Open, closed and continuous function in bi-pre-supra topological space

Taha H. Jasim

University of Tikrit ,College of Computer Science and Mathematics, Department of Mathematics

Ghaith F Abbas

University of Tikrit, College of Education, Department of Mathematics **Abstract**

In this paper we construction a new space called bi-pre-supra topological space. Many concepts (T, PT) -open set $, (T, P^*T)$ -open set , bi-open set) were introduced . At last through this paper we introduced a new class of functions (open , closed and continuous) in bi-pre-supra topological space . We study and investigate some properties and characterization of above concepts .

Keywords: (*T*, \mathcal{PT})-open function ,(\mathcal{T} , \mathcal{PT})-open function , bi-open function (*T*, \mathcal{PT})closed function , $(\mathcal{T}, \mathcal{P}^*\mathcal{T})$ - closed function, \mathcal{P} , $(\mathcal{T}, \mathcal{P}\mathcal{T})$ -continuous function, $(\mathcal{T}, \mathcal{P}^*\mathcal{T})$ -continuous function, bi-continuous function.

ا**لملخص**: في هذا البحث قدمنا نوع جديد من الفضاءات اطلق عليه (bi-pre-supra topological space) حيث تم التعرف على مجموعة مفاهيم في هذا الفضاء مثل المجموعه المفتوحه المزدوجه كما تم تقديم نوع جديد من الدوال) مفتوحو , مغلقو ومستمزه (في ىذا الفضاء الجذيذ كما تم دراسة بعض الخواص والصفات للمفاىيم السابقة .

1-Introduction

In 1963 Kelley J. C. [5] was first introduced the concept of bi-topological spaces , where X is a non-empty set and T_1 , T_2 are topologies on X. In 1982 Almashhor [1] introduced the concept of pre-open sets in topological space . By using this concept , several authors' [4], [6], [7] defined and studies stronger or weaker types of topological concept.

 In this paper , we introduced the concepts of bi-pre-supra topological space , via (T, PT) -open set , (T, P^*T) -open set and bi-open set in bi-pre-supra topological space, and we study their basic properties and relationships with other concepts of sets. At last through this paper we introduced a new class of functions (open , closed and continuous) in bi-pre-supra topological space . We study and investigate some properties and characterization of above concepts .

2-Preliminaries

Definition 2.1 [1] A subset A of a space (X, \mathcal{T}) is called pre-open, if $A \subseteq int$ (cl(A)). The complement of pre-open set is said to be pre-closed .

Definition 2.2 [2] A subfamily T of a family of subset of X is said to be a supra topology on X if:

1) $X, \emptyset \in \mathcal{T}$

2) If $A_i \in \mathcal{T}$ for all i∈I then $\cup A_i \in \mathcal{T}$

 (X, \mathcal{T}) is called a supra topological space. The element of \mathcal{T} are called supra open set in (X, \mathcal{T}) and complement of a supra open set is called a supra closed set.

Definition 2.3 [7] Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a bi-topological space, and let G be a subset of X. Then G is said to be (i,j)-open set if G=A∪B where $A \in \mathcal{T}_1$ and $B \in \mathcal{T}_2$. The complement of (i,j)-open set is called (i,j)-closed set .

Remark 2.4 [7] Notice that (i,j)-open set need not necessarily form a topology.

Definition 2.4 [3] A subset A of a bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is called (i,j)neighborhood of a point x in X if there exists an (i,j) -open set G such that $x \in G \subseteq A$. And denoted (i,j)-nbd .

Definition 2.5 [3] Let A be a subset of bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$. A point x in X is said to (i,j)-limit point of A if for each (i, j)-open set G containing x such that A \cap (G $\{(x)\}\neq \emptyset$. The set of all (i,j)-limit point of A is called (i,j)-derived set of A and denoted by (i,j) -d (A) .

Definition 2.6 [7] Let A be a subset of bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$. Then the (i,j) closure of G denoted by (i,j)-cl(A), is defined by $\bigcap \{ F : A \subseteq F \text{ and } F \text{ is } (i,j) \text{-closed set } \}$ **Definition 2.7** [7] Let A be a subset of bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$. Then the (i, j) interior of A denoted by (i,j)-int(A), is defined by \cup { G : G \subseteq A and F is (i,j)-open set }

Definition 2.8 [8] A function f:(X, \mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y) is called open function if the image of every open set is open .

Definition 2.9 [8] A function f: $(X, \mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y)$ is called closed function if the image of every closed set is closed .

Definition 2.10 [8]

A function f: $(X, \mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y)$ is called continuous function if the inverse image of any T_Y -open set G is T_X -open set.

3-Bi-pre-supra topological spaces

Definition 3.1 Let X be a non-empty set, let T be a topology on X and let \mathcal{PT} is the set of all pre-open subset of X (for short Po(X)), then We say that $(X, \mathcal{T}, \mathcal{PT})$ is a bi-pre-supra topological space .

Now the deference between bi-topological space [Kelly] and bi-pre-supra topological space $\mathcal{P}\mathcal{T}$ is supra topology not topology.

