New Types of Ideals in Q-**algebra انواع جديدة من المثاليات في جبر**- **Q**

¹Prof.Dr.Habeeb Kareem Abdullah, ²Haider Kadhum Jawad ¹Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq ²Department of Mathematics, Faculty of Computer Science and Mathematics, University of Kufa, Najaf, Iraq

Abstract

 In this paper , we introduce the notions of Complete Ideal, K-Ideal, Complete K-Ideal, Closed Complete K-Ideal in bounded Q**-**algebra, and as well some suggestions and relationships among them are debated .

المستخلص في هذا البحث قدمنا المفاهيم لمكمل المثالي ، مثالي-K ، مكمل مثالي-K و مكمل مثالي-K المغلق في جبر- Qالمقيد ، و كذلك بعض الخىاص والعالقات التي تناقش فيما بينها .

1. Introduction

Neggers. J, Ahn. S. S, Kim H. S at (2001) introduced the class of Q-algebras, [1]. Abdullah. H. K, Hasan. Z. A at (2016) introduced of complete BCK-ideal in BCK-algebra, [2]. Abdullah. H. K., Radhi. K. T at (2016) introduced the connotation of T- filter in BCKalgebra, [3]. Abdullah. H. K. Atshan. A. A at (2017) introduced the notation of B-algebra, complete ideal and n-ideal, [4]. The aim of this paper is to introduce new types of ideals and also some of theorems which explain relationships with ideal in bounded Q-algebra.

2. Basic Concepts and Notations

In this part, we introduce definitions of O-algebra, bounded, ideal, O-subalgebra, O-ideal, and some of their properties.

Definition (2.1) [1]:

Let $(U,*,0)$ be a set with a binary operation $*$ and a constant 0. Then $(U,*,0)$ is called a Qalgebra if it satisfies the following axioms :

1. $u * u = 0$ 2. $u * 0 = u$

3. $(u * v) * w = (u * w) * v$, $\forall u, v, w \in U$.

We can define a binary relation \leq on U by putting $u \leq v$ if and only if $u * v = 0$, for all $u, v \in U$.

Example (2.2) [1]:

Let Z and R be the set of all integers and real numbers, respectively. Then $(Z, -0)$ and $(R, \div, 1)$ are Q-algebras where " - " is the usual subtraction and " \div " is the usual division.

Proposition (2.3) [1]:

In any Q-algebra $(U, * , 0)$, the following hold : 1. $(u * (u * v)) * v = 0$ 2. $((u * w) * ((u * w) * v)) * v = 0$, for any $u, v, w \in U$.

Remark (2.4) :

Let $(U,*,0)$ be a Q-algebra, then 1. If $u \leq 0$, $\forall u \in U$, then U contains only 0. 2. If $u \le v$ implies $u * (u * (u * v)) = 0$, for any $u, v \in U$ 3. If $u \le v$ and $u * w \le v$, then $0 \le w$, for any $u, v, w \in U$ **Proof:** 1. Since $u \le 0$, then $u * 0 = 0$, $\forall u \in U$. Thus $u = 0$, $\forall u \in U$, i.e., U contains only 0. 2. Since $u \le v$, then $u * v = 0$, $\forall u, v \in U$. Thus $u * (u * (u * v)) = u * (u * 0) = u * u = 0$. 3. Since $u \le v$ and $u * w \le v$, then $u * v = 0$ and $(u * w) * v = 0$, $\forall u, v, w \in U$. Thus $0 = (u * w) * v = (u * v) * w = 0 * w$. So $0 \leq w$.

Definition (2.5):

If $(U, * , 0)$ is a Q-algebra, we call U is bounded if there is an element $e \in U$ satisfying $u \le e$ for all $u \in U$, then e is called an unit of U.

In bounded Q-algebra U, we denoted $e * u$ by u^* for every $u \in U$.

Example (2.6):

Let $U = \{0, a, b, c\}$ be a set with the following table

Therefore $(U, * , 0)$ is Q-algebra, [1]. Notice that U is bounded with unit c.

Remark (2.7):

The unit in bounded Q-algebra not to be an unique and the following example shows this .

Example (2.8) :

Consider the following Q-algebra U , [1] with the following table

Notice that U is bounded with two units a, b .

Remark (2.9):

In Q-algebra, we will study the bounded with one unit only.

