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ABSTRACT

In this paper, we consider the sability analysis for a disturbed
unsteady flow, which is two-dimensional incompressible flow in a
symmetric film where the effect of viscosity can be neglected in comparison
with inertia forces. The partial differential equations governing such flow
are obtained from the Navier - Stokes equations and we obtain an analytic
solution for those equations. The whole system is disturbed and we found
the regions where the flow is stable or unstable.
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Introduction:

The dynamics of thin liquids films has been studied by G. I. Taylor
(1959). The subject is of considerable scientific and technological
importance.

Brown (1961) studied experimentally the general behaviour of athin
sheet of moving liquid, he found that this measured velocity distribution in
the curtain compared with the prediction based on a non linear differential
equation was attributed to Taylor (1959). He observed that the film is with
disintegrate if the follow rate is reduced to a film minimum value. He also
discussed film stability on the basis of a smple momentum balance applied
to a stationary free edge resulting from the film breaking.

The principle of stability of a viscous liquid film has been
investigated by S. P. Lin (1981). It is shown to be stable with respect to
temporally and spatially changing varicose disturbances.

Abdulahad (1994) determines the thickness of a liquid film with
negligible inertia and also he studied the similarity solution for unsteady
flow for such liquid films.

Mosa (2002) considered the stability andysis for fluid flow between
two infinite parallel plates.

In this paper we consider the stability analysis of a viscous liquid
film when the viscous forces are very smal compared with the inertia
forces.

2. Stability equation:
The stability of the described basic flow with respect to two-

dimensional disturbances are to be investigated.
The general form of the Navier-Stokes equation is defined by:

(DY _ TP
Dt X,
When the viscosity is very small, the Navier-Stokes equation

reduces to:
. DU, _ 1P

Dt X,
Substituting the perturbed flow quantities
(U=U+U, V =V + V )into (2) and neglecting some of terms which

have no perturbation, we have:

+mN2Ui ....................................... (1)
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U U 10U iU _ 19P
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ﬂt+(U+U)‘IIX+U'|IX_+(V+V)1IY+V1IY_ T : (3)
ﬂ+(U+U)ﬂ+uﬂ+(\7+v)ﬂ+vﬂ:.££ Iy
Tt X X 1Y 1Y r X 7
U v i
1x 1Y b
Now, we introduce the dimens onless variables as follows:
_ — d
X:doX,U:UOU,Uo:Q/dO, t:—ot¢
(0]
Y=dy, V=U,v,uo=Q/d, ,P=ru?
Now equation (3) has a dimensionless form, which are:
u +(U+u)u, +uu, +(V+vju, +vo, =-P, U
_ _ _ _ |
Vt + (U + U)VX + UVX + (V + V)Vy + VVy - _ Py y .............. (4)

u,+v, =0 |Io

Where al subscripts denote partia differentials, (x,y) are the
Cartesian coordinates in the unit of the film thickness d,, (G,\_/) and (u,v)
are respectively the (x,y) components of the primary flow velocity and the
velocity perturbations in the unit of U,, Q being the volumetric flow rate
per unit width of the film and t is the time.
It is easily verified that T, = (R/4F?)Y/3U,
Where R =ru,d,/mn° Reynolds number
and F=u2/gd, ° Froude number

U, =0@)Thus U, =dU, =-v, <1 Iif

(R/4F2)Y3 = (g2/4n)t3(d2/Q)=d <1 n :rE

For the case of thin films such that d<1, we define a dow variable x,
such that x = dx
by use of the above relation and neglecting terms of o(d) as well as the non-
linear terms in perturbations, we reduce the first two equationsin (4) to the
forms:

Uy +U(X)uy, =- P (@
Vi + UV, =-F (0) L e (5)
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By elimination of the pressure terms by differentiate equation (&) for
y and equation (b) for x, we get:

Tou , o T2 1% 1%V e, (6)
Tyt fyfix  xft  qx?

or

1 - LIEPRIL

[‘”t ](.”y .”X)

or

[T + UM J(Uy - Vi) =0 (7

Equation (7) is satisfied by the stream function y related to the
velocity perturbations by
u=Yy,v=-YX (8)

By substituting (8) in to (7), we have

[T+ T (T - Tyy)Y S0 i (9)

Equation (9) is the governing differential equation of the linear
stability problem under consideration.
Let the free surfaces of the basic flow and the perturbed flow be:

y = i%(x) and y = i%(x) + h(x,t) =z(x,t)

Following Lin (1981), the boundary conditions are as follows:
1- The kinematic condition at the free surface y = x requires that
v=z,+(U+u)z,
2- The dynamic condition of the free surface, which is massess by
definition, demands that the net force be zero at the free surface. Demanding
the vanishing of the force per unit area of the free surface in the x and y
directions, we have

[_p+§(ﬁ+ u)ylzy - (U+u)y +(V+ V), [/RMWKz, =0,

[P+ 2 (V+ V)] [(W+u)y + (V+V),]z, /R MWK =0

, e respectively
Where K isthetotal surface curvature and W is the Weber number,
(t1h+h),
K = 21 LW o= —
[l+(i5h+h)i]3/2 ondo

T isthe surface tension.
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Note that hy = O(d). Since Q = (UoU ) (doh) = constant and Ux =O(d).
Neglecting terms of O(d), baancing out purely primary flow
quantities, and expanding the remaining primary flow quantities in Taylor's

series about y =% 1 h, and then retaining only linear terms, we reduce the
2

above boundary conditions at y = z to the following to be applied at

y=+1h:

2
Ny TR+ Y 0 S0 e e (10)
Yy - Yux =0 (11)
+ Wh,, +Pp+2y ,, /R =0 coerrermmeiiaeaaaanes (12

where p canbe obtained from (5) intermsof y .