Example 3.2 Let $X = \{1,2,3,4\}$ $\mathcal{T} = \{\emptyset, X, \{1\}, \{2,3\}, \{1,2,3\}\}\$ $\mathcal{P}oX = \mathcal{PT} = \{\emptyset, X, \{1\}, \{2,3\}, \{1,2,3\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{1,2,4\}, \{1,3,4\}\}\$ $(X, \mathcal{T}, \mathcal{PT})$ is bi-pre-supra topological space

Definition 3.3 Let $(X, \mathcal{T}, \mathcal{PT})$ be a bi-pre-supra topological space, and let G be a subset of X . Then

- i) G is said to be (T, \mathcal{PT}) -open set if G=AUB where $A \in \mathcal{T}$ and $B \in \mathcal{PT}$.
- ii) The complement of (T, \mathcal{PT}) -open set is called (T, \mathcal{PT}) -closed set.
- iii) G is said to be $(\mathcal{T}, \mathcal{PT})^*$ -open set if G=A∪B where A $\in \mathcal{T}$, B $\in \mathcal{PT}$ and $B \notin \mathcal{T}$.
- iv) The complement of $(T, \mathcal{PT})^*$ -open set is called $(T, \mathcal{PT})^*$ -closed set.

v) G is said to be bi-open set if $G = A$ where $A \in \mathcal{T}$ and $A \in \mathcal{PT}$.

vi) The complement of bi-open set is called bi-closed set.

Proposition 3.4

- 1) Every bi-open set is (T, PT) -open set and every bi-closed set is (T, PT) -closed set but the converse is not true .
- 2) Every $(\mathcal{T}, \mathcal{PT})^*$ -open set is $(\mathcal{T}, \mathcal{PT})$ -open set and every $(\mathcal{T}, \mathcal{PT})^*$ -closed set is (T, PT) -closed set but the converse is not true.

Example 3.5

Let $X = \{1,2,3,4\}$ $\mathcal{T} = \{\emptyset, X, \{2\}, \{1,3\}, \{1,2,3\}\}\$ $T^c = \{\emptyset, X, \{1,3,4\}, \{2,4\}, \{4\}\}\$ $\mathcal{PT} = \{\emptyset, X, \{2\}, \{1,3\}, \{1,2,3\}, \{1\}, \{3\}, \{1,2\}, \{2,3\}, \{1,2,4\}, \{2,3,4\}\}\$ (T, PT) -open sets = { \emptyset , X, {2}, {1,2,3}, {2,3}, {1,2}, {1,3}, {1,2,4}, {2,3,4}} $(\mathcal{T}, \mathcal{PT})$ -closed sets = {Ø, X, {1,3,4}, {4}, {1,4}, {3,4}, {2,4}, {3}, {1}} $(T, PT)^*$ -open set= {Ø, X, {1,2}, {2,3}, {1,2,4}, {2,3,4}, {1,3} {1,2,3}} $(T, PT)^*$ -closed sets = {Ø, X, {3,4}, {1,4}, {3}, {1}, {2,4}, {4}} bi-open sets = { \emptyset , X, {2}, {1,3}, {1,2,3}} bi-closed sets = { \emptyset , X, {1,3,4}, {2,4}, {4}}

Definition 3.6 Let $(X, \mathcal{T}, \mathcal{PT})$ be a bi-pre-supra topological space, and let A be a subset of X . Then

- i. The $(\mathcal{T}, \mathcal{PT})$ -closure of G denoted by $(\mathcal{T}, \mathcal{PT})$ -cl(A), is defined by $\bigcap \{ F : A$ \subseteq F and F is $(\mathcal{T}, \mathcal{PT})$ -closed set }
- ii. The $(T, PT)^*$ -closure of A denoted by $(T, PT)^*$ -cl(A), is defined by $\bigcap \{ F :$ $A \subseteq F$ and F is $(T, \mathcal{PT})^*$ -closed set }
- iii. The bi- closure of A denoted by $bi-cl(A)$, is defined by \bigcap $\{F : A \subseteq F \text{ and } F \text{ is bi-closed set }\}$

```
Example 3.7 Let X = \{1,2,3,4\}
```

```
\mathcal{T} = {\emptyset, X, \{4\}, \{1,3\}, \{1,3,4\}\}\T^c = \{\emptyset, X, \{1,2,3\}, \{2,4\}, \{2\}\}\\mathcal{PT} = {\emptyset, X, {4}, {1,3}, {1,3,4}, {1}, {3}, {1,4}, {3,4}, {1,2,4}, {2,3,4}}(\mathcal{T}, \mathcal{PT})-open sets = {\emptyset, X, {4}, {1,3,4}, {1,4}, {3,4}, {1,2,4}, {2,3,4}, {1,3}}
(T, PT)-closed sets = {Ø, X, {1,2,3}, {2}, {2,3}, {1,2}, {3}, {1}, {2,4}}
(T, PT)^*-open sets={\emptyset, X, {1,4}, {3,4}, {1,2,4}, {2,3,4}, {1,3}, {1,3,4}}
(T, PT)^*-closed sets={\emptyset, X, {2,3}, {1,2}, {3}, {1}, {2,4}, {2}}
bi-open sets = {\emptyset, X, {4}, {1,3}, {1,3,4}}
bi-closed sets = {\emptyset, X, {1,2,3}, {2,4}, {2}}
Take G = \{1,2\}, H=\{1,2,3\}({\cal T},{\cal PT})-cl(G) = {1,2}
bi-cl(G) = \{1,2,3\}({\mathcal{T}}, {\mathcal{PT}})-cl(H) = {1,2,3}
(T, \mathcal{PT})^*-cl(H)=X
```
Definition 3.8 Let $(X, \mathcal{T}, \mathcal{PT})$ be a bi-pre-supra topological space, and let A be a subset of X . Then :

