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 الملخــص

  

تم في هذا البحث دراسة وتحليل الأستقرارية للجريان الزمني وغير القابل للانضغاط في   
وقد تـم   . نائي البعد في غشاء متناظر وبإهمال قوى اللزوجة مقارنة بقوى القصور الذاتي           نظام ث 

الحصول على المعادلات التفاضلية الجزئية التي تحكم هذا النوع من الجريان وبالاعتماد علـى              
وقد . وقد استخدمت الطرائق التحليلية في ايجاد حل هذه المعادلات . معادلات نافير ـ ستوكس 

ــج ا ــستقرا     أزع ــام م ــا النظ ــون فيه ــي يك ــاطق الت ــددت المن ــه وح ــام بأكمل   لنظ
  .او غير مستقر

 
ABSTRACT 

 

 In this paper, we consider the stability analysis for a disturbed 
unsteady flow, which is two-dimensional incompressible flow in a 
symmetric film where the effect of viscosity can be neglected in comparison 
with inertia forces. The partial differential equations governing such flow 
are obtained from the Navier - Stokes equations and we obtain an analytic 
solution for those equations. The whole system is disturbed and we found 
the regions where the flow is stable or unstable. 
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1- Introduction: 
 

The dynamics of thin liquids films has been studied by G. I. Taylor 
(1959). The subject is of considerable scientific and technological 
importance. 

Brown (1961) studied experimentally the general behaviour of a thin 
sheet of moving liquid, he found that this measured velocity distribution in 
the curtain compared with the prediction based on a non linear differential 
equation was attributed to Taylor (1959). He observed that the film is  with 
disintegrate if the follow rate is reduced to a film minimum value. He also 
discussed film stability on the basis of a simple momentum balance applied 
to a stationary free edge resulting from the film breaking. 

The principle of stability of a viscous liquid film has been 
investigated by S. P. Lin (1981). It is shown to be stable with respect to 
temporally and spatially changing varicose disturbances. 

Abdulahad (1994) determines the thickness of a liquid film with 
negligible inertia and also he studied the similarity solution for unsteady 
flow for such liquid films. 

Mosa (2002) considered the stability analysis for fluid flow between 
two infinite parallel plates. 

In this paper we consider the stability analysis of a viscous liquid 
film when the viscous forces are very small compared with the inertia 
forces. 

 
2. Stability equation: 
 

The stability of the described basic flow with respect to two-
dimensional disturbances are to be investigated. 

The general form of the Navier-Stokes equation is defined by: 
 

i
2

i

i U
X
P

Dt
DU

∇µ+
∂
∂

−=ρ  …………………………………(1) 

When the viscosity is very small, the Navier-Stokes equation 
reduces to: 

 

i

i

X
P

Dt
DU

∂
∂

−=ρ  ………………………………………………(2) 

Substituting the perturbed flow quantities 
( VVV U,UU +=+= ) in to (2) and neglecting some of terms which 
have no perturbation, we have: 
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Now, we introduce the dimensionless variables as follows: 

X = d0x, ,d/Qu,uuU ooo ==  t
u
d  t 

o

o ′=  

Y = doy, 2
oooo uP,d/Qu,vuV ρ===  

Now equation (3) has a dimensionless form, which are: 
 









=+

−=++++++

−=++++++

0vu

Pvvv)vv(vuv)uu(v

Puvu)vv(uuu)uu(u

yx

yyyxxt

xyyxxt

…………..(4) 

Where all subscripts denote partial differentials, (x,y) are the 
Cartesian coordinates in the unit of the film thickness do, ( v,u ) and (u,v) 
are respectively the (x,y) components of the primary flow velocity and the 
velocity perturbations in the unit of  ou , Q being the volumetric flow rate 
per unit width of the film and t is the time. 
It is easily verified that x

3/12
x U)F4/R(u =   

Where   ≡µρ= /duR oo Reynolds number 
and   ≡= o

2
o gd/uF Froude number 

 

1vUuThus)1(OU yxxx <−=δ==     if  

ρ
µ

=ν<δ=ν= ,1)Q/d()4/g()F4/R( 2
o

3/123/12  

For the case of thin films such that δ<1, we define a slow variable ξ, 
such that ξ =  δx 
by use of the above relation and neglecting terms of o(δ) as well as the non- 
linear terms in perturbations, we reduce the first two equations in (4) to the 
forms: 
 
 

xxt Pu)(uu −=ξ+  (a) 
yxt Pv)(uv −=ξ+  (b)   ....…………………………....…...(5) 
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By elimination of the pressure terms by differentiate equation (a) for 
y and equation (b) for x, we get: 

 

0
x

vu
tx

v
xy

uu
ty

u
2

2222
=

∂
∂

−
∂∂

∂
−

∂∂
∂

+
∂∂

∂  ……………….…………..(6) 

or  

0)
x
v

y
u](

x
u

t
[ =

∂
∂

−
∂
∂

∂
∂

+
∂
∂  

or  
0)vu](u[ xyxt =−∂+∂ ……………………………………..(7) 

 

Equation (7) is satisfied by the stream function ψ related to the 
velocity perturbations by  
u = Ψy , v = - Ψx (8) 

By substituting (8) in to (7), we have 
 

0)](u[ yyxxxt =ψ∂−∂∂+∂  ………………………………….(9) 
Equation (9) is the governing differential equation of the linear 

stability problem under consideration. 
Let the free surfaces of the basic flow and the perturbed flow be:  

)t,x()t,x()x(
2
hyand)x(

2
hy ζ=η+±=±=  

 

