(\mathcal{T}_X, \mathcal{PT}_X)^*$ -closed set is $(\mathcal{T}_Y, \mathcal{PT}_Y)^*$ -closed.
- 3- bi-closed function if the image of every bi- closed set is bi- closed

Example 4.3

$$\begin{split} &X = \{1,2,3,4\} \\ &\mathcal{T}_X = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}\} \\ &\mathcal{T}_X^c = \{\emptyset, X, \{2,3,4\}, \{1,3,4\}, \{3,4\}\} \\ &\mathcal{P}\mathcal{T}_X = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,2,4\}\} \\ &(\mathcal{T}_X, \mathcal{P}\mathcal{T}_X) \text{-open sets} = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,2,4\}\} \\ &(\mathcal{T}_X, \mathcal{P}\mathcal{T}_X) \text{-closed sets} = \{\emptyset, X, \{2,3,4\}, \{1,3,4\}, \{3,4\}, \{4\}, \{3\}\} \\ &(\mathcal{T}_X, \mathcal{P}\mathcal{T}_X)^* \text{-open sets} = \{\emptyset, X, \{1,2,3\}, \{1,2,4\}\} \\ &(\mathcal{T}_X, \mathcal{P}\mathcal{T}_X)^* \text{-closed sets} = \{\emptyset, X, \{1,2,3\}, \{1,2,4\}\} \\ &(\mathcal{T}_X, \mathcal{P}\mathcal{T}_X)^* \text{-closed sets} = \{\emptyset, X, \{4\}, \{3\}\} \end{split}$$

 $\begin{array}{l} Y = \{a,b,c,d\} \\ \mathcal{T}_{Y} = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\} \\ \mathcal{T}_{Y}^{C} = \{\emptyset, Y, \{b,c,d\}, \{a,c,d\}, \{c,d\}, \{d\}\} \\ \mathcal{P}\mathcal{T}_{Y} = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\} \\ (\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y}) \text{-open sets} = \{\emptyset, Y, \{a\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}, \{b\}\} \\ (\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y}) \text{-closed sets} = \{\emptyset, Y, \{b,c,d\}, \{c,d\}, \{d\}, \{c\}, \{a,c,d\}\} \\ (\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})^{*} \text{-open sets} = \{\emptyset, Y, \{a,b,d\}\} \\ (\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})^{*} \text{-closed sets} = \{\emptyset, Y, \{a,b,d\}\} \\ (\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})^{*} \text{-closed sets} = \{\emptyset, Y, \{c\}\} \\ \text{Let } f:(X, \mathcal{T}_{X}, \mathcal{P}\mathcal{T}_{X}) \rightarrow (Y, \mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y}) \text{ defined by} \\ f(1) = a \quad f(2) = b \quad f(3) = c \quad f(4) = d \text{ . Then all types of function in def.} [4.1], [4.2] \text{ are} \\ \text{holding .} \end{array}$