- (i) The (T, \mathcal{PT}) -interior of A denoted by (T, \mathcal{PT}) -int(A), is defined by ∪{ F: $F \subseteq A$ and F is $(\mathcal{T}, \mathcal{PT})$ -open set }
- (ii) The $(T, \mathcal{PT})^*$ -interior of A denoted by $(T, \mathcal{PT})^*$ -int(A), is defined by ∪{ $F : F \subseteq A$ and F is $(T, \mathcal{PT})^*$ -open set }
- (iii) The bi-interior of A denoted by bi-int(A), is defined by $\cup \{ F : F \subseteq A \}$ and F is bi-open set }

Example 3.9 Let $X = \{1,2,3,4\}$ $\mathcal{T} = {\emptyset, X, {1}, {2,4}, {1,2,4}}$ $T^c = \{\emptyset, X, \{2,3,4\}, \{1,3\}, \{3\}\}\$ $\mathcal{PT} = \{\emptyset, X, \{1\}, \{2,4\}, \{1,2,4\}, \{2\}, \{4\}, \{1,2\}, \{1,4\}, \{1,2,3\}, \{1,3,4\}\}\$ $(\mathcal{T}, \mathcal{PT})$ -open sets = {Ø, X, {1}, {1,2,4}, {1,2}, {1,4}, {1,2,3}, {1,3,4}, {2,4}} $(T, PT)^*$ -open sets= { \emptyset , X, {1,2,4}, {1,2}, {1,4}, {1,2,3}, {1,3,4}, {2,4}} bi-open sets = { \emptyset , X, {1}, {2,4}, {1,2,4}} Take $G = \{1,2,3\}$ $({\mathcal T},{\mathcal P}{\mathcal T})$ -int(G) = {1,2,3} $({\mathcal T},{\mathcal P}{\mathcal T})^*$ -int(G)={1,2,3} $\text{bi-int}(G) = \{1\}$

4-Open and closed function in bi-pre-supra topological space

In this section we introduce a new class of open and closed function in bi-pre-supra topological space .

Definition 4.1 A function f: $(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is called

- 1- bi-(T, PT)-open function if the image of every $(\mathcal{T}_X, \mathcal{PT}_X)$ -open set is $(\mathcal{T}_Y, \mathcal{P} \mathcal{T}_Y)$ open .
- 2- bi- $(\mathcal{T}, \mathcal{PT})^*$ -open function if the image of every $(\mathcal{T}_X, \mathcal{PT}_X)^*$ -open set is $(\mathcal{T}_Y, \mathcal{PT}_Y)^*$ open .
- 3- bi-open function if the image of every bi-open set is bi-open

Definition 4.2 A function f: $(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is called

- 1- bi-(T, PT)-closed function if the image of every $(\mathcal{T}_X, \mathcal{PT}_X)$ -closed set is $(\mathcal{T}_Y, \mathcal{PT}_Y)$ closed .
- 2- bi- $(\mathcal{T}, \mathcal{PT})^*$ -closed function if the image of every $(\mathcal{T}_X, \mathcal{PT}_Y)^*$ -closed set is $(\mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)^*$ -closed.
- 3- bi-closed function if the image of every bi- closed set is bi- closed

Example 4.3

 $X=\{1,2,3,4\}$ $\mathcal{T}_X = \{ \emptyset, X, \{1\}, \{2\}, \{1,2\} \}$ $\overline{\mathcal{J}_X^c}$ = { \emptyset ,X,{2,3,4},{1,3,4},{3,4}} $\mathcal{P}T_X = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,2,4\}\}\$ $(\mathcal{T}_X, \mathcal{PT}_X)$ -open sets={ \emptyset ,X,{1},{2},{1,2},{1,2,3},{1,2,4}} $(\mathcal{T}_X, \mathcal{PT}_X)$ -closed sets={ $\emptyset, X, \{2,3,4\}$, {1,3,4}, {3,4}, {4}, {3}} $(\mathcal{T}_X, \mathcal{PT}_X)^*$ -open sets={ $\emptyset, X, \{1,2,3\}$, {1,2,4}} $({\cal T}_X, {\cal PT}_X)^*$ -closed sets={ $\emptyset, X, \{4\}, \{3\}\}$ }

 $Y=\{a,b,c,d\}$ $\mathcal{T}_Y = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}\$ $\mathcal{T}_{Y}^{c} = \{\emptyset, Y, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{d\}\}\$ $\mathcal{P}\mathcal{T}_{Y} = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\}\$ $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{F}_{Y})$ -open sets={ $\emptyset, Y, \{a\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}, \{b\}\}$ $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})$ -closed sets={ $\emptyset, Y, \{b, c, d\}$, {c,d}, {d}, {c}, {a,c,d}} $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})^*$ -open sets={ \emptyset ,Y {a,b,d}} $(\mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)^*$ -closed sets={ $\emptyset, Y \{c\}$ } Let f:(X, \mathcal{T}_X , \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y , \mathcal{PT}_Y) defined by
f(1)=a f(2)=b f(3)=c f(4)=d. Then f(2)=b f(3)=c f(4)=d. Then all types of function in def.[4.1],[4.2] are holding .