Proposition (2.10):

In a bounded Q-algebra U, for any $u, v \in U$, the following are hold : 1. $e^* = 0$, 0^* 2. $u^* * v = v^* *$ 3. $0 * v = 0$ 4. e^* 5. u^* **Proof :** 1. $e^* = e * e = 0$, also 0^* 2. $u^* * v = (e * u) * v = (e * v) * u = v^* *$ 3. let $v \in U$, then $0 = (0 * v) * e$ (since *U* is bounded) $= (0 * e) * v = 0 * v$ 4. $e^* * u = 0 * u$ (by $= 0$ (by 3) 5. $u^{**} * u = (e * u^*) * u = (e * (e * u)) *$

Definition (2.11) [1]:

Let $(U, * , 0)$ be a Q-algebra and L be a nonempty subset of U. Then L is called an ideal of U if for any $u, v \in U$, 1. $0 \in L$ 2. $u * v \in L$ and $v \in L$ imply $u \in L$.

Obviously, $\{0\}$ and U are ideals of U. We call $\{0\}$ and U are the zero ideal and the trivial ideal of U , respectively.

Definition (2.12) [1]:

An ideal L of U is said to be proper if L is not trivial ideal of U .

Proposition (2.13):

Consider L be an ideal from O-algebra U such that $u \le v$, for all $u, v \in U$. If $v \in L$, therefore $u \in L$.

Proof :

Since $u * v = 0 \in L$ and $v \in L$, then $u \in L$ (since L is ideal)

Definition (2.14) [1]:

Let $(U, * , 0)$ be a Q-algebra and L be a nonempty subset of U. Then L is called a Q-subalgebra of U if $u * v \in L$, for any $u, v \in L$.

Proposition (2.15):

If L be Q-subalgebra in a Q-algebra U then $0 \in L$. **Proof :** Since $\emptyset \neq L \subseteq U$, thereafter $\exists u \in L$, hence $0 = u * u \in L$ (since L is O-subalgebra).

Corollary (2.16):

In bounded Q-algebra, every ideal is Q-subalgebra.

Proof :

Assume L is an ideal of a bounded Q-algebra U and $u, v \in L$, since L is ideal, we have : $(u * v) * u = (u * u) * v = 0 * v = 0 \in L$, but $u \in L$ implies $u * v \in L$. Thus L is a Qsubalgebra of U .

Note that the converse of this corollary needs not be true in general as in the following example .

Example (2.17):

Consider $U = \{0, a, b, c\}$ be a set as shown in the following table

Then $(U,*,0)$ is a bounded Q-algebra with unit c.

If $L = \{0, a\}$, then L is a O-subalgebra from U, but it's not ideal from U, because $c * a = 0$ L, $a \in L$ however $c \notin L$.

Definition (2.18) [5]:

A nonempty subset L of a Q-algebra U is called a Q-ideal of U if satisfies : 1. $0 \in L$

2. $(u * v) * w \in L$, $v \in L$ imply $u * w \in L$, for all $u, v, w \in U$.

Proposition (2.19):

Let L be a subset of O-algebra U, then the following are equivalent :

1. L is an ideal

2. L is a Q-ideal

Proof :

 $1 \implies 2$: suppose L is an ideal in U and $(u * v) * w \in L$, $v \in L$, then $((u * w) * ((u * v) * w)) * v = ((u * v) * ((u * v) * w)) * w = 0 \in L$ Since L is ideal and $v \in L$, so $(u * w) * ((u * v) * w) \in L$ But $(u * v) * w \in L$, thus $u * w \in L$. Hence L is a Q-ideal of U. $2 \implies 1:$ Let L be a Q-ideal in U and $u * v \in L$, $v \in L$ Since $(u * v) * 0 = u * v \in L$ and $v \in L$, then $u = u * 0 \in L$ (since L is Q-ideal). Thus L is an ideal of U .

3. The Main Results

In this part, we provide definitions of complete ideal, K-ideal, complete K-ideal and study its relationships with ideal in bounded Q-algebra .

Definition (3.1):

A nonempty subset L of a bounded Q-algebra U is called complete ideal (briefly, c-ideal), if 1. $0 \in L$

2. $u * v \in L$, $\forall v \in L$ such that $v \neq 0$ implies $u \in L$.