Diagram 4.4

The following diagram is valid

Example 4.5

 $X = \{1, 2, 3, 4\}$ $\mathcal{T}_{\mathbf{X}} = \{ \emptyset, \mathbf{X}, \{1\} \}$ $\mathcal{T}_{x}^{c} = \{\emptyset, X, \{2, 3, 4\}\}$ $\mathcal{PT}_{X} = \{\emptyset, X, \{1\}, \{1,2\}, \{1,2,3\}, \{1,3\}, \{1,4\}, \{1,2,4\}, \{1,3,4\}\}$ $(\mathcal{T}_{X}, \mathcal{PT}_{X})$ -open sets = { \emptyset , X, {1}, {1,2}, {1,2,3}, {1,3}, {1,4}, {1,2,4}, {1,3,4}} $(\mathcal{T}_{X}, \mathcal{P}\mathcal{T}_{X})$ -closed sets={ $\emptyset, X, \{2,3,4\}, \{3,4\}, \{4\}, \{2,4\}, \{3\}, \{2\}\}$ $(\mathcal{T}_{X}, \mathcal{P}\mathcal{T}_{X})^{*}$ -open sets={ $\emptyset, X, \{1,3\}, \{1,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}$ } $(\mathcal{T}_{X}, \mathcal{P}\mathcal{T}_{X})^{*}$ -closed sets={ $\emptyset, X, \{2,4\}, \{2,3\}, \{4\}, \{3\}, \{2\}\}$ $Y = \{a, b, c, d\}$ $\mathcal{T}_{\mathbf{Y}} = \{\emptyset, \mathbf{X}, \{a\}, \{a, c, d\}\}$ $\mathcal{T}_{v}^{c} = \{\emptyset, Y, \{b, c, d\}, \{b\}\}$ $\mathcal{PT}_{Y} = \{\emptyset, Y, \{a\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}\}$ $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})$ -open sets = { \emptyset , Y, {a}, {a,b}, {a,c}, {a,d}, {a,b,c}, {a,b,d}, {a,c,d}} $(\mathcal{T}_{Y}, \mathcal{PT}_{Y})$ -closed sets = { $\emptyset, Y, \{b, c, d\}, \{c, d\}, \{b, c\}, \{d\}, \{c\}, \{b\}\}$ $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})^{*}$ -open sets = { $\emptyset, Y, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}$ } $(\mathcal{T}_{v}, \mathcal{PT}_{v})^{*}$ -closed sets = { $\emptyset, Y, \{b, d\}, \{b, c\}, \{d\}, \{c\}, \{b\}\}$ Let $f:(Y, \mathcal{T}_Y, \mathcal{PT}_Y) \to (X, \mathcal{T}_X, \mathcal{PT}_X)$ defined by f(c)=3 f(d)=4. Then f is bi- $(\mathcal{T}, \mathcal{PT})$ -open (closed) function not bif(a)=1f(b)=2open (closed) function

Example 4.6

 $X = \{1,2,3,4\}$ $\mathcal{T}_{X} = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}\}$ $\mathcal{T}_{X}^{c} = \{\emptyset, X, \{2,3,4\}, \{1,3,4\}, \{3,4\}\}$ $\mathcal{PT}_{X} = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{4\}, \{1,2,3\}, \{1,2,4\}\}$ $(\mathcal{T}_{x}, \mathcal{PT}_{x})$ -open sets={ $\emptyset, X, \{1\}, \{1,2\}, \{2\}, \{1,2,3\}, \{1,2,4\}$ } $(\mathcal{T}_{X}, \mathcal{P}\mathcal{T}_{X})$ -closed sets={ $\emptyset, X, \{2, 3, 4\}, \{3, 4\}, \{1, 3, 4\}, \{4\}, \{3\}\}$ $(\mathcal{T}_{x}, \mathcal{P}\mathcal{T}_{x})^{*}$ -open sets={ $\emptyset, X, \{1, 2, 3\}, \{1, 2, 4\}$ } $(\mathcal{T}_{X}, \mathcal{P}\mathcal{T}_{X})^{*}$ -closed sets={ $\emptyset, X, \{4\}, \{3\}, \{4\}\}$ $Y = \{a, b, c, d\}$ $\mathcal{T}_{Y} = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}\}$ $\mathcal{T}_{Y}^{c} = \{\emptyset, Y, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{c\}\}$ $\mathcal{PT}_{Y} = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\}$ $(\mathcal{T}_{Y}, \mathcal{PT}_{Y})$ -open sets = { $\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}$ } $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})$ -closed sets = { \emptyset , Y, {b,c,d}, {a,c,d}, {c,d}, {d}, {c}} $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})^{*}$ -open sets = { $\emptyset, Y, \{a, b, c\}$ } $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})^{*}$ -closed sets = { $\emptyset, Y, \{d\}$ } Let $f:(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ defined by f(2)=b f(3)=c f(4)=d. Then f is bi- $(\mathcal{T}, \mathcal{PT})$ -open (closed) function not bif(1)=a $\mathcal{T}, \mathcal{P}^* - \mathcal{T} - \text{open}$ (closed) function

