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1. INTRODUCTION 

String matching is a basic method that identifies all occurrences of a certain pattern, designated as “PATTERN,” in a 

long string or text called “TEXT.” This computer procedure seeks to find and count all instances when the pattern 

matches text substrings [1],[2],[3]. In many computer science applications, string matching, which is the act of 

comparing two finite-length strings and determining their best line, is critical [4]. It has numerous applications, 

including computational biology [5], intrusion detection systems, operating systems [6], data retrieval, AI, web 

search engines [7], signal processing, and picture analysis [8], [9]. In addition to its use in reference systems, string 

matching has many other important applications, including error correction, text processing, speech and pattern 

recognition, bibliographic search, question–answer applications, DNA pattern matching, protein sequence analysis, 

and dictionary and knowledge base construction [10], [11]. Recently, a crucial issue that has emerged is the doubling 

of the amount of string-match able data contained within these databases every two years. Consequently, the demand 

for efficient string-matching algorithms that can effectively handle the expanded memory size and powerful modern 

machines is increasing [12], [13]. Meeting this demand is the primary objective pursued by the proposed algorithm. 

Moreover, the implementation of string-matching techniques must be executed with precision to enhance application 

efficiency. The efficacy of a string-matching algorithm relies on three crucial factors: the number of attempts, 

character comparisons, and runtime [14]. The remainder of this paper is carefully organized to help understand the 

research. Section 2 provides a thorough explanation of string-matching ideas, while Section 3 meticulously 
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Algorithms for string matching are considered one of the most extensively researched topics in the 

field of computer science due to their substantial role in various applications, such as information 

retrieval, editing, security, firewalls, and biological applications. String matching involves 

examining the optimal alignment by comparing the characters in the pattern and the text. Over the 

past two decades, it has gained considerable attention due to technological advancements. The need 

to address string-matching problems has also emerged because of its wide-ranging applications. 

This study presents the E-ARFO hybrid string-matching algorithm, which combines the best 

features of two original algorithms, namely, E-AbdulRazzaq and fast online hybrid matching. 

Compared with other algorithms, the proposed method demonstrates outstanding performance in 

terms of the number of attempts and character comparisons conducted across multiple databases, 

including DNA and protein sequences. Results indicate that irrespective of the number of attempts 

or character comparisons made, E-ARFO consistently ranks first for short and lengthy patterns in 

most databases. Results also reveal reduced runtimes and competitive character comparisons. 

Moreover, results underscore the potential effect of E_ARFO on computational biology, offering a 

new paradigm for precision and efficiency in string matching. 
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formulates the sophisticated hybrid approach. Section 4 details the experimental design and evaluation methodology 

used. Section 5 describes the implementation details and environmental factors affecting our study, illuminating its 

practicality. Section 6 discusses and analyzes the results and findings. This section examines algorithm details, 

runtime, number of attempts, and character comparisons. Section 7 summarizes the findings and conclusions. 

2. RELATED WORK 

In 1977, the Boyer–Moore algorithm was devised as a proficient algorithm for matching strings that notably 

amplified the velocity in the pursuit of text. This accomplishment is attained by traversing through text commencing 

from the far rightmost position and disregarding any character that does not conform to the specified pattern. The 

algorithm employs two tables, namely, a bad character table and a good suffix table, to establish the utmost feasible 

shift during each comparison stage. It performs exceedingly well with extensive patterns. The Boyer–Moore 

algorithm manifests exceptional performance in real-world scenarios, with the average time complexity estimated to 

be O(n/m). Moreover, it is highly effective for concise and lengthy patterns [15], [16]. 

The Raita algorithm was developed in 1992, with the objective of identifying the initial occurrence of a pattern 

within a document. This method is an illustration of a pattern-matching algorithm that is influenced by the use of a 

bad character table by the Boyer–Moore algorithm, specifically the bmBc table. It compares characters in the text 

window with those in the pattern at various distances. This algorithm consists of two main stages [17], [18]: 

Phase 1. The bmBc table is constructed to enable the algorithm to determine the optimal shifts for each character 

during the matching process. 

