
Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 50, No.1 , 2024, pp. 20-33

DOI: https://doi.org/10.25195/ijci.v05i1.452

Print ISSN: 2313-190X, Online ISSN: 2520-4912

20

Research Article

Enhanced Hybrid Algorithm for E-AbdulRazzaq and

Fast Online Hybrid Matching Algorithms for Exact

String Matching
1 Hayder kamil AL-Jazayiri

Informatics Institute for Postgraduate Studies

Iraqi Commission for Computers and Informatics

ms202130653@iips.edu.iq

2 Atheer Akram AbdulRazzaq

Business Informatics College, University of Information

Technology and Communications,

Baghdad, Iraq

athproof@uoitc.edu.iq

A R T I C L E I N F O

Article History

Received: 18/12/2023

Accepted: 10/10/2024

Published: 11/10/2024

This is an open-access

article under the CC BY

4.0 license:

http://creativecommons.

org/licenses/by/4.0/

1. INTRODUCTION

String matching is a basic method that identifies all occurrences of a certain pattern, designated as “PATTERN,” in a

long string or text called “TEXT.” This computer procedure seeks to find and count all instances when the pattern

matches text substrings [1],[2],[3]. In many computer science applications, string matching, which is the act of

comparing two finite-length strings and determining their best line, is critical [4]. It has numerous applications,

including computational biology [5], intrusion detection systems, operating systems [6], data retrieval, AI, web

search engines [7], signal processing, and picture analysis [8], [9]. In addition to its use in reference systems, string

matching has many other important applications, including error correction, text processing, speech and pattern

recognition, bibliographic search, question–answer applications, DNA pattern matching, protein sequence analysis,

and dictionary and knowledge base construction [10], [11]. Recently, a crucial issue that has emerged is the doubling

of the amount of string-match able data contained within these databases every two years. Consequently, the demand

for efficient string-matching algorithms that can effectively handle the expanded memory size and powerful modern

machines is increasing [12], [13]. Meeting this demand is the primary objective pursued by the proposed algorithm.

Moreover, the implementation of string-matching techniques must be executed with precision to enhance application

efficiency. The efficacy of a string-matching algorithm relies on three crucial factors: the number of attempts,

character comparisons, and runtime [14]. The remainder of this paper is carefully organized to help understand the

research. Section 2 provides a thorough explanation of string-matching ideas, while Section 3 meticulously

ABSTRACT
Algorithms for string matching are considered one of the most extensively researched topics in the

field of computer science due to their substantial role in various applications, such as information

retrieval, editing, security, firewalls, and biological applications. String matching involves

examining the optimal alignment by comparing the characters in the pattern and the text. Over the

past two decades, it has gained considerable attention due to technological advancements. The need

to address string-matching problems has also emerged because of its wide-ranging applications.

This study presents the E-ARFO hybrid string-matching algorithm, which combines the best

features of two original algorithms, namely, E-AbdulRazzaq and fast online hybrid matching.

Compared with other algorithms, the proposed method demonstrates outstanding performance in

terms of the number of attempts and character comparisons conducted across multiple databases,

including DNA and protein sequences. Results indicate that irrespective of the number of attempts

or character comparisons made, E-ARFO consistently ranks first for short and lengthy patterns in

most databases. Results also reveal reduced runtimes and competitive character comparisons.

Moreover, results underscore the potential effect of E_ARFO on computational biology, offering a

new paradigm for precision and efficiency in string matching.

Keywords: Exact String-Matching Algorithm, E-ARFO Algorithm, DNA sequence, Protein sequence,

Pattern.

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0002-4605-1095
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0002-4605-1095
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0002-4605-1095
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0002-4605-1095
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0002-4605-1095
mailto:ms202130653@iips.edu.iq
mailto:athproof@uoitc.edu.iq
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0002-4605-1095
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0002-4605-1095
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0002-4605-1095
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0002-4605-1095
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0002-4605-1095

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 50, No.1 , 2024, pp. 20-33

DOI: https://doi.org/10.25195/ijci.v05i1.452

Print ISSN: 2313-190X, Online ISSN: 2520-4912

21

formulates the sophisticated hybrid approach. Section 4 details the experimental design and evaluation methodology

used. Section 5 describes the implementation details and environmental factors affecting our study, illuminating its

practicality. Section 6 discusses and analyzes the results and findings. This section examines algorithm details,

runtime, number of attempts, and character comparisons. Section 7 summarizes the findings and conclusions.