Theorem 4.7

A function $f:(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is $bi-(\mathcal{T}, \mathcal{PT})$ -open iff $f((\mathcal{T}, \mathcal{PT})$ -int(A)) \subseteq $(\mathcal{T}, \mathcal{PT})$ -int(f(A)) for all A \subseteq X **Proof:** Let f $bi-(\mathcal{T}, \mathcal{PT})$ -open function and A $\subseteq X$ Since $(\mathcal{T}, \mathcal{PT})$ -int(A) is $(\mathcal{T}, \mathcal{PT})$ -open set and f is $bi-(\mathcal{T}, \mathcal{PT})$ -open function then $f((\mathcal{T}, \mathcal{PT})$ -int(A)) is $(\mathcal{T}, \mathcal{PT})$ -open set subset of Y Since $(\mathcal{T}, \mathcal{PT})$ -int(A) \subseteq A then :

 $f((\mathcal{T}, \mathcal{PT})-int(A)) \subseteq (\mathcal{T}, \mathcal{PT})-int(f(A))$

Conversely:

Suppose that the condition is true and A is $(\mathcal{T}, \mathcal{PT})$ -open set subset of X Now $f(A)=f((\mathcal{T}, \mathcal{PT})-int(A)) \subseteq (\mathcal{T}, \mathcal{PT})-int(f(A))$ i.e $f(A)=(\mathcal{T}, \mathcal{PT})-int(f(A))$ then f(A) is $(\mathcal{T}, \mathcal{PT})$ -open

Theorem 4.8

A function $f:(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is $bi-(\mathcal{T}, \mathcal{PT})$ -closed iff $(\mathcal{T}, \mathcal{PT})$ -cl(f(A)) $\subseteq f((\mathcal{T}, \mathcal{PT})$ -cl(A)) for all $A \subseteq X$.

Proof:

Let f bi- $(\mathcal{T}, \mathcal{PT})$ -closed function and A \subseteq X Since $(\mathcal{T}, \mathcal{PT})$ -cl(A) is $(\mathcal{T}, \mathcal{PT})$ -closed set and f is bi- $(\mathcal{T}, \mathcal{PT})$ -closed function then f $((\mathcal{T}, \mathcal{PT})$ -cl(A))= $(\mathcal{T}, \mathcal{PT})$ -cl(f $((\mathcal{T}, \mathcal{PT})$ -cl (A)) But A $\subseteq (\mathcal{T}, \mathcal{PT})$ -cl(A) This f(A) \subseteq f $((\mathcal{T}, \mathcal{PT})$ -cl(A)) $\Rightarrow (\mathcal{T}, \mathcal{PT})$ -cl(f(A)) $\subseteq (\mathcal{T}, \mathcal{PT})$ -cl(f $((\mathcal{T}, \mathcal{PT})$ -cl (A)) $\Rightarrow (\mathcal{T}, \mathcal{PT})$ -cl(f(A)) $\subseteq f((\mathcal{T}, \mathcal{PT})$ -cl(A))

Conversely:

If the condition is true and $A \subseteq X$ closed set Then $(\mathcal{T}, \mathcal{PT})$ -cl(f(A)) \subseteq f($(\mathcal{T}, \mathcal{PT})$ -cl(A))=f(A) i.e $(\mathcal{T}, \mathcal{PT})$ -cl(f(A))= f(A) Then f(A) is $(\mathcal{T}, \mathcal{PT})$ -closed set subset of Y.

5- Continuous function in bi-pre-supra topological space

In this section we introduce a new class of continuous function in bi-pre-supra topological space.

Definition 5.1 A function $f:(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is called

- 1- bi- $(\mathcal{T}, \mathcal{PT})$ -continuous function if the inverse image of any $(\mathcal{T}_Y, \mathcal{PT}_Y)$ -open set G is $(\mathcal{T}_X, \mathcal{PT}_X)$ -open set .
- 2- bi- $(\mathcal{T}, \mathcal{PT})^*$ -continuous function if the inverse image of any $(\mathcal{T}_Y, \mathcal{PT}_Y)^*$ -open set G is $(\mathcal{T}_X, \mathcal{PT}_X)^*$ -open set.
- 3- bi-continuous function if the inverse image of any bi-open set is bi-open.

