On Weak Stability Of Iteration Procedures For Some Multivalued Contractive Maps In Metric space

Amal M. Hashim <u>amalmhashim@yhoo.com</u> Shereen J. Abbas Department of Mathematics, College of Science, University of Basrah, Basrah- Iraq

Abstract :

In this paper we prove w^2 -stability for certain class of multi-valued maps that satisfy some general contractive condition in generalized Hausdorff metric space. Some well known results are also derived as a special cases.

Keywords: Coincidence and Fixed points ,Weak Stable iteration, w²-stability.

حول الاستقرار الضعيف للعمليات المكررة لبعض دوال الانكماش ذات القيم المتعددة في الفضاء المتري أمل محمد هاشم البطاط شيرين عباس قسم الرياضيات / كلية العلوم / جامعة البصرة الملخص في هذا البحث برهنا w²-stability لفئة معينةمن الدوال ذات القيم المتعددة التي تحقق شرط التقليص العام في فضاء هاوز دورف المعمم المتري اشتقت بعض النتائج المعروفة كنتائج خاصة

1- Introduction

Brined [1] introduced a weaker concept of stability, called weak stability. Timis [10] established weaker notion, named w^2 -stability because of the restriction of an approximation sequence. Some fixed point iteration are not weakly stable so it is used a weaker type sequence named equivalent sequence and gave weak stability results of Picard iteration for various contractive maps.

However, a formal definition of stability of general iterative procedures has been studied by Harder in her Ph. D. Thesis [5] and published in the papers [3] and [4], but the concept of stability is not very precise because of the sequence $\{y_n\}$ which is arbitrary taken.

In this paper, we give w^2 -stability results of picard iteration for multi-valued maps with coincidence points satisfying some contractive type mappings. Since the stability results for multi-valued contractions have been found useful in the area of generalized differential equations and other contexts (see, for instance [2], [6], [11] and [12]).

2- Preliminaries

Throughout the paper, let (X, d) be a metric space. We shall follow the following notions and definitions.

 $CL(X) = \{A : A \text{ is non empty closed subset of } X \}$. We consider

$$H(A,B) = \max\{\sup d(a,B); a \in A,$$

 $\sup d(A,b); b \in B$,

For all $A, B \in CL(X)$ and $d(a, B) = \inf\{d(a, b), b \in B\}$.

H is called the generalized Hausdorff metric for CL(X) induced by *d*.

In [9] Timis presented some mappings $T: X \to X$ satisfying various contractive conditions for which the associated Picard iteration is w²-stability.

Their corresponding condition in case of a pair (S,T) mapping, where $S:Y \to X$ single-valued map and $T:Y \to CL(X)$ multi-valued map with $x, y \in Y$ and $x \neq y$ are in the following form.

 $(1.1) \quad H(Tx,Ty) < m(x,y)$

Where

$$m(x, y) = \max\{d(Sx, Sy), \\ [d(Sx, Tx) + d(Sy, Ty)]/2, \\ [d(Sx, Ty) + d(Sy, Tx)]/2\}$$

(1.2) H(Tx, Ty) < M(x, y)Where:

$$M(x, y) = \max\{d(Sx, Sy), \\ d(Sx, Tx), d(Sy, Ty), \\ [d(Sx, Ty) + d(Sy, Tx)]/2\},$$

(1.3) H(Tx, Ty) < N(x, y)

$$N(x, y) = \max\{d(Sx, Sy),$$

d(Sx,Tx),d(Sy,Ty),d(Sx,Ty),d(Sy,Tx)},

$$H(Tx,Ty) < M(x,y) + Ld(Sx,Ty) \qquad \text{Where } L \ge 0.$$

We remarked that in case of single-valued maps with S = identity map in the metric space (X, d).

- i. Condition (1.1) implies (1.2) that is any mapping which satisfies condition (1.1) also satisfies condition (1.2).
- ii. (1.2) implies (1.3) and (1.3), (1.4) are independent, and (1.2) implies (1.4) for more details (see [7] for instance).