2. RELATED WORK

In 1977, the Boyer–Moore algorithm was devised as a proficient algorithm for matching strings that notably

amplified the velocity in the pursuit of text. This accomplishment is attained by traversing through text commencing

from the far rightmost position and disregarding any character that does not conform to the specified pattern. The

algorithm employs two tables, namely, a bad character table and a good suffix table, to establish the utmost feasible

shift during each comparison stage. It performs exceedingly well with extensive patterns. The Boyer–Moore

algorithm manifests exceptional performance in real-world scenarios, with the average time complexity estimated to

be O(n/m). Moreover, it is highly effective for concise and lengthy patterns [15], [16].

The Raita algorithm was developed in 1992, with the objective of identifying the initial occurrence of a pattern

within a document. This method is an illustration of a pattern-matching algorithm that is influenced by the use of a

bad character table by the Boyer–Moore algorithm, specifically the bmBc table. It compares characters in the text

window with those in the pattern at various distances. This algorithm consists of two main stages [17], [18]:

Phase 1. The bmBc table is constructed to enable the algorithm to determine the optimal shifts for each character

during the matching process.

Phase 2. This stage is also known as the research phase. The last element of the pattern is compared with the last

element of the window. Upon finding a match, the algorithm proceeds to check the first element of the pattern text. If

a match is found, it then examines the middle element of the pattern text. If these conditions are met, then it proceeds

to check the remaining elements.

The utilization of the bmBc component of the bad character table in the Boyer–Moore algorithm enhances the

performance of the Raita algorithm, resulting in a more effective approach for accurate string matching. By

employing this method, the matching process can be expedited, leading to a reduction in the time required for

character comparison. [19].

An improved hybrid algorithm of the Raita method (i.e., SSABS) was created in 2004. The first step is a

preprocessing phase in which the bad character shift table’s quick search bad character (qsBc) is constructed, and the

second is a search phase in which occurrences of the pattern are located within the text. During the search phase, the

qsBc table is crucial to calculating the pattern shift [20]. The search is initiated by focusing on the last character

visible in the text pane. The algorithm looks at the window and the pattern’s final element. After checking the pattern

against the window, it advances to the first matching element. If these two pieces are a match, then it moves on to the

next ones. If these two characters are a match, then the algorithm continues to check the next characters from right to

left to see if any further correlation exists. If a perfect match is found, then the algorithm determines the presence of

a pattern. The algorithm has been tested, and the results obtained are consistently better than those of the Raita

algorithm and quick search algorithm.

Although both algorithms share a common preprocessing phase, the ABSBMH algorithm, introduced in 2017, is a

vast improvement over its predecessor by using the qsBc approach in the shift operation while maintaining

compatibility with the original’s preprocessing steps. A novel approach is presented, however, during the search

phase of ABSBMH [21]. To achieve similar search efficiency gains, the processing phase in ABSBMH is similar to

that of SSABS, with qsBc serving as the basis for dealing with character shifts. When doing a search, ABSBMH uses

a one-of-a-kind method. During the research phase of the method, the final element and the next-to-last element are

investigated. When these two items are compared and a match is made, the first item is investigated further. If a

match is verified, the algorithm continues with left-to-right matching of the remaining items. The ABSBMH

algorithm exhibits a lower number of character comparisons in comparison with the outcomes of alternative

algorithms while demonstrating minimal disparity in the results of multiple trials. This characteristic can be

attributed to the preprocessing phase of the hybrid algorithm, which is founded on the SSABS algorithm, the same

preprocessing phase employed by the quick search algorithm. Consequently, given these factors, a slight divergence

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 50, No.1 , 2024, pp. 20-33

DOI: https://doi.org/10.25195/ijci.v05i1.452

Print ISSN: 2313-190X, Online ISSN: 2520-4912

22

is observed in the total number of attempts between the results of the ABSBMH algorithm and other algorithms. This

discrepancy arises from the utilization of distinct pattern lengths, which are randomly selected from the databases.