Example 5.2 X={1,2,3,4}

 $\begin{aligned} \mathcal{T}_{X} &= \{\emptyset, X, \{1\}, \{2\}, \{1,2\}\} \\ \mathcal{P}\mathcal{T}_{X} &= \{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,2,4\}\} \\ (\mathcal{T}_{X}, \mathcal{P}\mathcal{T}_{X}) \text{-open sets} &= \{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,2,4\}\} \\ (\mathcal{T}_{X}, \mathcal{P}\mathcal{T}_{X})^{*} \text{-open sets} &= \{\emptyset, X, \{1,2,3\}, \{1,2,4\}\} \\ Y &= \{a,b,c,d\} \\ \mathcal{T}_{Y} &= \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\} \\ \mathcal{P}\mathcal{T}_{Y} &= \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\} \\ (\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y}) \text{-opensets} &= \{\emptyset, Y, \{a\}, \{a,b,d\}, \{a,b,c\}, \{a,b,d\}, \{b\}\} \\ (\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})^{*} \text{-opensets} &= \{\emptyset, Y, \{a\}, \{a,b,d\}\} \\ \text{Let } f:(X, \mathcal{T}_{X}, \mathcal{P}\mathcal{T}_{X}) \rightarrow (Y, \mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y}) \text{ defined by} \\ f(1) &= a \quad f(2) = b \quad f(3) = c \quad f(4) = d \text{ . Then all types of function in def.} [5.1] \text{ are holding} \end{aligned}$

Diagram 5.3

The following diagram is valid

Example 5.4

 $\begin{array}{l} X = \{1,2,3,4\} \\ \mathcal{T}_{X} = \{\emptyset, X, \{1\}\} \\ \mathcal{P}\mathcal{T}_{X} = \{\emptyset, X, \{1\}, \{1,2\}, \{1,2,3\}, \{1,3\}, \{1,4\}, \{1,2,4\}, \{1,3,4\}\} \\ (\mathcal{T}_{X}, \mathcal{P}\mathcal{T}_{X}) \text{-open sets} = \{\emptyset, X, \{1\}, \{1,2\}, \{1,2,3\}, \{1,3\}, \{1,4\}, \{1,2,4\}, \{1,3,4\}\} \\ (\mathcal{T}_{X}, \mathcal{P}\mathcal{T}_{X})^{*} \text{-open sets} = \{\emptyset, X, \{1,3\}, \{1,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}\} \\ Y = \{a,b,c,d\} \\ \mathcal{T}_{Y} = \{\emptyset, X, \{a\}, \{a,c,d\}\} \\ \mathcal{P}\mathcal{T}_{Y} = \{\emptyset, Y, \{a\}, \{a,c\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}\} \end{array}$

 $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})$ -open sets = { \emptyset , Y, {a}, {a,b}, {a,c}, {a,d}, {a,b,c}, {a,b,d}, {a,c,d}} $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})^{*}$ -open sets = { \emptyset , Y, {a,c}, {a,d}, {a,b,c}, {a,b,d}, {a,c,d}} Let f:(Y, $\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y}) \rightarrow (X, \mathcal{T}_{X}, \mathcal{P}\mathcal{T}_{X})$ defined by f(a)=1 f(b)=2 f(c)=3 f(d)=4. Then f is bi-($\mathcal{T}, \mathcal{P}\mathcal{T}$)-continuous function not bicontinuous function **Example 5.5**

 $X = \{1,2,3,4\}$ $\mathcal{T}_{X} = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}\}$ $\mathcal{P}_{T}_{X} = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{4\}, \{1,2,3\}, \{1,2,4\}\}$ $(\mathcal{T}_{X}, \mathcal{P}\mathcal{T}_{X}) \text{-open sets} = \{\emptyset, X, \{1\}, \{1,2\}, \{2\}, \{1,2,3\}, \{1,2,4\}\}$ $\mathcal{T}_{X}, \mathcal{P}\mathcal{T}_{X})^{*} \text{-open sets} = \{\emptyset, X, \{1,2,3\}, \{1,2,4\}\}$ $Y = \{a,b,c,d\}$ $\mathcal{T}_{Y} = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,b,d\}\}$ $\mathcal{P}\mathcal{T}_{Y} = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\}$ $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y}) \text{-open sets} = \{\emptyset, Y, \{a\}, \{b\}, \{a,b,c\}, \{a,b,d\}\}$ $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})^{*} \text{-open sets} = \{\emptyset, Y, \{a,b,c\}\}$ Let $f:(X, \mathcal{T}_{X}, \mathcal{P}\mathcal{T}_{X}) \rightarrow (Y, \mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})$ defined by