Definition 2.1 [1]

Let (X, d) be a metric space and $\{x_n\}_{n=1}^{\infty} \subset X$ be given sequence. We shall say that $\{y_n\}_{n=1}^{\infty} \subset X$ is an approximate sequence of $\{x_n\}$ if, for any $k \in N$ (Natural numbers), there exists $\eta = \eta(k)$ such that $d(x_n, y_n) \leq \eta$, for all $n \geq k$.

Lemma 2.2 [1]

The sequence $\{y_n\}$ is an approximate sequence of $\{x_n\}$ if and only if, there exists a decreasing sequence of positive numbers $\{\eta_n\}$ converging to $\eta \ge 0$ such that

 $d(x_n, y_n) \leq \eta_n$, for all $n \geq k$.

Definition 2.3 [9]

Let (X, d) be a metric space and let $S: X \to X$. two sequence $\{x_n\}_{n=0}^{\infty}$ and $\{y_n\}_{n=0}^{\infty}$ are called S-equivalent sequences if $d(Sx_n, Sy_n) \to 0$, as $n \to \infty$.

Lemma 2.4 [8]

Let $B \in CL(X)$ and $a \in X$, then for any $b \in B$, $d(a,b) \leq H(a,B)$.

We remarked that any equivalent sequence is an approximate sequence but the reverse is not true, as it shown in the next example.

Example 2.5 [10]

Let $\{x_n\}_{n=0}^{\infty}$ to be the sequence with $x_n = n$. first we take an equivalent sequence of $\{x_n\}_{n=0}^{\infty}$ to be $\{y_n\}_{n=0}^{\infty}$, $y_n = n + \frac{1}{n}$ in this case, we have that $d(y_n, x_n) = d(n, n + \frac{1}{n}) = \frac{1}{n} \rightarrow 0$, as $n \rightarrow \infty$. Now we take an approximate sequence of $\{x_n\}_{n=0}^{\infty}$ to be $\{y_n\}_{n=0}^{\infty}$, $y_n = n + \frac{n}{2n+1}$, Then, $d(y_n, x_n) = d\left(n, \frac{n}{2n+1}\right)$ $= \frac{n}{2n+1} \rightarrow \frac{1}{2} > 0$

as $n \to \infty$.

Definition 2.6 [13]

Let (X, d) be a metric space and $Y \subseteq X$ let $S: Y \to X$, $T: Y \to CL(X)$ be such that $TY \subseteq TX$ and Z is a coincidence point of S and T, that is $u = S_Z \in T_Z$. for any $x_0 \in Y$, let the sequence $\{Sx_n\}$ be generated by the general procedure,

$$Sx_{n+1} \in f(T, x_n), \quad n = 0, 1, \dots$$
 (1.5)

Converges to an element $u \in X$. let $\{Sy_n\}$ be an approximate sequence of $\{Sx_n\}$, we have that $H(Sy_{n+1}, f(T, y_n) = 0$ implies $\lim_{n \to \infty} Sy_n = u$. Then (1.5) is called weakly (S, T)-stable or weakly stable with respect to (S, T).

3- Main Results

We shall introduce the following definition.

Definition 3.1

Let (X, d) be a metric space. Let $S: Y \to X$ and $T: Y \to CL(X)$ be such as $TY \subseteq SY$ and z is a coincidence point of S and T, that is, $u = Sz \in Tz$.

For any $x_0 \in Y$, let the sequence $\{Sx_n\}$ be generated by the general iteration procedure, (1.5) converges to an element $u \in X$. let $\{Sy_n\}_{n=0}^{\infty} \subset X$ be an equivalent sequence of $\{Sx_n\}$, and we have that $H(Sy_{n+1}, f(T, y_n)) = 0$ implies $\lim_{n \to \infty} Sy_n = u$. then (1.5) is called w²-stable with respect to (S, T).