Diagram 4.4

The following diagram is valid

Example 4.5

 $X=\{1,2,3,4\}$ $T_{X} = \{ \emptyset, X, \{1\} \}$ $\overline{\mathcal{J}_X^c}$ = { Ø, X, { 2, 3, 4 } } $\mathcal{PT}_{X} = \{ \emptyset, X, \{1\}, \{1,2\}, \{1,2,3\}, \{1,3\}, \{1,4\}, \{1,2,4\}, \{1,3,4\} \}$ $(\mathcal{T}_X, \mathcal{P}\mathcal{T}_X)$ -open sets = { Ø, X, {1}, {1,2}, {1,2,3}, {1,3}, {1,4}, {1,2,4}, {1,3,4}} $(\mathcal{T}_X, \mathcal{PT}_X)$ -closed sets={ $\emptyset, X, \{2,3,4\}$, {3,4}, {4}, {2,4}, {3}, {2}} $(\mathcal{T}_X, \mathcal{PT}_X)^*$ -open sets={ $\emptyset, X, \{1,3\}, \{1,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}\}$ $(\mathcal{T}_X, \mathcal{P}\mathcal{T}_X)^*$ -closed sets={ $\emptyset, X, \{2,4\}$, {2,3}, {4}, {3}, {2}} $Y=\{a,b,c,d\}$ $\mathcal{T}_{Y} = \{\emptyset, X, \{a\}, \{a, c, d\}\}\$ $T_Y^c = \{ \emptyset, Y, \{b, c, d\} , \{b\} \}$ $\mathcal{PT}_{Y}=\{\emptyset, Y, \{a\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}\}\$ $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{I}_{Y})$ -open sets = {Ø, Y, {a}, {a,b}, {a,c}, {a,d}, {a,b,c}, {a,b,d}, {a,c,d}} $(\mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)$ -closed sets = {Ø, Y, {b,c,d}, {c,d}, {b,d}, {b,c}, {d}, {c}, {b}} $(\mathcal{T}_Y, \mathcal{P}\mathcal{I}_Y)^*$ -open sets = { $\emptyset, Y, \{a,c\}$, { a,d }, { a,b,c }, { a,b,d }, { a,c,d }} $(\mathcal{T}_V, \mathcal{P}\mathcal{T}_V)^*$ -closed sets = { $\emptyset, Y, \{b,d\}, \{b,c\}, \{d\}, \{c\}, \{b\}\}$ Let f:(Y, \mathcal{T}_Y , $\mathcal{P}\mathcal{T}_Y$) \rightarrow (X, \mathcal{T}_X , $\mathcal{P}\mathcal{T}_X$)defined by f(a)=1 f(b)=2 f(c)=3 f(d)=4. Then f is bi- $(\mathcal{T}, \mathcal{PT})$ -open (closed) function not biopen (closed) function

Example 4.6

 $X=\{1,2,3,4\}$ $\mathcal{T}_X = \{ \emptyset, X, \{1\}, \{2\}, \{1,2\} \}$ $T_{\text{X}}^{\text{c}} = {\emptyset, \text{X}, \{2,3,4\}, \{1,3,4\}, \{3,4\}\}$

 $\mathcal{PT}_X = \{ \emptyset, X, \{1\}, \{2\}, \{1,2\}, \{4\}, \{1,2,3\}, \{1,2,4\} \}$ $(\mathcal{T}_X, \mathcal{P}\mathcal{T}_X)$ -open sets={ $\emptyset, X, \{1\}, \{1,2\}, \{2\}, \{1,2,3\}, \{1,2,4\}$ } $(\mathcal{T}_X, \mathcal{PT}_X)$ -closed sets={ $\emptyset, X, \{2,3,4\}$, {3,4}, {3,4}, {4}, {3}} $(\mathcal{T}_X, \mathcal{PT}_Y)^*$ -open sets={ \emptyset ,X,{ 1,2,3},{1,2,4}} $(\mathcal{T}_X, \mathcal{P}\mathcal{T}_X)^*$ -closed sets={ $\emptyset, X, \{4\}, \{3\}, \{4\}\}$ $Y = \{a,b,c,d\}$ $\mathcal{T}_{Y} = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,b,d\}\}\$ $\mathcal{T}_{Y}^{c} = \{\emptyset, Y, \{b, c, d\}, \{a, c, d\}, \{c, d\}, \{c\}\}\$ $\mathcal{P} \mathcal{T}_{Y} = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\}\$ $(\mathcal{T}_Y, \mathcal{PT}_Y)$ -open sets ={ \emptyset , Y, {a},{b}, {a,b},{a,b,c}, {a,b,d}} $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})$ -closed sets = {Ø, Y,{b,c,d},{a,c,d},{c,d},{d},{c}} $(\mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)^*$ -open sets = { $\emptyset, Y, \{a,b,c\}$ } $(\mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)^*$ -closed sets = { $\emptyset, Y, \{d\}$ } Let f: $(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ defined by f(1)=a f(2)=b f(3)=c f(4)=d. Then f is bi- $(\mathcal{T}, \mathcal{PT})$ -open (closed) function not bi- $T, \mathcal{P}^* - T$ – open (closed) function

Theorem 4.7

A function f:(X, \mathcal{T}_X , \mathcal{PT}_X) → (Y, \mathcal{T}_Y , \mathcal{PT}_Y) is bi-(T, \mathcal{PT})-open iff f((T, \mathcal{PT})-int(A)) \subseteq (T, \mathcal{PT}) -int(f(A))for all A⊆X

Proof:

Let f bi- (T, PT) -open function and A⊆X Since $(\mathcal{T}, \mathcal{PT})$ -int(A) is($\mathcal{T}, \mathcal{PT}$)-open set and f is bi-($\mathcal{T}, \mathcal{PT}$)-open function then $f((\mathcal{T}, \mathcal{PT})$ -int(A))is($\mathcal{T}, \mathcal{PT}$)-open set subset of Y Since $(\mathcal{T}, \mathcal{PT})$ -int(A)⊆A then : $f((\mathcal{T}, \mathcal{PT})-int(A)) \subseteq (\mathcal{T}, \mathcal{PT})-int(f(A))$