Phase 2. This stage is also known as the research phase. The last element of the pattern is compared with the last 

element of the window. Upon finding a match, the algorithm proceeds to check the first element of the pattern text. If 

a match is found, it then examines the middle element of the pattern text. If these conditions are met, then it proceeds 

to check the remaining elements. 

The utilization of the bmBc component of the bad character table in the Boyer–Moore algorithm enhances the 

performance of the Raita algorithm, resulting in a more effective approach for accurate string matching. By 

employing this method, the matching process can be expedited, leading to a reduction in the time required for 

character comparison. [19]. 

An improved hybrid algorithm of the Raita method (i.e., SSABS) was created in 2004. The first step is a 

preprocessing phase in which the bad character shift table’s quick search bad character (qsBc) is constructed, and the 

second is a search phase in which occurrences of the pattern are located within the text. During the search phase, the 

qsBc table is crucial to calculating the pattern shift [20]. The search is initiated by focusing on the last character 

visible in the text pane. The algorithm looks at the window and the pattern’s final element. After checking the pattern 

against the window, it advances to the first matching element. If these two pieces are a match, then it moves on to the 

next ones. If these two characters are a match, then the algorithm continues to check the next characters from right to 

left to see if any further correlation exists. If a perfect match is found, then the algorithm determines the presence of 

a pattern. The algorithm has been tested, and the results obtained are consistently better than those of the Raita 

algorithm and quick search algorithm. 

Although both algorithms share a common preprocessing phase, the ABSBMH algorithm, introduced in 2017, is a 

vast improvement over its predecessor by using the qsBc approach in the shift operation while maintaining 

compatibility with the original’s preprocessing steps. A novel approach is presented, however, during the search 

phase of ABSBMH [21]. To achieve similar search efficiency gains, the processing phase in ABSBMH is similar to 

that of SSABS, with qsBc serving as the basis for dealing with character shifts. When doing a search, ABSBMH uses 

a one-of-a-kind method. During the research phase of the method, the final element and the next-to-last element are 

investigated. When these two items are compared and a match is made, the first item is investigated further. If a 

match is verified, the algorithm continues with left-to-right matching of the remaining items. The ABSBMH 

algorithm exhibits a lower number of character comparisons in comparison with the outcomes of alternative 

algorithms while demonstrating minimal disparity in the results of multiple trials. This characteristic can be 

attributed to the preprocessing phase of the hybrid algorithm, which is founded on the SSABS algorithm, the same 

preprocessing phase employed by the quick search algorithm. Consequently, given these factors, a slight divergence 
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is observed in the total number of attempts between the results of the ABSBMH algorithm and other algorithms. This 

discrepancy arises from the utilization of distinct pattern lengths, which are randomly selected from the databases. 

The FLPM algorithm was proposed in 2021. The preprocessing part of this algorithm requires searching for repeats 

of the first and last characters between the text and the pattern; therefore, it can be thought of as a relatively sluggish 

algorithm. The number of possible window matches between the pattern and the text is calculated using this search. 

The method checks the remaining elements against the pattern throughout the search phase. Moreover, it is 

dependent on the number of windows discovered; if a discrepancy is found, then the algorithm moves on to 

investigate another window [22], [23]. FLPM finds matching windows based on the text pattern’s beginning and 

ending character locations during preprocessing. These windows’ remaining components are meticulously compared 

during the search phase to locate matches. Window count affects algorithm iteration. If a mismatch occurs, then the 

software checks the next window. FLPM can assess matching windows by employing the initial and final characters 

in this particular design. The algorithm exhibits satisfactory performance in terms of the number of attempts made; 

however, it incurs a considerable computational cost and necessitates numerous character comparisons. In situations 

where the pattern and text features are shared, this method guarantees precise match detection. 

The purpose of our research is to improve the E-AbdulRazza and FOHM algorithms to improve string-matching 

performance. This paper explains our algorithm methodology, results, and discussion, explaining the effectiveness of 

our enhanced hybridization of algorithms in different applications. 