Theorem 3.2

Let (X, d) be a metric space and $Y \subseteq X$. Let $T : Y \to CL(X)$, $S : Y \to X$ such as $TY \subseteq SY$ and one of SY or TY is a complete subspace of X. let z be a coincidence point of T and S, that is, $u = Sz \in Tz$.

For any $x_0 \in Y$, let the sequence $\{Sx_n\}$ generated by Picard iteration $Sx_{n+1} \in Tx_n$ converges to u.

Let $\{Sy_n\} \subseteq X$ be an equivalent sequence of $\{Sx_n\}$ and define $\varepsilon_n = H(Sy_{n+1}, Ty_n), \quad n = 0, 1, \dots$.

If the pair (S,T) satisfy condition (1.2), and if Tz is singleton, then the Picard iteration is w²-stable with respect to (S,T).

Proof:

Consider $\{Sy_n\}$ to be equivalent sequence of $\{Sx_n\}$. Then according to definition 3.1, if $\lim_{n\to\infty} H(Sy_{n+1}, Ty_n) = 0$ implies that $\lim_{n\to\infty} Sy_n = u$, then the Picard iteration is w²-(S,T) stable.

In order to prove this, we suppose that $\lim H(Sy_{n+1}, Ty_n) = 0$,

therefore, $\forall \varepsilon > 0$, $\exists n_0 = n(\varepsilon)$ such that $H(Sy_{n+1}, Ty_n) < \varepsilon \quad \forall n \ge n_0$

$$\begin{aligned} d\left(Sy_{n+1}, u\right) &\leq d\left(Sy_{n+1}, Sx_{n+1}\right) + d\left(Sx_{n+1}, u\right) \\ &\leq d\left(Sx_{n+1}, Ty_{n}\right) + H\left(Ty_{n}, Sy_{n+1}\right) \\ &+ d\left(Sx_{n+1}, u\right). \end{aligned}$$

$$\leq H\left(Tx_{n}, Ty_{n}\right) + H\left(Ty_{n}, Sy_{n+1}\right) \\ &+ d\left(Sx_{n+1}, u\right) \end{aligned}$$

$$\leq \max\{d\left(Sx_{n}, Sy_{n}\right), d\left(Sx_{n}, Tx_{n}\right), \end{aligned}$$

$$d\left(Sy_{n}, Ty_{n}\right), \frac{1}{2}[d\left(Sx_{n}, Ty_{n}\right) \\ &+ d\left(Tx_{n}, Sy_{n}\right)]\} + H\left(Ty_{n}, Sy_{n+1}\right) \\ &+ d\left(Sx_{n+1}, u\right). \end{aligned}$$

 $Sx_{n+1} \in Tx_n$ we have that $d(Sx_n, Tx_n) \le d(Sx_n, Sx_{n+1}) + d(Sx_{n+1}, Tx_n)$ $\leq d(Sx_n, u) + d(u, Sx_{n+1}) + d(Sx_{n+1}, Tx_n) \rightarrow 0$ Now if $M(x, y) = d(Sx_n, Tx_n)$ by taking limit we obtain $d(Sy_{n+1}, u) \rightarrow 0$. If $M(x, y) = d(Sy_n, Ty_n)$, we have $d(Sy_n, Ty_n) \leq d(Sy_n, Sx_n) + d(Sx_n, Sx_{n+1})$ $+ d(Sx_{n+1}, Sy_{n+1}) + d(Sy_{n+1} + Ty_n)$.