Example (3.2):

Let $U = \{0, a, b, c\}$ and a binary operation $*$ is defined by

Therefore $(U,*,0)$ is a bounded Q-algebra with unit c. The subset $L = \{0, a, c\}$ is a c-ideal, while $M = \{0, a, b\}$ is not c-ideal, because $c * v = 0 \in M$, $\forall v \in M$ such that $v \neq 0$ but $c \notin M$.

Remark (3.3):

In general, $\{0\}$ and U are trivial c-ideals.

Proposition (3.4):

Every ideal of bounded Q-algebra is c-ideal .

Proof :

Suppose that L be an ideal from a bounded O-algebra U and $u * v \in L$, $\forall v \in L$ such that $v \neq 0$

1. If $L = \{0\}$, then L is c-ideal.

2. If $L \neq \{0\}$, therefore $\exists v \in L$ such that $v \neq 0$. Thus $u \in L$ (Since L is ideal). Hence L is c-ideal.

Notice that, in general, the converse of this proposition is not correct and the following example shows that .

Example (3.5):

In example (3.2), the subset $L = \{0, a, c\}$ is a c-ideal, while L is not ideal, because $b * c = 0 \in$ L, $c \in L$ but $b \notin L$.

Remark (3.6):

 Note that the intersection and the union of two c-ideals are not necessary to be c-ideal as shown in the following example .

Example (3.7):

Let $U = \{0, a, b, c, d, h\}$ and a binary operation $*$ is defined by

Then $(U, * , 0)$ is bounded Q-algebra with unit d. Now, let $L = \{0, a, c, d\}$ and $M = \{0, b, c, d\}$ then L, M are c-ideals, notice that $L \cap M = \{0, c, d\}$ is not c-ideal, because $a * v = 0 \in L \cap M$, $\forall v \in L \cap M$ such that $v \neq 0$ but $a \notin L \cap M$. Also $L \cup M = \{0, a, b, c, d\}$ is not c-ideal, since $h * w \in L \cup M$, $\forall w \in L \cup M$ such that $w \neq 0$ but $h \notin L \cup M$.

Definition (3.8):

Let $(U, * , 0)$ be a bounded Q-algebra and L be a nonempty subset of U. Then L is called K-ideal of U if it satisfies:

- 1. $0 \in L$
- 2. $v^* * u \in L$ and $v \in L$ implies $u^* \in L$, for all $u \in U$.

In bounded Q-algebra, there are a trivial K-ideals, U and $\{0\}$.

Example (3.9):

In example (2.17), if $L_1 = \{0, c\}$ and $L_2 = \{0, b\}$, then L_1 , L_2 are K-ideals, while $L_3 =$ $\{0, a, b\}$ is not K-ideal, because $a^* * b = 0 \in L_3$, $a \in L_3$ but $b^* = c \notin L_3$.

Proposition (3.10):

Every ideal of bounded Q-algebra is K-ideal .

Proof :

Assume L be an ideal in a bounded Q-algebra U such that $v^* * u \in L$ and $v \in L$. Since $v^* *$ $u^* * v$. Thus $u^* * v \in L$ and $v \in L$. Since L is ideal, then $u^* \in L$. Thus L is a K-ideal of U.

Notice that the converse of this proposition needs not be true and we can show that in the following example.

Example (3.11):

In example (3.9), a subset $L_1 = \{0, c\}$ is K-ideal, but it's not ideal, since $a * c = 0 \in L_1$, $c \in L_1$ but $a \notin L_1$.

Definition (3.12):

Let U be bounded Q-algebra. An element $u \in U$ satisfies $u^{**} = u$, then u is called an involution. If every element $u \in U$ is an involution, we call U is an involutory O-algebra.

Example (3.13):

Let $U = \{0, a, b, c, d\}$ and a binary operation $*$ is defined by

Then $(U, * , 0)$ is a bounded Q-algebra with unit c. Notice that U is an involutory.

Proposition (3.14):

If L is K-ideal of an involutory Q-algebra U . Then L is an ideal.

Proof :

let $u * v \in L$ and $v \in L$, then $v^* * u^* = u^{**} * v = u * v \in L$ (because U is an involutory). Since L is K-ideal & $v \in L$, then $u^{**} \in L$ i.e $u \in L$. Thus L is an ideal of U.