3. METHODOLOGY 

This paper describes an improved hybrid model incorporating E-AbdulRazzaq mixed with FOHM. Subtle changes 

include modifying these two algorithms to produce a hybrid algorithm that is characterized by speed and accuracy by 

combining the good features of the two algorithms above while conducting a comparison test with other algorithms 

with the same specific relevant performance indicators that serve as a measurement tool (average running time, 

number of comparisons, and number of attempts). The FOHM algorithm consists of two stages. Creating the qsBc 

table is part of the preprocessing phase. In the search phase, the pattern is divided into three components, and the 

three components are analyzed by comparing the pattern with the text window. The first three elements of the form 

are compared with the text window, and then the last three elements are compared. If a match is selected, the 

algorithm continues to compare the remaining characters within the form and text window. The method moves the 

window to the right by an amount taken from the qsBc table if no match is found at any stage. The E-AbdulRazzaq 

algorithm has two distinct phases. In the preprocessing phase, two tables, i.e., bmbc and brbc, are created. In the 

search phase, the hash is first examined for elements in primary positions, and only then is it checked for composite 

locations. If the two hashes are identical, then the algorithm checks each individual element to determine if it 

occupies a prime or composite [24]. 

4. PROPOSED ENHANCED HYBRID ALGORITHM 

The study introduces the enhanced E-AbdulRazzaq-FOHM (E_ARFO) algorithm. The E_ARFO algorithm is an 

advanced hybrid algorithm that integrates the capabilities and methodologies of the E-AbdulRazzaq and FOHM 

algorithms. The primary objective of this methodology is to deliver effective and precise string matching while 

simultaneously enhancing the performance of different stages within the algorithm. The proposed algorithm is a 

fusion of techniques derived from two primary sources: modification of the enhanced E-AbdulRazzaq algorithm and 

the FOHM algorithm. The algorithm is divided into two main phases: preprocessing and search. The following is a 

detailed breakdown of each phase: 

4.1 Preprocessing Phase 

The preprocessing phase of the E_ARFO method incorporates essential approaches derived from the E-AbdulRazzaq 

algorithm. The aforementioned strategies are systematically structured into functions to establish a comprehensive 

preprocessing phase that is specifically designed for precise string matching. The following are the key functions 

utilized in this phase: 

The Boyer–Moore bad character (bmBc) function is a key component of the Boyer–Moore algorithm, as shown in 

Eq. (1), which is widely used for string searching.  
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   {                [     ]  }                                }  (1) 

 

The Berry–Ravindran bad character (BRBC) function is a computational algorithm [25] used in string matching, as 

shown in Eq. (2). The E_ARFO algorithm, influenced by the Berry–Ravindran algorithm, integrates the Brbc 

function. The functionality of this function is analogous to that of the Brbc function, with the key distinction being 

its emphasis on the selection of the maximum shifting value throughout the matching process. The method uses the 

Brbc table to ensure appropriate shifting of the window, hence enhancing performance. 

 

1      if  p [m−1]=u, 

                                                  brBc[u,v] = min            m−i+1     if  p[i] p[i+1]=uv,            (2)    

                            m+1        if  p [0] = v,                          

                            m+2       otherwise                          

 

Calculation of tables: This phase is when two important tables, i.e., bmBc and brBc, are calculated. These tables of 

importance in the shift operation draw inspiration from the E-AbdulRazzaq algorithm. Hash calculation: Finally, the 

algorithm computes hash values for the first three and last three letters in the pattern. 

 

 

Pseudocode of Preprocessing phase 

Algorithm E_ARFO (X [0 …..m−1]  

1.    //Input: Pattern X  

2.    //Output: Shift tables of (bmBc), (brBc) and compute the hush values.  

3.    //pre brBc (preprocessing Berry–Ravindran bad-character function)  

4.    brBc[ASIZE][ASIZE] //2D array to keep shift values  

5.        For q       0 to ASIZE  Do  

6.               For s        0 to ASIZE  Do  

7.                  brBc[q][s]        m+2  

8.              End For  

9.      End For  

10.      For q       0 to ASIZE   Do  

11.                    brBc[q][x[0]]         m +1  

12.      End For  

13.      For p        0 to m−2 Do 
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14.                    brBc[x[p]][x[p+1]]          m – p 