f(1)=a f(2)=b f(3)=c f(4)=d. Then f is bi- $(\mathcal{T}, \mathcal{PT})$ -continuous function not bi- $(\mathcal{T}, \mathcal{PT})^*$ -continuous function

Theorem 5.6 Let the function $f:(X, \mathcal{T}_X, \mathcal{P}\mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)$ and $g:(Y, \mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y) \rightarrow (Z, \mathcal{T}_Z, \mathcal{P}\mathcal{T}_Z)$ be bi- $(\mathcal{T}, \mathcal{P}\mathcal{T})$ -continuous. Then the composition function $gof:(X, \mathcal{T}_X, \mathcal{P}\mathcal{T}_X) \rightarrow (Z, \mathcal{T}_Z, \mathcal{P}\mathcal{T}_Z)$ is also bi- $(\mathcal{T}, \mathcal{P}\mathcal{T})$ -continuous .

Proof:

Let G be an $(\mathcal{T}, \mathcal{PT})$ -open subset of Z.

Then $g^{-1}(G)$ is $(\mathcal{T}, \mathcal{PT})$ -open in Y since g is continuous.

But f is also bi- $(\mathcal{T}, \mathcal{PT})$ -continuous , so $f^{-1}[g^{-1}(G)]$ is $(\mathcal{T}, \mathcal{PT})$ -open in X.

Now $(gof)^{-1}(G) = f^{-1}[g^{-1}(G)]$

Thus $(gof)^{-1}(G)$ is $(\mathcal{T}, \mathcal{PT})$ -open in X for every $(\mathcal{T}, \mathcal{PT})$ -open subset G of Z

gof is continuous.

Theorem 5.7

A function $f:(X, \mathcal{T}_X, \mathcal{PT}_X) \to (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is $bi-(\mathcal{T}, \mathcal{PT})$ -continuous iff the inverse image of every $(\mathcal{T}, \mathcal{PT})$ -closed subset of Y is a $(\mathcal{T}, \mathcal{PT})$ -closed subset of X.

Proof:

Suppose $f:(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is bi- $(\mathcal{T}, \mathcal{PT})$ -continuous . and let F be a $(\mathcal{T}, \mathcal{PT})$ -closed subset of Y.

Then F^c is $(\mathcal{T}, \mathcal{PT})$ -open, and so $f^{-1}(F^c)$ is $(\mathcal{T}, \mathcal{PT})$ -open in X.

But $f^{-1}(F^c) = [f^{-1}(F)]^c$

Therefore $f^{-1}(F)$ is $(\mathcal{T}, \mathcal{PT})$ -closed.

Conversely:

Assume F is $(\mathcal{T}, \mathcal{PT})$ -closed in Y implies $f^{-1}(F)$ is $(\mathcal{T}, \mathcal{PT})$ -closed in X.

Let G be an $(\mathcal{T}, \mathcal{PT})$ -open subset of Y.

Then G^{c} is $(\mathcal{T}, \mathcal{PT})$ -closed in Y, and so $f^{-1}(G^{c}) = [f^{-1}(G)]^{c}$ is $(\mathcal{T}, \mathcal{PT})$ -closed in X. Accordingly, $f^{-1}(G)$ is $(\mathcal{T}, \mathcal{PT})$ -open and therefore f is bi- $(\mathcal{T}, \mathcal{PT})$ -continuous.

Theorem 5.8

A function $f:(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is bi- $(\mathcal{T}, \mathcal{PT})$ -continuous iff for every subset $G \subseteq X$, $f((\mathcal{T}, \mathcal{PT})$ -cl(G)) $\subseteq (\mathcal{T}, \mathcal{PT})$ -cl(f(G)).