Conversely:

Suppose that the condition is true and A is $(\mathcal{T}, \mathcal{PT})$ -open set subset of X Now $f(A)=f((\mathcal{T}, \mathcal{PT})-int(A))\subseteq (\mathcal{T}, \mathcal{PT})-int(f(A))$ i.e $f(A)=(\mathcal{T}, \mathcal{PT})$ -int(f(A)) then $f(A)$ is $(\mathcal{T}, \mathcal{PT})$ -open

Theorem 4.8

A function f:(X, $\mathcal{T}_X, \mathcal{P}\mathcal{T}_X$) → (Y, $\mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y$) is bi-(T, $\mathcal{P}\mathcal{T}$)-closed iff (T, $\mathcal{P}\mathcal{T}$)-cl(f(A)) \subseteq f(($\mathcal{T}, \mathcal{PT}$)-cl(A))for all A \subseteq X . **Proof:**

Let f bi- (T, PT) -closed function and A⊆X Since $(\mathcal{T}, \mathcal{PT})$ -cl(A) is $(\mathcal{T}, \mathcal{PT})$ -closed set and f is bi- $(\mathcal{T}, \mathcal{PT})$ -closed function then $f((\mathcal{T}, \mathcal{PT})-cl(A))=(\mathcal{T}, \mathcal{PT})-cl(f((\mathcal{T}, \mathcal{PT})-cl(A))$ But $A \subseteq (T, \mathcal{PT})$ -cl(A) This f(A)⊆f($(\mathcal{T}, \mathcal{PT})$ -cl(A)) \Rightarrow $(\mathcal{T}, \mathcal{PT})$ -cl(f(A)) \subseteq $(\mathcal{T}, \mathcal{PT})$ -cl(f($(\mathcal{T}, \mathcal{PT})$ -cl (A)) \Rightarrow $(\mathcal{T}, \mathcal{PT})$ -cl(f(A)) \subseteq f($(\mathcal{T}, \mathcal{PT})$ -cl(A))

Conversely:

If the condition is true and A⊆X closed set Then $(\mathcal{T}, \mathcal{PT})$ -cl(f(A)) \subseteq f(($\mathcal{T}, \mathcal{PT}$)-cl(A))=f(A) i.e $(\mathcal{T}, \mathcal{PT})$ -cl(f(A))= f(A) Then $f(A)$ is (T, \mathcal{PT}) -closed set subset of Y.

5- Continuous function in bi-pre-supra topological space

In this section we introduce a new class of continuous function in bi-pre-supra topological space .

Definition 5.1 A function f: $(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is called

- 1- bi- $(\mathcal{T}, \mathcal{PT})$ -continuous function if the inverse image of any $(\mathcal{T}_{Y}, \mathcal{PT}_{Y})$ -open set G is(\mathcal{T}_X , $\mathcal{P}\mathcal{T}_Y$ -open set.
- 2- bi- $(T, \mathcal{PT})^*$ -continuous function if the inverse image of any $(T_v, \mathcal{PT}_v)^*$ -open set G is(\mathcal{T}_X , $\mathcal{P}\mathcal{T}_X$)*-open set.
- 3- bi-continuous function if the inverse image of any bi-open set is bi-open .

Example 5.2 X={1,2,3,4}

 $\mathcal{T}_X = \{ \emptyset, X, \{1\}, \{2\}, \{1,2\} \}$ $\mathcal{PT}_{X} = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,2,4\}\}\$ $(\mathcal{T}_X, \mathcal{P}\mathcal{T}_X)$ -open sets={ $\emptyset, X, \{1\}$, {2}, {1,2}, {1,2,3}, {1,2,4}} $(\mathcal{T}_X, \mathcal{PT}_X)^*$ -open sets={ $\emptyset, X, \{1,2,3\}$, {1,2,4}} $Y = \{a,b,c,d\}$ $\mathcal{T}_V = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}\$ $\mathcal{P}\mathcal{T}_{Y} = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\}\$ $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})$ -opensets={ $\emptyset, Y, \{a\}$, {a,b}, {a,b,c}, {a,b,d}, {b}} $(\mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)^*$ -opensets={ \emptyset ,Y {a,b,d}} Let f:(X, \mathcal{T}_X , \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y , \mathcal{PT}_Y) defined by f(1)=a f(2)=b f(3)=c f(4)=d. Then all types of function in def.[5.1] are holding **Diagram 5.3**

The following diagram is valid

Example 5.4

 $X=\{1,2,3,4\}$ $\mathcal{T}_X = \{ \emptyset, X, \{1\} \}$ $\mathcal{PT}_X = \{ \emptyset, X, \{1\}, \{1,2\}, \{1,2,3\}, \{1,3\}, \{1,4\}, \{1,2,4\}, \{1,3,4\} \}$ $(\mathcal{T}_X, \mathcal{P}\mathcal{T}_X)$ -open sets={ \emptyset , X, {1}, {1,2}, {1,2,3}, {1,3}, {1,4}, {1,2,4}, {1,3,4}} $(\mathcal{T}_X, \mathcal{PT}_X)^*$ -open sets={ $\emptyset, X, \{1,3\}, \{1,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}\}$ $Y = \{a,b,c,d\}$ $\mathcal{T}_{Y} = \{\emptyset, X, \{a\}, \{a, c, d\}\}\$ $\mathcal{PT}_{Y}=\{\emptyset, Y, \{a\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}\}\$