15.      End For  

16.       For q       0 to ASIZE Do  

17.                 brBc[x[m−1]][q]        1 

18.     End For 

19.     //pre bmBc (preprocessing Boyer–Moore bad- character function)  

20.      For s        0 to size of alphabet Do  

21.                bmBc [s]        m  

22.     End For 

23.   For s         0 to m−2 Do  

24.             bmBc [X[s]]        m− s−1  

25.   End For  

26.     // Compute the hash values   h = d^S−1 mod q  

27.     For i         w to S−1 Do  

28.         hy        (hy<<1) +y[i] 

29.     End For 

30. first Ch x[0], second Ch x[1], third Ch x[2]  

31. last Ch x[m−1], second last Ch x[m−2] , third last Ch[m−3] 

32. // Hash values of all steps in pattern and the first and last three characters in text window  

33.fhx        (fhx<<1)+ first Ch , fhx       (fhx<<1)+ second Ch, fhx        (fhx<<1) + third Ch   

34. fhy        (fhy<<1)+ y[0] , fhy       (fhy<<1)+ y[1] , fhy        (fhy<<1) + y[2]  

35. Lhx      (Lhx<<1)+ last Ch, Lhx      (Lhx<<1)+ second  last Ch, Lhx      (Lhx<<1) + third last Ch   

36. Lhy        (Lhy<<1)+ y[m−1] , Lhy       (Lhy<<1)+ y[m−2] , Lhy        (Lhy<<1) + y[m−3] 

 

4.2 Search Phase 

Window alignment: The search phase begins by comparing the pattern with the beginning of the text. A window is 

generated by extracting a portion of the text, specifically a segment that is of the same length as the pattern. The 

comparison is thereafter performed in a sequential manner, starting from the left and progressing toward the right. 

An algorithm computes hash functions for first three items and final three characters from a window of text for 

present window. 

Hash comparison (first three): In this case, the algorithm will compare the first three hashes of the pattern with those 

that come on a text window.  
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Hash comparison (last three): Additionally, the third last three hashes in the pattern are compared with those that 

occurred in the last three hashes of the text window. 

Character comparison: The first three characters of the pattern will be compared with the first three characters of the 

text box. If these characters' match, the last three characters of the pattern will be compared with the last three 

characters of the text box. If these characters also match, the rest of the characters of the pattern will be compared 

with the Text Box. 

The shift operation is initiated when some of the steps (specifically steps four to eight) lead to a mismatch in the 

algorithm. To address this, the algorithm proceeds to the shift stage, where the pattern is shifted toward the right side 

by a predetermined number of elements. This shift value is determined by selecting the maximum value from two 

tables, namely, bmBc and brBc. Thus, the proposed algorithm incorporates various preprocessing techniques 

inspired by E-AbdulRazaq, along with a search approach derived from FOHM. This combination offers a robust 

mechanism for conducting string matching and provides a systematic approach to pattern matching within extensive 

amounts of text data. 

Pseudo code of Search phase 

Algorithm E-ARFO  (X [0 …..m−1], Y 0…….n−1])  

1.    //Input: Pattern X, Text Y  

2.    //Output: number of attempts and number of  character comparisons of pattern with text and   

         the consumed time  

3.     j         0  

4.   While j <= n − m Do  

5.        c         y[j + m – 1]  

6.       // Comparing the Fh and Lh  

7.      If (fhx == fhy && Lhx == Lhy( 

8.          if  first Ch == y[j] && second Ch ==y[j + 1] && third Ch== y[j + 2] ) Then   

9.             if last Ch == c  && second last Ch==y[j+m− 2] && third last Ch== y[j+m−3] ) Then   

10.              // match   

11.              If (match(x + 2, m−3, y, j + 2,j+m−3, &temp) == 1) Then  

12.              Count  //The first occurrence of the pattern  in the text  

13.             End If  

14.        End If  

15.     End If  

16.  End If 

17.   Output the first attempt and character comparisons and the consumed time  

18. //shifting//  

19.   j + = max (brBc[y [j + m]][y[j+m+1]],bmBc [y[j + m−1]])  