From definition 2.3, we have that $d(Sx_n, Sy_n) \rightarrow 0$ and by taking limit, we obtain $d(Sy_{n+1}, u) \rightarrow 0$

If $M(x, y) = d(Sx_n, Sy_n)$, from definition 2.3, we have $d(Sx_n, Sy_n) \to 0$ and by taking limit, we obtain $d(Sy_{n+1}, u) \to 0$. If

$$M(x, y) = \frac{1}{2} [d(Sx_n, Ty_n) + d(Sy_n, Tx_n)]$$

$$\leq \frac{1}{2} [d(Sx_n, Sy_n) + d(Sy_n, Ty_n) + d(Sy_n, Tx_n)]$$

Taking limit, we obtain $d(Sy_{n+1}, u) \rightarrow 0$

Hence $\lim_{n \to \infty} Sy_n = 0$

This complete the proof of the theorem.

Theorem 3.3

Let (X, d) be a metric space and $Y \subseteq X$. Let $T: Y \to CL(X)$, $S: Y \to X$ such as $TY \subseteq SY$ and one of SY or TY is a complete subspace of X. Let z be a coincidence point of T and S, that is, $u = Sz \in Tz$.

For any $x_0 \in Y$, let the sequence $\{Sx_n\}$ generated by Picard iteration $Sx_{n+1} \in Tx_n$ converges to u.

Let $\{Sy_n\} \subseteq X$ be an equivalent sequence of $\{Sx_n\}$ and define $\varepsilon_n = H(Sy_{n+1}, Ty_n), \quad n = 0, 1, \dots$.

If the pair (S,T) satisfy condition (1.4), and if Tz is singleton, then the Picard iteration is w²-stable with respect to (S,T).

The following example show that (S,T) is not stable but weakly stable and hence w^2 -stable with respect to (S,T).

Example 3.4

Let X = [0,1] and $T : X \to X$, $S : X \to X$ such as $TX \subseteq SX$ and $TX = \begin{cases} \{0\}, & \text{if } x \in \left[0, \frac{1}{2}\right] \\ \left\{\frac{1}{2}\right\}, & \text{if } x \in \left(\frac{1}{2}, 1\right] \end{cases}$ $TX = \{0\} \cup \{\frac{1}{2}\} = \{0, \frac{1}{2}\} \subseteq SX = X = [0,1]$ Sx = x

Where [0,1] endowed with the usual metric T is continuous at each point of [0,1]except at $\frac{1}{2}$. T has a unique fixed point at 0, i. e, $0 \in T(0) = \{0\}$. T satisfies condition (1.3). If $0 \le x \le \frac{1}{2}$, $0 \le y \le \frac{1}{2}$ and $x \ne y$. Then H(Tx, Ty) = 0 < |x - y| $= \max\{|x - y|, |x - Tx|, |y - Ty|, |y - Ty|\}$ $\frac{1}{2}[|x - Ty| + |y - Tx|]\}$ If $\frac{1}{2} < x \le 1$ and $\frac{1}{2} < y \le 1$ and $x \ne y$, then $H(Tx,Ty) = 0 < |x - y| = \max\{|x - y|, |x - Tx|,$ $|y - Ty|, \frac{1}{2}[|x - Ty| + |y - Tx|]\}$ If $0 \le x \le \frac{1}{2}$ and $\frac{1}{2} < y \le 1$ and $x \ne y$, then $H(Tx, Ty) = \frac{1}{2} < y = \max\left\{ \left| \frac{1}{2} - x \right|, y \right\}$ $= \max \{ |x - Tx|, |y - Ty| \},$ $H(Tx, Ty) < \max\{|x - y|, |x - Tx|,$ Thus $|y - Ty|, \frac{1}{2}[|x - Ty| + |y - Tx|]\}$ In order to study the (S,T) -stability, let $x_0 \in [0,1]$, $Sx_{n+1} = x_{n+1} \in Tx_n$, for

 $n = 0, 1, \dots$

Then,
$$x_1 \in Tx_0 = \begin{cases} \{0\} & \text{if } x_0 \in \left[0, \frac{1}{2}\right] \\ \left\{\frac{1}{2}\right\} & \text{if } x_0 \in \left(\frac{1}{2}, 1\right] \end{cases}$$

In each case, $x_2 \in Tx_1 = \{0\}$ and $x_n = 0$, $\forall n \ge 2$. so, $\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} x_n = 0 \in T \{0\}$

To show that the picard iteration is not(S,T)-stable,

Let
$$Sy_n = y_n = \frac{n^2 + 1}{2n^2}$$
, $n \ge 1$.
 $\varepsilon_n = H(Sy_{n+1}, Ty_n) = |y_{n+1} - Ty_n|$
Then
 $= \left| \frac{(n+1)^2 + 1}{2(n+1)^2} - \frac{1}{2} \right|$,

because of $y_n \ge \frac{1}{2}$, for $n \ge 1$.