 $(\mathcal{T}_Y, \mathcal{P}\mathcal{I}_Y)$ -open sets = {Ø, Y, {a}, {a,b}, {a,c}, {a,d}, {a,b,c}, {a,b,d}, {a,c,d}} $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{T}_{Y})^*$ -open sets = { \emptyset , Y, {a,c}, {a,d}, {a,b,c}, {a,b,d}, {a,c,d}} Let f:(Y, \mathcal{T}_Y , $\mathcal{P}\mathcal{T}_Y$) \rightarrow (X, \mathcal{T}_X , $\mathcal{P}\mathcal{T}_X$) defined by
f(a)=1 f(b)=2 f(c)=3 f(d)=4. Then f $f(a)=1$ $f(b)=2$ $f(c)=3$ $f(d)=4$. Then f is bi- (T, PT) -continuous function not bicontinuous function

Example 5.5

 $X=\{1,2,3,4\}$ $\mathcal{T}_X = \{ \emptyset, X, \{1\}, \{2\}, \{1,2\} \}$ $\mathcal{PT}_X = \{ \emptyset, X, \{1\}, \{2\}, \{1,2\}, \{4\}, \{1,2,3\}, \{1,2,4\} \}$ $(\mathcal{T}_X, \mathcal{P}\mathcal{T}_Y)$ -open sets={ $\emptyset, X, \{1\}, \{1,2\}, \{2\}, \{1,2,3\}, \{1,2,4\}$ } $(\mathcal{T}_X, \mathcal{PT}_X)^*$ -open sets={ $\emptyset, X, \{ 1, 2, 3 \}, \{ 1, 2, 4 \}$ } $Y = \{a,b,c,d\}$ $\mathcal{T}_{Y} = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{a,b,d\}\}\$ $\mathcal{P} \mathcal{T}_{Y} = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,d\}\}\$ $(\mathcal{T}_{Y}, \mathcal{P}\mathcal{F}_{Y})$ -open sets ={ \emptyset , Y, {a},{b}, {a,b},{a,b,c},{a,b,d}} $(\mathcal{T}_Y, \mathcal{P}\mathcal{T}_Y)^*$ -open sets = { $\emptyset, Y, \{a,b,c\}$ } Let f:(X, \mathcal{T}_X , \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y , \mathcal{PT}_Y) defined by

f(1)=a f(2)=b f(3)=c f(4)=d. Then f is bi- $(\mathcal{T}, \mathcal{PT})$ -continuous function not bi- $(T, \mathcal{P}T)^*$ -continuous function

Theorem 5.6 Let the function f: $(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ and $g: (Y, \mathcal{T}_Y, \mathcal{PT}_Y) \rightarrow$ $(Z, \mathcal{T}_Z, \mathcal{PT}_Z)$ be bi- $(\mathcal{T}, \mathcal{PT})$ -continuous. Then the composition function gof: $(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow$ $(Z, \mathcal{T}_Z, \mathcal{PT}_Z)$ is also bi- $(\mathcal{T}, \mathcal{PT})$ -continuous.

Proof:

Let G be an $(\mathcal{T}, \mathcal{PT})$ -open subset of Z.

Then $g^{-1}(G)$ is (T, PT) -open in Y since g is continuous.

But f is also bi- (T,PT) -continuous, so $f^{-1}[g^{-1}(G)]$ is (T,PT) -open in X.

Now $(gof)^{-1}(G) = f^{-1}[g^{-1}(G)]$

Thus $(gof)^{-1}(G)$ is $(\mathcal{T}, \mathcal{PT})$ -open in X for every $(\mathcal{T}, \mathcal{PT})$ -open subset G of Z gof is continuous .

Theorem 5.7

A function f:(X, \mathcal{T}_X , \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y , \mathcal{PT}_Y) is bi-(T, \mathcal{PT})-continuous iff the inverse image of every (T, \mathcal{PT}) -closed subset of Y is a (T, \mathcal{PT}) -closed subset of X.

Proof:

Suppose f:(X, \mathcal{T}_X , \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y , \mathcal{PT}_Y) is bi-(T, \mathcal{PT})-continuous . and let F be a (T, \mathcal{PT})closed subset of Y .

Then F^c is $(\mathcal{T}, \mathcal{PT})$ -open, and so $f^{-1}(F^c)$ is $(\mathcal{T}, \mathcal{PT})$ -open in X.

But $f^{-1}(F^c) = [f^{-1}(F)]^c$

Therefore $f^{-1}(F)$ is $(\mathcal{T}, \mathcal{PT})$ -closed.

Conversely:

Assume F is $({\cal T}, {\cal PT})$ -closed in Y implies $f^{-1}(F)$ is $({\cal T}, {\cal PT})$ -closed in X.

Let G be an $(\mathcal{T}, \mathcal{PT})$ -open subset of Y.

Then G^c is $(\mathcal{T}, \mathcal{PT})$ -closed in Y, and so $f^{-1}(G^c) = [f^{-1}(G)]^c$ is $(\mathcal{T}, \mathcal{PT})$ -closed in X.

Accordingly, $f^{-1}(G)$ is (T, \mathcal{PT}) -open and therefore f is bi- (T, \mathcal{PT}) -continuous.