20. // Rehash operation for the text window  
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21 .  fhy       0,fhy        (fhy<<1)+ y[0] , fhy         (fhy<<1)+  y[1] , fhy        (fhy<<1) + y[2] 

22 .  Lhy        0, Lhy        (Lhy<<1)+ y[m−1], Lh  (Lhy<<1)+ y[m−2] , Lhy       (Lhy<<1) + y[m−3] 

 

5. DATABASES 

This study examines the varying performance and characteristics of the string-matching algorithms when applied to 

different types of databases, each having a substantial data size of 230 MB. The method was evaluated using data 

derived from DNA and proteins [26], [27]. Then, the information was gathered from the United States’ National 

Centre for Biotechnology Information. The datasets included in this study were classified into distinct groups, 

considering the duration of the patterns. The category consisted of concise patterns, ranging in length from eight to 

1,024 characters. 

 

6. IMPLIMENTATION AND ENVIRONMENT  

The hybrid algorithm and other algorithms were implemented on a device with the following technical 

specifications: Intel(R) Core(TM) i7-8665U processor, which exhibits exceptional performance in complex 

computations; 16.0 GB RAM, 500 GB hard drive; Windows 10 operating system. For the implementation, Python 

was designated as the preferred programming language. 

 

7. RESULTS AND ANALYSIS 

7.1 Implementation Evaluation And Result Analysis Of The E-Arfo Algorithm Compared With The 

Original Algorithms  

This section presents the results, which offer an overall view of the efficiency of the E_ARFO, E-AbdulRazzaq, and 

FOHM algorithms under different character lengths for DNA sequencing. The DNA sequence average execution 

time is shown in Figure 1. E_ARFO is on top of the average runtime compared with E-AbdulRazzaq and FOHM for 

each character length. This result suggests that the E_ARFO algorithm is more efficient at handling DNA sequences 

than the other two. Additionally, E_ARFO has lower runtimes with the increased character length, demonstrating the 

efficiency of processing longer datasets. A critical parameter that shows the computational effort required by each 

method is the number of character comparisons. Figure 2 displays the amount of character comparisons performed 

by the E_ARFO algorithm for various character lengths. Regarding several character comparisons, E_ARFO 

compares competently with that of E-AbdulRazzaq, with both exhibiting comparable feats. By contrast, FOHM 

continuously entails more character comparison than the required number, making it a relatively less efficient pattern 

recognition among DNA sequences.  

The number of attempts is an excellent measure for measuring the pattern identification efficiency of the algorithms, 

as illustrated in Figure 3, which shows how little iterations there were for E_ARFO. Thus, it is extremely good for 

finding patterns in DNA sequences. However, E-AbdulRazzaq made numerous attempts. Regarding this, the E-

AbdulRazzaq algorithm requires as much attempts as ARFO. By contrast, FOHM needs many more attempts to 

obtain the same outcomes. DNA pattern matching appears to be improved by E_ARFO and E-AbdulRazzaq. 

Running times, character comparisons, and attempts taken altogether imply the advantage of the E_ARFO method 

for the problem of sequence alignment. 
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Fig. 1. Average runtime using the DNA database                          Fig. 2. Number of character comparisons using   eht DNA database 

 

 

Fig. 3 Number of attempts using the DNA database 

 

Figure 4 shows the typical execution time when a protein sequence is used. The comparison of average run time for 

proteins shows that all these algorithms are essentially different. By contrast, E_ARFO beats E-AbdulRazzaq and 

FOHM in all string lengths. The E_ARFO program has a decreasing run time with growing character length, which 

supports the program’s capability of working on long protein sequence datasets. The reduction in E_ARFO’s running 

times shows that this tool would be effective when processing large protein sequences with many features as needed. 

As far as the number of character comparisons is concerned (illustrated in Figure 5), E-AbdulRazzaq and E_ARFO 

have equivalent results when it comes to determining patterns in protein sequences. By contrast, the FOHM 

algorithm requires more frequent comparisons between characters, revealing its less efficient protein sequence 

detection strategy.  