Therefore, $\lim_{n \to \infty} \varepsilon_n = 0$ but $\lim_{n \to \infty} Sy_n = \lim_{n \to \infty} y_n = \frac{1}{2}$, so the Picard iteration is not (S,T)stable.

In order to show that (S,T) weak stability. We take an approximate sequence $\{Sy_n\}$ of $\{Sx_n\}$, from lemma (2.3)

 $|Sx_n - Sy_n| = |x_n - y_n| \le \eta_n, \quad n \ge k.$ $-\eta_n \leq x_n - y_n \leq \eta_n$ $0 \le y_n \le x_n + \eta_n, n \ge k$ Since $x_n = 0$ for $n \ge 2$, $0 \le y_n \le \eta_n \quad , n \ge k_1 = \max\{2, k\}$

We can choose $\{\eta_n\}$ such that $\eta_n \leq \frac{1}{2}$, $n \geq k_1$ and therefore, $0 \leq y_n \leq \frac{1}{2}$, $\forall n \geq k_1$ So $Ty_n = \{0\}$ and the results that $\varepsilon_n = H(Sy_{n+1}, Ty_n) = Sy_{n+1} = y_{n+1}$ Now $\lim_{n\to\infty} \varepsilon_n = \lim_{n\to\infty} y_{n+1} = 0$,

So the iteration procedure is weakly stable with respect to (S,T).

Hence, it is w²-stable with respect to (S,T).

Corollary 3.5 [9]

Let (X, d) be a complete metric space and $S, T: X \to X$ such that $TX \subseteq SX$ satisfying the following condition :

 $d(Tx,Ty) < \max\{d(Sx,Tx), d(Sy,Ty),$

$$d(Sx, Sy), \frac{1}{2}[d(Sx, Ty) + d(Sy, Tx)]\},$$
 For all $x, y \in X$ and $x \neq y$.

Let $\{Sy_n\}_{n=0}^{\infty}$ an iteration procedure defined by $x_0 \in X$ and $Sx_{n+1} = Tx_n$, for all $n \ge 0$ and the sequence $\{Sx_n\}$ converge to u, where u is a coincidence point of S and T, then the Picard iteration is w^2 -stable with respect to (S,T).

The following example explains the stability, weakly stability and w^2 -stability for some contraction condition in case of single-valued map.

Example 3.5

Let X = [0,1] and let $T: X \to X$ be such that Tx = x, where X has the usual metric, Evidently, every point of X is a fixed point of T. let $x_0 = \frac{1}{2}$.

Then $x_{n+1} = Tx_n = T^{n+1}x_0 = \frac{1}{2}$, n = 0, 1, 2, ...,

thus $\lim_{n \to \infty} x_n = \frac{1}{2}$. let $\{y_n\}_{n=0}^{\infty}$ be an arbitrary sequence in X such that $y_0 = x_0$ and $y_0 = \frac{1}{n}, n = 1, 2, 3, \dots$

Tl

Thus
$$\lim_{n \to \infty} |y_{n+1} - Ty_n| = \left|\frac{1}{n+1} - \frac{1}{n}\right| = \frac{1}{n(n+1)} \to 0$$
 as $n \to \infty$, however,
 $\lim_{n \to \infty} y_n = 0 \neq \lim_{n \to \infty} x_n = \frac{1}{2}.$

Therefore, the iterative procedure $x_{n+1} = Tx_n$ is not stable.