Proof:

Suppose $f:(X, \mathcal{T}_X, \mathcal{P}\mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)$ is bi- $(\mathcal{T}, \mathcal{P}\mathcal{T})$ -continuous Now $f(G) \subseteq (\mathcal{T}, \mathcal{P}\mathcal{T})$ - (f(G)), so $G \subseteq f^{-1}(f(G)) \subseteq f^{-1}((\mathcal{T}, \mathcal{P}\mathcal{T})$ -cl(f(G))) But $(\mathcal{T}, \mathcal{P}\mathcal{T})$ -cl(f(G)) is $(\mathcal{T}, \mathcal{P}\mathcal{T})$ -closed. And so $f^{-1}((\mathcal{T}, \mathcal{P}\mathcal{T})$ -cl(f(G))) is also $(\mathcal{T}, \mathcal{P}\mathcal{T})$ -closed. Hence $G \subseteq (\mathcal{T}, \mathcal{P}\mathcal{T})$ -cl($G) \subseteq f^{-1}((\mathcal{T}, \mathcal{P}\mathcal{T})$ -cl(f(G))) And therefore $f((\mathcal{T}, \mathcal{P}\mathcal{T})$ -cl($G)) \subseteq (\mathcal{T}, \mathcal{P}\mathcal{T})$ -cl(f(G)) $(\mathcal{T}, \mathcal{P}\mathcal{T})$ -cl(f(G))= $f(f^{-1}((\mathcal{T}, \mathcal{P}\mathcal{T})$ -cl(f(G)))

Conversely:

Assume $f((\mathcal{T}, \mathcal{PT})-cl(G)) \subseteq (\mathcal{T}, \mathcal{PT})-cl(f(G))$ for any $G \subseteq X$, and let F be a $(\mathcal{T}, \mathcal{PT})$ -closed subset of Y.

Set $G=f^{-1}(F)$, i.e $(\mathcal{T}, \mathcal{PT})$ -cl(G)=G.

Now

 $f((\mathcal{T}, \mathcal{PT})\text{-}cl(G))=f((\mathcal{T}, \mathcal{PT})\text{-}cl(f^{-1}(F)))\subseteq (\mathcal{T}, \mathcal{PT})\text{-}cl(f(f^{-1}(F))) = (\mathcal{T}, \mathcal{PT})\text{-}cl(F)=F$ Hence $(\mathcal{T}, \mathcal{PT})\text{-}cl(G)\subseteq f^{-1}(f((\mathcal{T}, \mathcal{PT})\text{-}cl(G)))\subseteq f^{-1}(F)=G$

But $G \subseteq (\mathcal{T}, \mathcal{PT})$ -cl(G)

So $(\mathcal{T}, \mathcal{PT})$ -cl(G)=G and f is bi- $(\mathcal{T}, \mathcal{PT})$ -continuous function.

Theorem 5.9

A function $f:(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is bi- $(\mathcal{T}, \mathcal{PT})$ -continuous iff for every subset $G \subseteq Y$, $(\mathcal{T}, \mathcal{PT})$ -cl $(f^{-1}(G)) \subseteq f^{-1}((\mathcal{T}, \mathcal{PT})$ -cl(G)).

Proof:

let $f:(X, \mathcal{T}_X, \mathcal{PT}_X) \to (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ be bi- $(\mathcal{T}, \mathcal{PT})$ -continuous function. To prove that $(\mathcal{T}, \mathcal{PT})$ -cl $(f^{-1}(G)) \subseteq f^{-1}((\mathcal{T}, \mathcal{PT})$ -cl(G)) for every subset $G \subseteq X$. Since $G \subseteq (\mathcal{T}, \mathcal{PT})$ -cl(G), Then $(\mathcal{T}, \mathcal{PT})$ -cl $(f^{-1}(G)) \subseteq (\mathcal{T}, \mathcal{PT})$ -cl $(f^{-1}((\mathcal{T}, \mathcal{PT})$ -cl(G)))(1) $(\mathcal{T}, \mathcal{PT})$ -cl(G) is $(\mathcal{T}, \mathcal{PT})$ -cloged in X fixed in $(\mathcal{T}, \mathcal{PT})$ -continuous function