Another point that reinforces the effectiveness of E_ARFO and E-AbdulRazzaq is the number of attempts made by 

the algorithms (Figure 6). The number of attempts is almost equal for both algorithms at different amino acid 

lengths, reflecting a high speed of pattern finding in protein sequences. By contrast, FOHM calls for much more 

trials, indicating its weaknesses on the effective alignment of protein sequences. A comparison of characters and 

attempts performed by E_ARFO demonstrates an optimal performance in protein sequence alignment.  
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Fig. 4. Average runtime using a protein sequence 

 

 

 

 

 

 

 

   

Fig. 5. Number of character comparisons using a protein sequence                        Fig. 6 Number of attempts using a protein Sequence 

7.2 Evaluation And Result Analysis Of The E-ARFO Algorithm Compared With The Standard And Recent 

Algorithms 

To evaluate the performance of our enhanced hybrid algorithm, we conducted a comprehensive comparison with 

existing string-matching algorithms, including Boyer–Moore, quick search, Raita, SSABS, ABSBMH, Ibrahim, and 

FLPM. All algorithms were tested on the same collection of text and pattern datasets. Key performance metrics, 

which researchers have used to evaluate algorithms, include attempts, i.e., instances repeated until a suitable pair is 

found; comparisons, i.e., the number of character comparisons performed throughout the matching process; and 

match, i.e., the total time consumed to find pattern matches in a text. Below is a description of our tests, a 

comparison of the improved hybrid algorithm to the current methods, and a discussion of their ramifications. 

The results offered in this study offer valuable insights into the performance of several string-matching algorithms 

across a range of character lengths (ch). The purpose of this discussion is to examine the obtained results thoroughly 

and conduct a comprehensive analysis of the essential components. 

Table 1 shows that the E_ARFO algorithm performs better than the other considered algorithms for the analysis of 

DNA sequences. It is more effective than competitors in Boyer–Moore, quick search, Raita, SSABS, ABSBMMH, 

FLPM, and Ibrahim across different length patterns between eight and 1,024. E_ARFO has low average runtimes, 

which means that it processes short and long DNA sequences efficiently. E_ARFO is more effective in terms of 

scalability because its run times also decrease with an increase in the pattern lengths.  Table 2 illustrates that in terms 

of character comparison, E_ARFO is great and surpasses most search algorithms, such as Boyer–Moore, quick 

search, Raita, SSABS, ABSBMH, FLPM, and Ibrahim. E_ARFO repeatedly delivers less number of character 

comparison, which suggests that it is good in recognizing existing patterns within DNA chains. This efficiency is 

valid for short and long pattern lengths, stressing that the algorithm has minimum computational needs. Table 3 

shows the high quantity of E_ARFO attempts, which indicates greater efficiency with similar or lower numbers 

compared with other baseline techniques. Boyer–Moore, quick search, Raita, SSABS, ABSBMH, FLPM, and 

Ibrahim usually have several attempts more when compared with E_ARFO, proving that the latter does an excellent 

job in fast searching and recognizing a match. The algorithm proves its robustness by maintaining such efficiency for 
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different pattern lengths. A similar trend can be found when analyzing the protein sequences as E_ARFO beats 

Boyer–Moore, quick search, Raita, SSABS, ABSBMH, FLPM, and Ibrahim,   

As shown in Table 4. The algorithm has a low average runtime on various protein sequence lengths, demonstrating 

its effectiveness.  

Reducing runtime as the pattern length increases suggests an ability of the tool to process long sequences or patterns. 

E_ARFO also competes with several benchmark algorithms in the character comparison tests. It clearly performs 

different functions depending on the length of the pattern that involves protein sequences, as illustrated in Table 5. A 

low number of character comparison highlights proving itself as the most reliable method in terms of string 

matching. the effectiveness of E_ARFO against complexities associated with protein sequence matching. In the 

analysis of protein sequences, Table 6 shows that the number of times attempted by E-ARFO is either the same or 

less than that of other algorithms. This result implies that E_ARFO performs efficiently when locating and aligning 

protein sequence patterns. The consistent performance of E_ARFO at various pattern lengths reinforces the 

trustworthiness of the program. Furthermore, E_ARFO outperformed the other algorithms in DNA and protein 

sequence analyses, 

TABLE I.   AVERAGE TIME CONSUMPTION OF THE E-ARFO ALGORITHM COMPARED WITH RECENT AND STANDARD ALGORITHMS WHEN 

USING SHORT AND LONG PATTERN LENGTHS AND 230 MB DATA SIZE OF  DNA DATABASE 

 