Proposition (3.15):

Consider L is K-ideal in bounded Q-algebra U. If $u \in L$, then u^*

Proof :

Let L be K-ideal in U, $u \in L$, implies $u^* * u^* = 0 \in L$. Thus $u^{**} \in L$.

Notice that the converse of this proposition may not be true and the following example explained that .

Example (3.16):

Then $(U, * , 0)$ is bounded Q-algebra with unit d.

Let $L = \{0, a, c\}$, then $u^{**} \in L$ is holds, for all $u \in L$. But L is not K-ideal, because a^* $c \in L$, $a \in L$ but $0^* = d \notin L$.

Proposition (3.17):

Let L be K-ideal from a bounded Q-algebra U. If $u^* \le v$ and $v \in L$ implies $u^* \in L$. **Proof :**

Let L be K-ideal of U and $u^* \le v$. Since $v^* * u = u^* * v = 0 \in L$, then $u^* \in L$.

Proposition (3.18):

Let L be K-ideal from a bounded Q-algebra U , 1. If $e \in L$, then $u^* \in L$, for all $u \in U$. 2. If $u \in L$ and $u^* = 0$, then $e \in L$. **Proof :** 1. let L be K-ideal of U and $e \in L$, then for all $u \in U$ $e^* * u = 0 * u = 0 \in L$. Thus $u^* \in L$. 2. let L be K-ideal of U and $u \in L$ such that $u^* = 0$, then $u^* * 0 = u = 0 \in L$. Thus $e = 0^* \in L$.

Proposition (3.19):

The intersection of a family of K-ideals is a K-ideal.

Proof :

Let L_i , $i \in \Delta$ be a family of K-ideals in bounded Q-algebra U, so $0 \in L_i$, $\forall i \in \Delta$, then $0 \in \cap$ $i \in \Delta$ L_i

Now, let $v^* * u \in \bigcap_{i \in \Delta} L_i$, $v \in \bigcap_{i \in \Delta} L_i$, then $v^* * u \in L_i$, $v \in L_i$, $\forall i \in \Delta$. Since L_i is Kideal, then $u^* \in L_i$, $\forall i \in \Delta$. Thus $u^* \in \bigcap_{i \in \Delta} L_i$. Hence $\bigcap_{i \in \Delta} L_i$ is K-ideal.

Remark (3.20):

 Note that the union of two K-ideals is not necessary to be K-ideal as shown in the following example .

Example (3.21):

In example (3.16), if $L = \{0, a\}$ and $M = \{0, b, c\}$, then L, M are K-ideals, while L U M = $\{0, a, b, c\}$ is not K-ideal, because $a^* * 0 = c \in L \cup M$, $a \in L \cup M$ however $0^* = d \notin L \cup M$.

Definition (3.22):

Let $(U, * , 0)$ be a bounded Q-algebra and $u \in U$. Define $u * U = \{u * v : v \in U\}$. Then U is said to be edge if $u * U = \{0, u\}$, $\forall u \in U$.

Example (3.23):

In example (2.17) , then it is clear that $(U, * , 0)$ is an edge Q-algebra.

Proposition (3.24):

Let L and M be K-ideals in edge Q-algebra U. Then $L \cup M$ is K-ideal. **Proof :** Let $v^* * u \in L \cup M$, $v \in L \cup M$, then $v^* * u \in L$ (or $v^* * u \in M$), $v \in L$ (or $v \in M$) Since L and M are K-ideals, then $u^* \in L$ (or $u^* \in M$). Thus $u^* \in L \cup M$. Now, if $v^* * u \in L$, $v \in M$ and $v \notin L$, since $v^* * u = u^* * v$, then $u^* * v \in L$, $v \in M$ and $v \notin L$, but U is an edge Q-algebra, then either $u^* * v = 0$ or $u^* * v = u^*$ If $u^* * v = 0$ then $u^* * v \in M$ (since $0 \in M$). Thus $v^* * u \in M$, $v \in M$. Since M is Kideal, then $u^* \in M$. Thus $u^* \in L \cup M$. If $u^* * v = u^*$, since $v^* * u = u^* * v = u^* \& v^* * u \in L \cup M$. Then $u^* \in L \cup M$. Similarly, if $v^* * u \in M$, $v \in L$ and $v \notin M$, we can prove that $u^* \in L \cup M$. Thus $L \cup M$ is a K-ideal of U .