The FLPM algorithm was proposed in 2021. The preprocessing part of this algorithm requires searching for repeats

of the first and last characters between the text and the pattern; therefore, it can be thought of as a relatively sluggish

algorithm. The number of possible window matches between the pattern and the text is calculated using this search.

The method checks the remaining elements against the pattern throughout the search phase. Moreover, it is

dependent on the number of windows discovered; if a discrepancy is found, then the algorithm moves on to

investigate another window [22], [23]. FLPM finds matching windows based on the text pattern’s beginning and

ending character locations during preprocessing. These windows’ remaining components are meticulously compared

during the search phase to locate matches. Window count affects algorithm iteration. If a mismatch occurs, then the

software checks the next window. FLPM can assess matching windows by employing the initial and final characters

in this particular design. The algorithm exhibits satisfactory performance in terms of the number of attempts made;

however, it incurs a considerable computational cost and necessitates numerous character comparisons. In situations

where the pattern and text features are shared, this method guarantees precise match detection.

The purpose of our research is to improve the E-AbdulRazza and FOHM algorithms to improve string-matching

performance. This paper explains our algorithm methodology, results, and discussion, explaining the effectiveness of

our enhanced hybridization of algorithms in different applications.

3. METHODOLOGY

This paper describes an improved hybrid model incorporating E-AbdulRazzaq mixed with FOHM. Subtle changes

include modifying these two algorithms to produce a hybrid algorithm that is characterized by speed and accuracy by

combining the good features of the two algorithms above while conducting a comparison test with other algorithms

with the same specific relevant performance indicators that serve as a measurement tool (average running time,

number of comparisons, and number of attempts). The FOHM algorithm consists of two stages. Creating the qsBc

table is part of the preprocessing phase. In the search phase, the pattern is divided into three components, and the

three components are analyzed by comparing the pattern with the text window. The first three elements of the form

are compared with the text window, and then the last three elements are compared. If a match is selected, the

algorithm continues to compare the remaining characters within the form and text window. The method moves the

window to the right by an amount taken from the qsBc table if no match is found at any stage. The E-AbdulRazzaq

algorithm has two distinct phases. In the preprocessing phase, two tables, i.e., bmbc and brbc, are created. In the

search phase, the hash is first examined for elements in primary positions, and only then is it checked for composite

locations. If the two hashes are identical, then the algorithm checks each individual element to determine if it

occupies a prime or composite [24].

4. PROPOSED ENHANCED HYBRID ALGORITHM

The study introduces the enhanced E-AbdulRazzaq-FOHM (E_ARFO) algorithm. The E_ARFO algorithm is an

advanced hybrid algorithm that integrates the capabilities and methodologies of the E-AbdulRazzaq and FOHM

algorithms. The primary objective of this methodology is to deliver effective and precise string matching while

simultaneously enhancing the performance of different stages within the algorithm. The proposed algorithm is a

fusion of techniques derived from two primary sources: modification of the enhanced E-AbdulRazzaq algorithm and

the FOHM algorithm. The algorithm is divided into two main phases: preprocessing and search. The following is a

detailed breakdown of each phase:

4.1 Preprocessing Phase

The preprocessing phase of the E_ARFO method incorporates essential approaches derived from the E-AbdulRazzaq

algorithm. The aforementioned strategies are systematically structured into functions to establish a comprehensive

preprocessing phase that is specifically designed for precise string matching. The following are the key functions

utilized in this phase:

The Boyer–Moore bad character (bmBc) function is a key component of the Boyer–Moore algorithm, as shown in

Eq. (1), which is widely used for string searching.