Following Lin (1981), the boundary conditions are as follows: 
1- The kinematic condition at the free surface y = ξ requires that 

xt )uu(v ζ++ζ=  
2- The dynamic condition of the free surface, which is massless by 
definition, demands that the net force be zero at the free surface. Demanding 
the vanishing of the force per unit area of the free surface in the x and y 
directions, we have  

0WKR/])vv()uu[(])vv(
R
2p[

,0WKR/])vv()uu[(])uu(
R
2p[

xxyy

xxyxx

=ζ+++−++−

=ζ+++−ζ++−

m

m  

, are respectively 
Where K is the total surface curvature and W is the Weber number, 
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o2/32
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T is the surface tension. 
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Note that hx = O(δ). Since Q = ( uuo ) (doh) = constant and xu =O(δ).  
Neglecting terms of O(δ), balancing out purely primary flow 

quantities, and expanding the remaining primary flow quantities in Taylor's 
series about y =± 

2
1 h, and then retaining only linear terms, we reduce the 

above boundary conditions at y = ζ to the following to be applied at  
 y =± 

2
1 h: 

0u xxt =ψ+η+η  ………………………………………….(10) 
0xxyy =ψ−ψ  ………………………………………….(11) 

0R/2pW xxxx =ψ++η±  ………………………….(12) 
where  p  can be obtained from (5) in terms of ψ . 
Now, Substituting (8) into (6), we have 

0
x

u
xtyx

u
yt 3
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2

3

2

3

2

3
=

∂
Ψ∂

+
∂∂

Ψ∂
+

∂∂
Ψ∂

+
∂∂

Ψ∂  ………………..(13) 

We consider for our solution a normal mode of travelling disturbances: 
Ψ= φ(y)eiα(x-ct) …………………………………..………………(14) 

Where α=2πdo/λ, λ is the wave length, and c is the wave speed in the unit of 

ou . 

Substituting (14) into (13), we get: 

2

2
222

dy
ddWhere,0)d)](uc(i[ ==φα−−α  

     or  

0)y(
dy
d 2

2

2
=φα−

φ  

The general solution of this equation is: 
)ycosh(B)ysinh(A)y( α+α=φ ……………………………..(15) 

Where A and B are integration constants. 
Since the governing differential system is linear and homogeneous, we may 
consider the odd solution for φ separately. 
 
3. Varicose waves: 
 

The odd solution for φ corresponds to the anti-symmetric 
disturbance, which displaces each of the free surfaces in opposite directions. 
Now we take the odd solution from (15), which is: 

)ysinh(A)y( α=φ  (16) 
Substituting (16) into (14), we get: 
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)ctx(ie)]ysinh(A[ −αα=ψ  (17) 
Substituting (17) into (5) and (8) and solve for p yields: 

)ctx(ie)ycosh(Acp −αα′α=  …………………………….(18) 

where ucc −=′ , h
2
1y ±=  

Equation (10) has a solution of the form: 
)ctx(i1 e)]h

2
1sinh(A[c −α− α′±=η  ……………………………..(19) 

Substituting (17) into (11) and (17), (18), (19) into (12), yields: 
0)]h

2
1sinh(2[A 2 =αα  ………………………..……………(20) 

and 
 

0)]h
2
1cosh(iR2)h

2
1sinh(cW)h

2
1cosh(c[A 11 =αα+αα′−α′ −− .....(21) 

 

Equation (20) give a trivial solution and so we neglect it. 
From equation (21), A ≠0 and therefore: 

0)h
2
1cosh(iR2)h

2
1sinh(cW)h

2
1cosh(c 11 =αα+αα′−α′ −−  

or 

 0)h
2
1tanh(Wc)Ri2(c 12 =αα−′α+′ −  ……………….(22) 

For both temporally and spatially growing disturbance of long wave 
lengths, α→0 near the neutral stability curve and the secular equation (22) 
can be expanded in powers of α as  

0)]h
24
1h

2
1[Wc)Ri2(c 3312 =α−αα−′α+′ −  

or  
 

0)(OWh
2
1)uc(Ri2)uc( 3212 =α+α−−α+− −  ………..(23) 

 

For the temporal case α is real and c is complex. The solution of (23) 
for c gives. 

2/12 ])R/1(Wh
2
1[R/iuc −αα−= m  

if        Then,0])R/1(Wh
2
1[ 2 >−  
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R

2/12
I

=

−αα−= m  

It follows that  cI < 0 regardless of whether the wave speed relative 
to the fluid particle is zero or not. Therefore, the temporally changing 
varicose disturbances are damped with a dimensional damping rate given 
by: 

2

2

o

o2 v4
d
u

R
1

λ
π

=α  

To investigate the spatially growing disturbances of long wave 
length, we multiply (23) by α2 and identify αc with ω to have: 

0)(OWh
2
1)uc(Ri2)uc( 541322 =α+α−−α+−α −  

or  

0)(OWh
2
1)u(Ri2)u( 54122 =α+α−α−ωα+α−ω −  …(24) 

The solution of equation (24) in power of small ω gives the 
following complex wave number 

Where,)(O
uR
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u
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=
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Thus the spatially varying disturbance are also damped travelling 
waves. 
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4- Conclusion: 
 

  We consider both cases of temporally and spatially growing 
disturbances. For the formal case α is real but c = cR+icI  is complex. For the 
latter case α=αR+iαI is the complex wave number but αc = ω  is the real 
wave frequency. Thus, temporally changing disturbances are stable or 
unstable depending on if cI < 0 or cI > 0, and spatially changing disturbances 
are stable or unstable depending on if αI > 0   or  αI < 0. 

We have two notes here that in this paper we neglect the effect of 
viscosity and we obtain a second order non-linear differential equation, 
while if we take the effect of viscosity, we obtain the fourth order non-linear 
differential equation as it is given by Lin (1981). We note here that there is 
some differences between the above two cases. 
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