Now, Substituting (8) into (6), we have
3 3 3 3
‘HY+U‘HY+‘HY+U'HY=O .................... (13)

Toy? o IxTy? o ftx? o 9x3
We consider for our solution a normal mode of travelling disturbances:

Y = () e (14)
Where a=2pdJ/| , | isthewave length, and c is the wave speed in the unit of
u..

(0]

Substituting (14) into (13), we get:

: —~ d?
[ia(c- u)](d?- a?)f =0, Where d? =F
or
d2f
a2 a’f(y)=0
The general solution of this equation is:
f(y) = ASNh( ay) + BCOSN( @Y) cveeerereeemramreaieeininaaes (15)

Where A and B are integration constants.
Since the governing differential system is linear and homogeneous, we may
consider the odd solution for f separately.

3. Varicose waves:

The odd solution for f corresponds to the anti-symmetric
disturbance, which digplaces each of the free surfacesin opposite directions.
Now we take the odd solution from (15), which is:
f(y)=Asnh(ay) (16)

Substituting (16) into (14), we get:
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y =[A sinh( ay)e@t-) (17)
Substituting (17) into (5) and (8) and solve for p yields:
p:vaA COg'l( ay)eia(x’a) .................................. (18)

where cé=c- U, y:i%h

Equation (10) has a solution of the form:

h = +c¢ [A sinh( %ah)]eia(x-ﬂ) ................................... (29)
Substituting (17) into (11) and (17), (18), (19) into (12), yields:
A[2a25inh( %ah)] S ) rrrrrreereereeseeseercerceiiiiiiiiiiaa. (20)

and
Al clcosh( %ah) - Wceta sinh( %ah) + 2R " Ya cosh( %ah)] =0--(21)

Equation (20) give atrivia solution and so we neglect it.
From equation (21), A * 0 and therefore:

¢ Gcosh( %ah)- W c€ a sinh( %ah)+2R'lia cosh( %ah):o
or

c® + (2iaR " 1)c¢- Wa tanh( %ah) S 0 JO (22

For both temporally and spatially growing disturbance of long wave
lengths, a® O near the neutral stability curve and the secular equation (22)
can be expanded in powers of a as

c® + (2iaR 1)ce- Wa[lah - ia3h3)] =0
2 24
or
(C-U)2+2iaR'l(c-U)-%Wha2+0(a3)=0 ----------- (23)
For the temporal casea isrea and c is complex. The solution of (23)
for c gives.

c=u- ia/Rma[%Wh - (1/R)?]H2

if [%Wh - (1/R)}]>0, Then
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c,=-alR

cp=um a[%Wh - @IR)2JY2

But if [%Wh - (/R)?]<0,  Then
c,=-alR ma[%(l/R)Z- %Wh 1*2

Cr =U

It follows that ¢ < O regardless of whether the wave speed relative
to the fluid particle is zero or not. Therefore, the temporally changing
varicose disturbances are damped with a dimensional damping rate given
by:
120, _4p°v
R d, 1?2

To investigate the spatially growing disturbances of long wave
length, we multiply (23) by a? and identify ac with w to have:

a?(c- u)2+2ia’R c- u)- %Wh a®+0(a®) =0
or
(w- au)? +2ia 2R (w- au)- %Wha4+0(a5) =0 ..(24)

The solution of equation (24) in power of small w gives the
following complex wave number

H 2
a=X, ﬂv_v—3+ o(w?),  Where
u Ry
Q. -W_ac
R4 u’
2w?  2a?
a, = _3: — >0
Ru RU

Thus the spatially varying disturbance are aso damped travelling
waves.
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4- Concluson:

We consider both cases of temporaly and spatialy growing
disturbances. For the formal case a isreal but ¢ = cy+ic, iscomplex. For the
latter case a=artia, is the complex wave number but ac = w is the rea
wave frequency. Thus, temporaly changing disturbances are stable or
unstable depending on if ¢, < 0 or ¢, > 0, and spatially changing disturbances
are stable or unstable dependingonif a;>0 or a;<O0.

We have two notes here that in this paper we neglect the effect of
viscosity and we obtain a second order non-linear differential equation,
while if we take the effect of viscosty, we obtain the fourth order non-linear
differential equation as it is given by Lin (1981). We note here that there is
some differences between the above two cases.
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