Theorem 5.8

A function f: $(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is bi- $(\mathcal{T}, \mathcal{PT})$ -continuous iff for every subset $G\subseteq X$, $f((\mathcal{T}, \mathcal{PT})-cl(G))\subseteq (\mathcal{T}, \mathcal{PT})-cl(f(G)).$

Proof:

Suppose f: $(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is bi- $(\mathcal{T}, \mathcal{PT})$ -continuous Now $f(G) \subseteq (T, \mathcal{PT})$ - $(f(G))$, so $G \subseteq f^{-1}(f(G)) \subseteq f^{-1}((\mathcal{T}, \mathcal{PT})\text{-}cl(f(G)))$ But $(\mathcal{T}, \mathcal{PT})$ -cl(f(G)) is $(\mathcal{T}, \mathcal{PT})$ -closed. And so $f^{-1}((\mathcal{T}, \mathcal{PT})\text{-}cl(f(G)))$ is also $(\mathcal{T}, \mathcal{PT})\text{-closed}$. Hence $G \subseteq (\mathcal{T}, \mathcal{PT})$ -cl(G) $\subseteq f^{-1}((\mathcal{T}, \mathcal{PT})$ -cl(f(G))) And therefore $f((\mathcal{T}, \mathcal{PT})-cl(G)) \subseteq (\mathcal{T}, \mathcal{PT})-cl(f(G))$ $(\mathcal{T}, \mathcal{PT})$ -cl(f(G))=f(f⁻¹(($\mathcal{T}, \mathcal{PT}$)-cl(f(G)))

Conversely:

Assume f((T, PT) -cl(G))⊆ (T, PT) -cl(f(G)) for any G⊆X, and let F be a (T, PT) -closed subset of Y .

Set G=f⁻¹(F), i.e $(\mathcal{T}, \mathcal{PT})$ -cl(G)=G.

Now

 $f((\mathcal{T}, \mathcal{PT})\text{-}\mathrm{cl}(G)) = f((\mathcal{T}, \mathcal{PT})\text{-}\mathrm{cl}(f^{-1}(F))) \subseteq (\mathcal{T}, \mathcal{PT})\text{-}\mathrm{cl}(f(f^{-1}(F))) = (\mathcal{T}, \mathcal{PT})\text{-}\mathrm{cl}(F) = F$ Hence $(\mathcal{T}, \mathcal{PT})$ -cl(G) \subseteq f⁻¹(f($(\mathcal{T}, \mathcal{PT})$ -cl(G))) \subseteq f⁻¹(F)=G

But
$$
G \subseteq (T, \mathcal{PT})
$$
-cl(G)

So $(\mathcal{T}, \mathcal{PT})$ -cl(G)=G and f is bi- $(\mathcal{T}, \mathcal{PT})$ -continuous function.

Theorem 5.9

A function f:(X, \mathcal{T}_X , \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y , \mathcal{PT}_Y) is bi-(T, \mathcal{PT})-continuous iff for every subset $G \subseteq Y$, $(\mathcal{T}, \mathcal{PT})$ -cl $(f^{-1}(G)) \subseteq f^{-1}((\mathcal{T}, \mathcal{PT})$ -cl $(G))$.

Proof:

let f: $(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ be bi- $(\mathcal{T}, \mathcal{PT})$ -continuous function. To prove that $(\mathcal{T}, \mathcal{PT})$ -cl(f⁻¹(G))⊆ f⁻¹($(\mathcal{T}, \mathcal{PT})$ -cl(G)) for every subset G⊆X. Since $G\subseteq$ (*T*, *PT*)-cl(*G*), Then $(\mathcal{T}, \mathcal{PT})$ -cl $(f^{-1}(G)) \subseteq (\mathcal{T}, \mathcal{PT})$ -cl $(f^{-1}((\mathcal{T}, \mathcal{PT})$ -cl(G)))(1) $(\mathcal{T}, \mathcal{PT})$ -cl(G) is $(\mathcal{T}, \mathcal{PT})$ -closed in Y, f is bi- $(\mathcal{T}, \mathcal{PT})$ -continuous function

Implies $(\mathcal{T}, \mathcal{PT})$ -cl (f⁻¹($(\mathcal{T}, \mathcal{PT})$ -cl(G)) is $(\mathcal{T}, \mathcal{PT})$ -closed in X.

Implies $(\mathcal{T}, \mathcal{PT})$ -cl(f⁻¹(($\mathcal{T}, \mathcal{PT}$)-cl(G))=f⁻¹(($\mathcal{T}, \mathcal{PT}$)-cl(G))..(2)

From (1) and (2) we get $(\mathcal{T}, \mathcal{PT})$ -cl(f⁻¹(G)) \subseteq f⁻¹($(\mathcal{T}, \mathcal{PT})$ -cl(G))

Conversely:

Suppose that $f:(X, \mathcal{T}_X, \mathcal{PT}_X) \to (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is a function such that $(\mathcal{T}, \mathcal{PT})$ -cl($f^{-1}(G)$) \subseteq $f^{-1}((\mathcal{T}, \mathcal{PT})\text{-}\mathrm{cl}(G))$ for every subset $G\subseteq X$. To prove that f is bi- (T, PT) -continuous function Let F ⊆Y be an arbitrary $(\mathcal{T}, \mathcal{PT})$ -closed set then $(\mathcal{T}, \mathcal{PT})$ -cl(F)=F By hypothesis $(\mathcal{T}, \mathcal{PT})$ -cl $(f^{-1}(F)) \subseteq f^{-1}((\mathcal{T}, \mathcal{PT})$ -cl $(F)) = f^{-1}(F)$ (3) But $f^{-1}(F) \subseteq (\mathcal{T}, \mathcal{PT})$ -cl $(f^{-1}(F))$ for every F (4) From (3) and (4) we get $f^{-1}(F)=(\mathcal{T}, \mathcal{PT})$ -cl $(f^{-1}(F))$ Then $f^{-1}(F)$ is $(\mathcal{T}, \mathcal{PT})$ -closed. So by theorem 3.2.17 f is bi- (T, PT) -continuous.