Algorithm 

name 

Pattern length 

8 16 32 64 128 256 512 1024 

E-ARFO 47.154 40.853 16.881 24.856 18.652 19.689 19.801 19.483 

Boyer–

Moore 
112.743 113.670 102.222 47.450 66.885 48.275 40.276 29.837 

Quick 

search 
57.477 44.266 38.232 34.869 31.644 33.899 38.605 32.416 

Raita 78.740 48.451 47.487 42.825 35.848 46.808 59.291 27.417 

SSABS 95.807 67.669 60.864 53.214 50.835 59.559 75.679 74.416 

ABSBMH 81.402 57.474 50.822 44.870 41.836 49.884 61.820 51.008 

FLPM 128.820 91.876 92.356 92.447 92.611 87.692 89.681 111.661 

Ibrahim 157.289 118.488 119.877 122.422 121.226 103.843 104.497 138.889 

 

TABLE II. NUMBER OF CHARACTER COMPARISONS FOR THE E-ARFO ALGORITHM COMPARED WITH RECENT AND STANDARD 

ALGORITHMS WHEN USING SHORT AND LONG PATTERN LENGTHS AND 230 MB DATA SIZE OF DNA DATABASE. 

Algorithm 

name 

Pattern length  

8 16 32 64 128 256 512 1024 

E-ARFO 43505433 25480008 15269871 15844021 11999374 12251059 11663221 9106589 

Boyer–

Moore 
139583205 153829319 142413901 66449178 89771755 75277434 58625325 41023149 

Quick 

search 
99253097 98402350 85739481 79372990 72041463 72868751 80302186 68985914 

Raita 129318035 94864743 93076559 82796186 68525210 95704192 106296138 49250641 

SSABS 125234286 106802900 95388009 84104449 78230248 97114770 106356654 85007319 

ABSBMH 131984027 107412431 96862143 85251578 78649001 104280969 114121634 85592424 

FLPM 345937074 336080084 336538628 339320436 336852583 314237398 314261845 347907438 

Ibrahim 339269803 339033031 338800664 354507264 340454395 312230331 312364294 345220957 
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TABLE III. NUMBER OF ATTEMPTS FOR E-ARFO AGAINST RECENT AND STANDARD ALGORITHMS WHEN USING SHORT AND LONG 

PATTERN LENGTHS AND A 230 MB DATA SIZE OF DNA DATABASE 

Algorithm 

name 

Pattern length 

8 16 32 64 128 256 512 1024 

E-ARFO 40112407 24949863 14573571 15067929 11556133 11931774 11356090 8732300 

Boyer–

Moore 
96746582 122647089 112994118 51858207 71795055 51264563 40663144 29277301 

Quick 

search 
72232235 71255469 62127865 55214308 52051917 57559893 63291601 49049340 

Raita 90534902 75321340 72711900 64186027 54257553 68690983 76577132 36026680 

SSABS 72232235 71255469 62127865 55214308 52051917 57559893 63291601 49049340 

ABSBMH 72232235 71255469 62127865 55214308 52051918 57559893 63291601 49049340 

FLPM 21355015 13722928 14146739 13891259 13958057 14222206 14176386 21306141 

Ibrahim 72614972 72614970 72614964 72614953 72424380 48914457 48914328 72424234 

 

TABLE IV. AVERAGE TIME CONSUMPTION OF THE E-ARFO ALGORITHM COMPARED WITH RECENT AND STANDARD ALGORITHMS WHEN 

USING SHORT AND LONG PATTERN LENGTHS AND 230 MB DATA SIZE OF PROTEIN SEQUENCE DATABASE 

Algorithm 

name 

Pattern length 

8 16 32 64 128 256 512 1024 

E-ARFO 29.451 23.736 9.165 6.453 3.967 2.268 1.549 1.247 

Boyer–

Moore 
229.558 155.620 148.616 125.627 174.298 122.825 100.847 152.602 

Quick 

search 
22.821 11.828 10.242 6.645 7.745 4.931 3.564 4.281 

Raita 27.541 13.368 11.466 7.666 9.483 4.722 4.420 5.448 

SSABS 30.547 15.443 13.628 8.063 10.687 5.777 5.604 6.385 

ABSBMH 28.867 14.525 12.581 8.629 10.280 5.342 5.230 6.069 

FLPM 90.647 67.409 70.149 66.657 67.495 67.647 68.571 75.693 

Ibrahim 81.854 65.839 78.484 74.609 75.225 74.400 77.467 84.888 

 