Definition (3.25):

A K-ideal L of a bounded Q-algebra U is called proper if $L \neq U$.

Proposition (3.26):

A K-ideal L of an involutory Q-algebra U is proper if and only if $e \notin L$ **Proof :**

If $e \notin L$, then it is clear that L is proper.

Conversely, let L be a proper K-ideal

If $e \in L$, then for any $u \in U$, $e^* * u^* = 0 * u^* = 0 \in L$ (since L is K-ideal). Thus $u^{**} \in L$, i.e, $u \in L$ (since *u* is involution). It follows that $L = U$, a contradiction. Therefore, $e \notin L$.

Definition (3.27):

A nonempty subset L of a bounded Q-algebra U is called complete K-ideal (briefly, c-Kideal) if,

1. $0 \in L$

2. $v^* * u \in L$, $\forall v \in L$ such that $v \neq 0$ implies $u^* \in L$.

Notice that in bounded Q-algebra, there are trivial c-K-ideals, $\{0\}$ and U .

Example (3.28):

In example (3.16). A subset $L = \{0, a, b, d\}$ is a c-K-ideal of U. While $M = \{0, a, c\}$ is not c-K-ideal of U, because $v^* * 0 \in M$, $\forall v \in M$ such that $v \neq 0$ but $0^* = d \notin M$.

Proposition (3.29):

Every K-ideal of bounded Q-algebra is c-K-ideal .

Proof :

Let L be K-ideal in bounded Q-algebra U and $v^* * u \in L$, $\forall v \in L$ and v

1. If $L = \{0\}$, thus L is a c-K-ideal.

2. If $L \neq \{0\}$, therefore $\exists v \in L \& v \neq 0$. Since L is K-ideal $\& v^* * u \in L$, then $u^* \in L$. Thus L is a c-K-ideal.

Notice that the converse of this proposition needs not be true in general as shown in the following example.

Example (3.30):

In example (3.16), $L = \{0, a, b, d\}$ is a c-K-ideal, but it's not K-ideal, because $b^* * a = 0 \in L$, $b \in L$ however $a^* = c \notin L$.

Definition (3.31):

Let L be c-K-ideal of a bounded Q-algebra U. Then U is called zero star with respect to L if it satisfies $u^* * v = 0$, $\forall v \in L$ such that $v \neq 0$, for any $u \in U$.

Example (3.32):

Let $\bar{U} = \{0, a, b, c, d\}$ and a binary operation $*$ is defined by

It is clear that $(U, * , 0)$ is a bounded Q-algebra with unit α .

If $L = \{0, a, b, c\}$, then L is c-K-ideal from U. Notice that U is a zero star with respect to L.

Proposition (3.33):

Let L be c-K-ideal in a bounded Q-algebra U . If U is a zero star with respect to L, then L is K-ideal .

Proof :

Let $v^* * u \in L$ and $v \in L$ such that $v \neq 0$, but $v^* * u = u^* * v = 0 \in L$ (since U is zero star with respect to L). Thus $v^* * u \in L$, $\forall v \in L$ such that $v \neq 0$. Since L is c-K-ideal, therefore $u^* \in L$. Thus L is K-ideal in U.

Corollary (3.34):

Every ideal of bounded Q-algebra is a c-K-ideal .

Proposition (3.35):

Any c-ideal from bounded Q-algebra is a c-K-ideal .

Proof :

Let L be c-ideal from a bounded Q-algebra U and $v^* * u \in L$, $\forall v \in L$ such that $v \neq 0$. Since $u^* * v = v^* * u$, implies $u^* * v \in L$, $\forall v \in L$ such that $v \neq 0$. Since L is c-ideal from U, then $u^* \in L$. Thus L is a c-K-ideal.

In general, the converse of this proposition needs not be true as shown in the following example.

Example (3.36):

In example (2.17), if $L = \{0, c\}$, then L is a c-K-ideal from U, while L is not c-ideal, because $a * c = 0 \in L$, $c \in L$ and $c \neq 0$ but $a \notin L$.

Proposition (3.37):

If L is c-K-ideal in an involutory O-algebra U , therefore L is c-ideal.