Theorem 5.10

A function f: $(X, \mathcal{T}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y, \mathcal{PT}_Y)$ is bi- $(\mathcal{T}, \mathcal{PT})$ -continuous iff for every subset $G\subseteq X$, $f^{-1}((\mathcal{T}, \mathcal{PT})\text{-}int(G)) \subseteq (\mathcal{T}, \mathcal{PT})\text{-}int(f^{-1}(G)).$

Proof:

let f:(X, \mathcal{T}_X , \mathcal{PT}_X) \rightarrow (Y, \mathcal{T}_Y , \mathcal{PT}_Y) be bi-(T, \mathcal{PT})-continuous function. To prove that $f^{-1}((\mathcal{T}, \mathcal{PT})\text{-}int(G)) \subseteq (\mathcal{T}, \mathcal{PT})\text{-}int(f^{-1}(G))$ for every subset $G \subseteq Y$. $G\subseteq Y$ implies $(\mathcal{T}, \mathcal{PT})$ -int $(G)\subseteq (Y, \mathcal{T}_{Y}, \mathcal{PT}_{Y})$ Implies $f^{-1}((\mathcal{T}, \mathcal{PT})-int(G)) \subseteq (X, \mathcal{T}_X, \mathcal{PT}_X)$ since f is bi- $(\mathcal{T}, \mathcal{PT})$ -continuous function Implies($\mathcal{T}, \mathcal{PT}$)-int($f^{-1}((\mathcal{T}, \mathcal{PT})$ -int(G)))= $f^{-1}((\mathcal{T}, \mathcal{PT})$ -int(G))..(1) $(\mathcal{T}, \mathcal{PT})$ -int(G)⊆G implies f⁻¹($(\mathcal{T}, \mathcal{PT})$ -int(G))⊆ f⁻¹(G) Implies $(\mathcal{T}, \mathcal{PT})$ -int $(f^{-1}((\mathcal{T}, \mathcal{PT})$ -int $(G)))=f^{-1}((\mathcal{T}, \mathcal{PT})$ -int $(G)) \subseteq (\mathcal{T}, \mathcal{PT})$ -int $(f^{-1}(G))$ Implies $f^{-1}((\mathcal{T}, \mathcal{PT})$ -int(G)) $\subseteq (\mathcal{T}, \mathcal{PT})$ -int($f^{-1}(G)$) **Conversely:** Suppose that $f^{-1}((\mathcal{T}, \mathcal{PT})$ -int $(G)) \subseteq (\mathcal{T}, \mathcal{PT})$ -int $(f^{-1}(G))$...(2) To prove that f bi- (T, PT) -continuous function. Let G be an $(\mathcal{T}, \mathcal{PT})$ -open subset of Y and hence $(\mathcal{T}, \mathcal{PT})$ -int(G)=G. If we show $f^{-1}(G)$ is (T, \mathcal{PT}) -open in X, the result will follow. $f^{-1}(G)=f^{-1}((\mathcal{T}, \mathcal{PT})$ -int $(G)) \subseteq (\mathcal{T}, \mathcal{PT})$ - int $(f^{-1}(G))$ [by(2)] Then $f^{-1}(G) \subseteq (T, \mathcal{PT})$ - int $(f^{-1}(G))$ (3) But $(\mathcal{T}, \mathcal{PT})$ -int $(f^{-1}(G)) \subseteq f^{-1}(G)$ is always true(4) From (3) and (4) we get that $f^{-1}(G)=(\mathcal{T}, \mathcal{PT})$ -int $(f^{-1}(G))$ So that $f^{-1}(G)$ is $(\mathcal{T}, \mathcal{PT})$ -open.

References

[1] **A. S. Mashhour , M. E. Abd El-Monsef and S. N. El-deeb** , (1982) "on precontinuous and weak precontinuous mappings", Proc. Math. Phys. Soc. Egypt, 53, 47- 53

[2] **A.S. Mashhour, A.A. Allam, F.S. Mahamoud and F.H.Khedr,** (1983), on supra topological spaces, Indian J.Pure and Appl. Math. No. 4, 14 502 – 510.

[3] **B. Alias khalaf, Haji M. Hasan,** , January 2011 (i,j)-ξ-Open sets in Bi-topological spaces, Gen. Math. Notes, Vol. 2, No. 1, pp. 232-243

[4] **B. Shanta,** (1981)Semi-open sets, Semi-continuity and Semi-open Mapping in Bitopological space, Bull. Calcutta Math. Sco., 73, 237-246.

[5] **J. C. Kelley,** (1963),Bi-topological space, proc. London, Math. Soc., 13, 71-89

[6] **O. Ravi, and Thivagar, M.L.,** (2004),On stronger forms of (1,2)*-quotient mappings in bi-topological space, Internate. J. game Theory and Algebra, 14, no.6, 481,.

[7]**O. Ravi, S. Pious Missier, and T. salai Parkunan,** (May, 2011) ,A new type of homeomorphism in a bi-topological space, International Journal of math. Sci. and Application, Vol. 1 No. 2

[8] **S. Lipschutz** , (1965)"General topology" Schaum's series, McGraw-Hill Comp. .