Now, if we choose $\{y_n\}$ an approximate sequence of $\{x_n\}$ such that $y_0 = x_0$ and $y_n = \frac{2n+1}{2n}$. In this case, we have $d(y_n, x_n) = \frac{n+1}{2n} \rightarrow \frac{1}{2} > 0$

as $n \to \infty$, however, $\lim_{n \to \infty} y_n = \frac{1}{2} = \lim_{n \to \infty} x_n$. Therefore, the iterative procedure $x_{n+1} = Tx_n$ is weakly stable.

 $x_{n+1} - I x_n$ is weakly stable.

Finally, let $\{y_n\}$ be an equivalent sequence of $\{x_n\}$ such that $y_0 = x_n$ and $y_n = \frac{n+1}{2}$.

in this case, we have $d(y_n, x_n) = \frac{1}{2n} \to 0$ as $n \to \infty$.

However, $\lim_{n \to \infty} y_n = \frac{1}{2} = \lim_{n \to \infty} x_n = T\left(\frac{1}{2}\right).$

Therefore, the iterative procedures $x_{n+1} = Tx_n$, n = 0, 1, 2, ... is w²-stable.

Note that T is non expansive, that is, $d(Tx,Ty) \le d(x,y)$, for all $x, y \in X$.

Remark 3.7

- i. If *S* is the identity mapping in corollary 3.4 we have theorem 2.4 [10].
- ii. Every stable iteration is weakly stable but the reverse may not true (see [11]).
- iii.Every weakly stable iteration is w^2 -stable but the reverse may not true (see [9]). iv.There is some mappings that satisfy contraction condition and for which the Picard iteration is not (S,T)-stable, it is not (S,T)-weakly stable but it is (S,T)- w^2 stable (see [9]).

References:

- [1]Berinde, V. Iterative approximation of fixed points. Springer Veriag, lectures notes in Mathematics, 2007.
- [2]Cardinali. T. and Rubbioni. P, A generalization of the caristi fixed point theorem in metric space, Fixed point theory. 11(2010), 3-10.
- [3]Harder, A. M. and Hicks, T. L. A stable iteration procedure for non expansive mapping. Math. Japon. 33(1998), 687-692.
- [4]Harder, A. M. and Hicks, T. L. Stability results for fixed point iteration procedures. Math. Japon. 33(1988), 693-706.
- [5]Harder, A. M. Fixed point theory and stability results for fixed point iteration procedures. Ph. D. thesis. University of Missouri-Rolla. Missouri. (1987).
- [6]Lim, T. C., Fixed point stability for set-valued contractive mappings with applications to generalized differential equations. J. Math. Anal. Appl. 110 (1985), 436-441.
- [7]Rhoades, B. E., A comparison of various definition of contractive mappings, Tran. Amer. Math. Soc. 226 (1977), 257-290.
- [8]Singh S. L., Chary Bhatnagar and Hashim A. M. Round of stability of picard iterative procedure for multi-valued operators.Non linear Anal. Forum 10(1) (2005), 13-19.
- [9]Timis, I. and Berinde, V. Weak stability of iterative procedures for some coincidence theorems. Creative Math. & Inf. 19 (2010), 85-95.
- [10]Timis, I. On the weak stability of picard iteration for some contractive type mappings and coincidence theorems. Int. J. Com. Appl. 37 (2012), 9-13.

- [11]Timis, I. On the weak stability of picard iteration for some contractive type mappings. Annals of university of Craiova Mathematics, and computer science series.37 (2) (2010), 106-114.
- [12]Tolostonogo V. A. Differential inclusions in Banach space kluwer Academic publishers, 2000 (2008), 2942-2949.
- [13]Zaineb Sami Almousawy; Fixed point theorems and Multi-valued operators. M. SC. Thesis. University of Basrah (supervised by Dr. Amal M. Hashim) 2012.