Table V. Number Of Character Comparisons For The E-Arfo Algorithm Compared With Recent And Standard Algorithms When Using 

Short And Long Pattern Lengths And 230 Mb Data Size Of Protein Sequence Database 

Algorithm 

name 

Pattern Length 

8 16 32 64 128 256 512 1024 

E-ARFO 25718933 14283197 7941016 4120680 2401470 1375525 895949 552585 

Boyer–

Moore 
232108905 187345623 184987396 150037223 212245166 153983822 120879033 174283185 

Quick 

search 
35374116 23314223 20421161 12615660 15148875 7749799 6760284 7455468 

Raita 39375707 23051136 20518920 12726632 16178910 8343667 6650141 7680099 

SSABS 37149739 22606925 20973118 12294479 15920693 8809960 7298842 7895741 

ABSBMH 37121856 22690387 20868132 12309667 15992852 8873128 7320759 7881768 

FLPM 262633691 258263694 270625094 258581301 258013347 258223607 261868960 257917962 

Ibrahim 262840327 258639370 271519743 259016070 257794833 258259629 261816437 258084870 
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Table VI: Number Of Attempts For E-Arfo Against Recent And Standard Algorithms When Using Short And Long Pattern Lengths And 

230 Mb Data Size Of Protein Sequence Database 

Algorithm 

name 

Pattern Length 

8 16 32 64 128 256 512 1024 

E-ARFO 25459195 14139251 7841113 4049334 2370659 1364439 880518 546945 

Boyer–

Moore 
219201934 182604690 175505731 148173369 203863168 143258918 114915223 167396938 

Quick 

search 
32989276 21382028 18479897 11924776 14541698 7473724 6406753 7152774 

Raita 36967086 22398090 19148218 12510131 15427425 7621713 6217205 7296716 

SSABS 32989276 21382028 18479897 11924776 14541698 7473724 6406753 7152774 

ABSBMH 32989276 21382028 18479897 11924776 14541698 7473724 6406753 7152774 

FLPM 829164 269932 1349998 146024 518965 701759 789483 424815 

Ibrahim 14610739 10844001 22003528 11255803 10336669 10336664 13896782 10336628 

 

8. CONCLUSION 

A thorough assessment of string-matching algorithms, including an evaluation of the E-ARFO algorithm, presents a 

sophisticated understanding of how these algorithms operate when working with characters of varying lengths in 

protein and DNA strands. When it comes to DNA sequences, E_ARFO leads the pack by being superior in runtime, 

character comparisons, and attempts. Despite increasing character length, it manages to have a low runtime, 

confirming its computing capacity. This algorithm exhibits high competitiveness in the process of comparing letters, 

especially when compared with E-AbdulRazzaq. This result demonstrates the algorithm’s effectiveness in quickly 

spotting patterns within DNA-related sequences. In addition, the similar number of attempts of E_ARFO and E-

AbdulRazzaq indicates that they have the same efficiency in solving complexities involved with DNA sequences. 

Although FOHM exhibits some competencies, it remains slower than E_ARFO. 

Extending the scope to protein sequences further bolsters E_ARFO’s supremacy. The algorithm outperforms its 

opponents with shorter runtime and fast character comparison for different character lengths. The decreasing runtime 

as the complexity of protein sequences increases highlights the scaling property of this algorithm to accommodate 

big and complex datasets. Parallel character comparison and attempts by these findings go beyond algorithmic 

comparisons. E_ARFO is also faster and more accurate in the potential for pattern recognition for genomic studies or 

other computational areas. 
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