 $(\mathcal{T}, \mathcal{PT})$ -cl(G) is $(\mathcal{T}, \mathcal{PT})$ -closed in Y, f is bi- $(\mathcal{T}, \mathcal{PT})$ -continuous function

Implies $(\mathcal{T}, \mathcal{PT})$ -cl $(f^{-1}((\mathcal{T}, \mathcal{PT})$ -cl(G)) is $(\mathcal{T}, \mathcal{PT})$ -closed in X.

Implies $(\mathcal{T}, \mathcal{PT})$ -cl $(f^{-1}((\mathcal{T}, \mathcal{PT})$ -cl $(G))=f^{-1}((\mathcal{T}, \mathcal{PT})$ -cl(G))..(2)

From (1) and (2) we get $(\mathcal{T}, \mathcal{PT})$ -cl(f⁻¹(G)) \subseteq f⁻¹($(\mathcal{T}, \mathcal{PT})$ -cl(G))

Conversely:

Suppose that $f:(X, \mathcal{T}_X, \mathcal{P}\mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)$ is a function such that $(\mathcal{T}, \mathcal{P}\mathcal{T})\text{-cl}(f^{-1}(G)) \subseteq f^{-1}((\mathcal{T}, \mathcal{P}\mathcal{T})\text{-cl}(G))$ for every subset $G \subseteq X$. To prove that f is bi- $(\mathcal{T}, \mathcal{P}\mathcal{T})$ -continuous function Let $F \subseteq Y$ be an arbitrary $(\mathcal{T}, \mathcal{P}\mathcal{T})$ -closed set then $(\mathcal{T}, \mathcal{P}\mathcal{T})\text{-cl}(F)=F$ By hypothesis $(\mathcal{T}, \mathcal{P}\mathcal{T})\text{-cl}(f^{-1}(F)) \subseteq f^{-1}((\mathcal{T}, \mathcal{P}\mathcal{T})\text{-cl}(F)) = f^{-1}(F) \dots (3)$ But $f^{-1}(F) \subseteq (\mathcal{T}, \mathcal{P}\mathcal{T})\text{-cl}(f^{-1}(F))$ for every $F \dots (4)$ From (3) and (4) we get $f^{-1}(F)=(\mathcal{T}, \mathcal{P}\mathcal{T})\text{-cl}(f^{-1}(F))$ Then $f^{-1}(F)$ is $(\mathcal{T}, \mathcal{P}\mathcal{T})\text{-closed}$. So by theorem 3.2.17 f is bi- $(\mathcal{T}, \mathcal{P}\mathcal{T})\text{-continuous}$.

Theorem 5.10

A function $f:(X, \mathcal{T}_X, \mathcal{P}\mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)$ is bi- $(\mathcal{T}, \mathcal{P}\mathcal{T})$ -continuous iff for every subset $G \subseteq X$, $f^{-1}((\mathcal{T}, \mathcal{P}\mathcal{T})$ -int $(G)) \subseteq (\mathcal{T}, \mathcal{P}\mathcal{T})$ -int $(f^{-1}(G))$. **Proof:**

let $f:(X, \mathcal{T}_X, \mathcal{PT}_X) \to (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ be bi- $(\mathcal{T}, \mathcal{PT})$ -continuous function. To prove that $f^{-1}((\mathcal{T}, \mathcal{PT})\text{-int}(G)) \subseteq (\mathcal{T}, \mathcal{PT})\text{-int}(f^{-1}(G))$ for every subset $G \subseteq Y$. $G \subseteq Y$ implies $(\mathcal{T}, \mathcal{PT})\text{-int}(G) \subseteq (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ Implies $f^{-1}((\mathcal{T}, \mathcal{PT})\text{-int}(G)) \subseteq (X, \mathcal{T}_X, \mathcal{PT}_X)$ since f is bi- $(\mathcal{T}, \mathcal{PT})$ -continuous function Implies $(\mathcal{T}, \mathcal{PT})\text{-int}(f^{-1}((\mathcal{T}, \mathcal{PT})\text{-int}(G)))=f^{-1}((\mathcal{T}, \mathcal{PT})\text{-int}(G))..(1)$ $(\mathcal{T}, \mathcal{PT})\text{-int}(G) \subseteq G$ implies $f^{-1}((\mathcal{T}, \mathcal{PT})\text{-int}(G)) \subseteq f^{-1}(G)$