Proof :

Suppose L is c-K-ideal of U and $u * v \in L$, $\forall v \in L$ and $v \neq 0$. Since U is involutory and $v^* * u^* = u^{**} * v$, then $v^* * u^* = u * v \in L$, $\forall v \in L$ such that $v \neq 0$. Since L is c-K-ideal, then $u^{**} \in L$. But $u^{**} = u$, $\forall u \in U$, then $u \in L$. Thus L is a c-ideal of U.

Proposition (3.38):

The union from a family from c-K-ideals is a c-K-ideal.

Proof :

Let L_i , $i \in \Delta$ be a family of a c-K-ideals of a bounded Q-algebra U, so $0 \in L_i$, $\forall i \in \Delta$, then $0 \in \bigcup_{i \in \Delta} L_i$.

Assume $v^* * u \in \bigcup_{i \in \Delta} L_i$, $\forall v \in \bigcup_{i \in \Delta} L_i$ and $v \neq 0$. Then $\exists j \in \Delta$ such that $v^* * u \in L_j$, $\forall v \in L_j$ and $v \neq 0$. Therefore $u^* \in L_j$. Thus $u^* \in \bigcup_{i \in \Delta} L_i$. Hence $\bigcup_{i \in \Delta} L_i$ is a c-K-ideal.

Remark (3.39):

The intersection of two c-K-ideals may not be a c-K-ideal as shown in the following example.

Example (3.40):

Let $U = \{0, a, b, c, d, h\}$. Define the operation $*$ on U by

Then $(U,*,0)$ is a bounded Q-algebra with unit h.

If $L = \{0, a, c\}$ and $M = \{0, c, d, h\}$, then L, M are c-K-ideals of U. While $L \cap M = \{0, c\}$ is not c-K-ideal, because $c^* * 0 = 0 \in L \cap M$, $c \in L \cap M$, $c \neq 0$ however $0^* = h \notin L \cap M$.

Remark (3.41):

The following diagram shows the relation among ideal, K-ideal, c-ideal, and c-K-ideal in bounded Q-algebra :

Definition (3.42):

Let L be a c-K-ideal in a bounded Q-algebra U , we say that L is closed if it is Q-subalgebra.

Example (3.43):

Let $U = \{0, a, b, c\}$ and a binary operation $*$ is defined by

Therefore $(U,*,0)$ is bounded Q-algebra with unit c.

A c-K-ideal $L = \{0, a, c\}$ is closed (because L is Q-subalgebra).

Remark (3.44):

 In general , there exists a c-K-ideal which is not Q-subalgebra. As it is shown in the following example .

Example (3.45):

In example (3.43), a c-K-ideal $M = \{0, b, c\}$ is not Q-subalgebra, since b, $c \in M$ but $c * b =$ $a \notin M$.

Definition (3.46):

Let L and M be two subsets from a bounded O-algebra U such that $L \subseteq M$, then L is said to be closed with respect to M, if $v^* * u \in M$, $\forall v \in L$ such that $v \neq 0$ implies $v^* * u \in L$, for all $u \in U$.

Example (3.47):

In example (2.6), if $L_1 = \{0, c\}$ and $M = \{0, b, c\}$ such that $L_1 \subseteq M$, then L_1 is closed with respect to M. If $L_2 = \{0, b\}$ such that $L_2 \subseteq M$, then L_2 is not closed with respect to M, since $b^* * 0 = c \in M$, $b \in L_2$ and $b \neq 0$ but $b^* * 0 = c \notin L_2$.

Proposition (3.48):

The union of family of closed with respect to M is a closed with respect to M . **Proof :**

Let $\{L_i : i \in \Delta\}$ be a family of closed with respect to M and $v^* * u \in M$, $\forall v \in \bigcup_{i \in \Delta} L_i$, $v \neq 0$, implies $v^* * u \in M$, $\forall v \in L_i$, $v \neq 0$. Since L_i is closed with respect to M, then $v^* * u \in L_i$. Thus $v^* * u \in \bigcup_{i \in \Delta} L_i$. Hence $\bigcup_{i \in \Delta} L_i$ is closed with respect to M.

Remark (3.49):

The intersection of two closed with respect to M is not closed with respect to M as it is shown in the following example .

Example (3.50):

Let $U = \{0, a, b, c, d, h\}$ with the table as follows

Notice that $(U,*,0)$ is a bounded Q-algebra with unit h.