 $\begin{array}{l} \text{Implies } (\mathcal{T}, \mathcal{PT}) \text{-int}(f^{-1}((\mathcal{T}, \mathcal{PT}) \text{-int}(G))) = f^{-1}((\mathcal{T}, \mathcal{PT}) \text{-int}(G)) \subseteq (\mathcal{T}, \mathcal{PT}) \text{-int}(f^{-1}(G)) \\ \text{Implies } f^{-1}((\mathcal{T}, \mathcal{PT}) \text{-int}(G)) \subseteq (\mathcal{T}, \mathcal{PT}) \text{-int}(f^{-1}(G)) \\ \end{array}$

Conversely:

Suppose that $f^{-1}((\mathcal{T}, \mathcal{PT})\text{-int}(G)) \subseteq (\mathcal{T}, \mathcal{PT})\text{-int}(f^{-1}(G))..(2)$ To prove that f bi- $(\mathcal{T}, \mathcal{PT})$ -continuous function . Let G be an $(\mathcal{T}, \mathcal{PT})$ -open subset of Y and hence $(\mathcal{T}, \mathcal{PT})\text{-int}(G)=G$. If we show $f^{-1}(G)$ is $(\mathcal{T}, \mathcal{PT})$ -open in X , the result will follow. $f^{-1}(G)=f^{-1}((\mathcal{T}, \mathcal{PT})\text{-int}(G)) \subseteq (\mathcal{T}, \mathcal{PT})\text{- int}(f^{-1}(G))$ [by(2)] Then $f^{-1}(G) \subseteq (\mathcal{T}, \mathcal{PT})\text{- int}(f^{-1}(G)) \dots (3)$ But $(\mathcal{T}, \mathcal{PT})\text{-int}(f^{-1}(G)) \subseteq f^{-1}(G)$ is always true $\dots (4)$ From (3) and (4) we get that $f^{-1}(G)=(\mathcal{T}, \mathcal{PT})\text{-int}(f^{-1}(G))$ So that $f^{-1}(G)$ is $(\mathcal{T}, \mathcal{PT})\text{-open}$.

References

[1] A. S. Mashhour , M. E. Abd El-Monsef and S. N. El-deeb , (1982) "on precontinuous and weak precontinuous mappings", Proc. Math. Phys. Soc. Egypt, 53, 47-53

[2] A.S. Mashhour, A.A. Allam, F.S. Mahamoud and F.H.Khedr, (1983), on supra topological spaces, Indian J.Pure and Appl. Math. No. 4, 14 502 – 510.

[3] **B. Alias khalaf, Haji M. Hasan**, January 2011 (i,j)-ξ-Open sets in Bi-topological spaces, Gen. Math. Notes, Vol. 2, No. 1, pp. 232-243

[4] **B. Shanta,** (1981)Semi-open sets, Semi-continuity and Semi-open Mapping in Bi-topological space, Bull. Calcutta Math. Sco., 73, 237-246.

[5] J. C. Kelley, (1963), Bi-topological space, proc. London, Math. Soc., 13, 71-89

[6] **O. Ravi, and Thivagar, M.L.,** (2004), On stronger forms of (1,2)*-quotient mappings in bi-topological space, Internate. J. game Theory and Algebra, 14, no.6, 481,.

[7]**O. Ravi, S. Pious Missier, and T. salai Parkunan,** (May, 2011) ,A new type of homeomorphism in a bi-topological space, International Journal of math. Sci. and Application, Vol. 1 No. 2

[8] S. Lipschutz, (1965)"General topology" Schaum's series, McGraw-Hill Comp. .