If $M = \{0, a, c, d\}$, $L_1 = \{0, a, c\}$ and $L_2 = \{0, a, d\}$, then L_1 and L_2 are closed with respect to M, but $L_1 \cap L_2 = \{0, a\}$ is not closed with respect to M, since $a^* * 0 = c \in M$, $a \in L_1 \cap L_2$ and $a \neq 0$ but $a^* * 0 = c \notin L_1 \cap L_2$.

Remark (3.51):

If $L \subseteq M$ and L is c-K-ideal, then M is not in general c-K-ideal, as in the following example .

Example (3.52):

In example (3.43), if $L = \{0, b\}$, $M = \{0, a, b\}$ and $L \subseteq M$. Notice that L is c-K-ideal, while M is not c-K-ideal, because $v^* * 0 \in M$, $\forall v \in M$ and $v \neq 0$ but $0^* = c \notin M$.

Proposition (3.53):

Let L be c-K-ideal in bounded Q-algebra U and $\emptyset \neq L \subseteq M$. If L is closed with respect to M , then M is c-K-ideal.

Proof :

Let $v^* * u \in M$, $\forall v \in M$ and $v \neq 0$. Since $L \subseteq M$ implies $v^* * u \in M$, $\forall v \in L$ and , since L is closed with respect to M, then $v^* * u \in L$. Since L is c-K-ideal, $\forall v \in L$ and , then $u^* \in L$, consequently $u^* \in M$. Thus M is a c-K-ideal.

The following example shows that the converse of this proposition is false, in general.

Example (3.54):

Let $U = \{0, a, b, c, d\}$ and a binary operation $*$ is defined by

Therefore $(U,*,0)$ is a bounded Q-algebra with unit c.

If $L = \{0, a, b\}$ and $M = \{0, a, b, c\}$ such that $L \subseteq M$, then L is closed with respect to M, and M is c-K-ideal, but L is not c-K-ideal, because $v^* * 0 \in L$, $\forall v \in L$, $v \neq 0$ however $0^* = c \notin L$.

Proposition (3.55):

Let L be closed with respect to M in an involutory Q-algebra U. If M is Q-subalgebra, then L is Q-subalgebra .

Proof :

Let $u, v \in L$,

1. If $v = 0$, then $u * v = u * 0 = u \in L$.

2. If $v \neq 0$, but $L \subseteq M$, then $u, v \in M$. Since M is O-subalgebra implies $u * v \in M$. But $v^* * u^* = u^{**} * v = u * v$ (since U is an involutory). Thus $v^* * u^* \in M$, $\forall v \in L$ and v . Since L is closed with respect to M, then $v^* * u^* \in L$. Thus $u * v \in L$. Hence L is Qsubalgebra .

Notice that the converse of this proposition needs not to be true in general as shown in the following example .

Example (3.56):

In example (3.13), if $L = \{0, a, d\}$, $M = \{0, a, c, d\}$ and $L \subseteq M$, then L is closed with respect to M, and L is Q-subalgebra, while M is not Q-subalgebra, since $a, c \in M$ but $c * a = b \notin M$

Corollary (3.57):

Let L be closed with respect to M in an involutory Q-algebra U, and L be c-K-ideal. If M is closed c-K-ideal , then L is closed c-K-ideal .

Proof:

.

It is directly from proposition (3.55) and definition (3.42).

References

- Neggers J , Ahn SS , Kim HS. On Q-algebras. International Journal of Mathematics and Mathematical Sciences (IJMMS). 2001; 27(12): 749 - 757.
- [2] Abdullah HK, Hasan ZA. Complete BCK-ideal. European Journal of Scientific Research. 2016 $Jan: 137(3): 302 - 314.$
- [3] Abdullah HK and Radhi KT, T-Filter in BCK-algebra, Journal University of Kerbala. 2017 ; $15(2)$: $36 - 43$.
- Abdullah HK, Atshan AA. Complete ideal and n-ideal of B-algebra. Applied Mathematical Sciences. 2017 Jun : $11(35)$: $1705 - 1713$.
- [5] Mostafa SM , Abd-Elanaby MA , Elgendy ORM. Fuzzy Q-ideals in Q-algebras. Journal of the Faculty of Education. Science Section. 2009 ; $33: 127-158$.