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 50, No.1 , 2024, pp. 20-33

DOI: https://doi.org/10.25195/ijci.v05i1.452

Print ISSN: 2313-190X, Online ISSN: 2520-4912

23

 [] {

 { [] } } (1)

The Berry–Ravindran bad character (BRBC) function is a computational algorithm [25] used in string matching, as

shown in Eq. (2). The E_ARFO algorithm, influenced by the Berry–Ravindran algorithm, integrates the Brbc

function. The functionality of this function is analogous to that of the Brbc function, with the key distinction being

its emphasis on the selection of the maximum shifting value throughout the matching process. The method uses the

Brbc table to ensure appropriate shifting of the window, hence enhancing performance.

1 if p [m−1]=u,

 brBc[u,v] = min m−i+1 if p[i] p[i+1]=uv, (2)

 m+1 if p [0] = v,

 m+2 otherwise

Calculation of tables: This phase is when two important tables, i.e., bmBc and brBc, are calculated. These tables of

importance in the shift operation draw inspiration from the E-AbdulRazzaq algorithm. Hash calculation: Finally, the

algorithm computes hash values for the first three and last three letters in the pattern.

Pseudocode of Preprocessing phase

Algorithm E_ARFO (X [0 …..m−1]

1. //Input: Pattern X

2. //Output: Shift tables of (bmBc), (brBc) and compute the hush values.

3. //pre brBc (preprocessing Berry–Ravindran bad-character function)

4. brBc[ASIZE][ASIZE] //2D array to keep shift values

5. For q 0 to ASIZE Do

6. For s 0 to ASIZE Do

7. brBc[q][s] m+2

8. End For

9. End For

10. For q 0 to ASIZE Do

11. brBc[q][x[0]] m +1

12. End For

13. For p 0 to m−2 Do

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 50, No.1 , 2024, pp. 20-33

DOI: https://doi.org/10.25195/ijci.v05i1.452

Print ISSN: 2313-190X, Online ISSN: 2520-4912

24

14. brBc[x[p]][x[p+1]] m – p

15. End For

16. For q 0 to ASIZE Do

17. brBc[x[m−1]][q] 1

18. End For

19. //pre bmBc (preprocessing Boyer–Moore bad- character function)

20. For s 0 to size of alphabet Do

21. bmBc [s] m

22. End For

23. For s 0 to m−2 Do

24. bmBc [X[s]] m− s−1

25. End For

26. // Compute the hash values h = d^S−1 mod q

27. For i w to S−1 Do

28. hy (hy<<1) +y[i]

29. End For

30. first Ch x[0], second Ch x[1], third Ch x[2]

31. last Ch x[m−1], second last Ch x[m−2] , third last Ch[m−3]

32. // Hash values of all steps in pattern and the first and last three characters in text window

33.fhx (fhx<<1)+ first Ch , fhx (fhx<<1)+ second Ch, fhx (fhx<<1) + third Ch

34. fhy (fhy<<1)+ y[0] , fhy (fhy<<1)+ y[1] , fhy (fhy<<1) + y[2]

35. Lhx (Lhx<<1)+ last Ch, Lhx (Lhx<<1)+ second last Ch, Lhx (Lhx<<1) + third last Ch

36. Lhy (Lhy<<1)+ y[m−1] , Lhy (Lhy<<1)+ y[m−2] , Lhy (Lhy<<1) + y[m−3]

4.2 Search Phase

Window alignment: The search phase begins by comparing the pattern with the beginning of the text. A window is

generated by extracting a portion of the text, specifically a segment that is of the same length as the pattern. The

comparison is thereafter performed in a sequential manner, starting from the left and progressing toward the right.

An algorithm computes hash functions for first three items and final three characters from a window of text for

present window.

Hash comparison (first three): In this case, the algorithm will compare the first three hashes of the pattern with those

that come on a text window.

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 50, No.1 , 2024, pp. 20-33

DOI: https://doi.org/10.25195/ijci.v05i1.452

Print ISSN: 2313-190X, Online ISSN: 2520-4912

25

Hash comparison (last three): Additionally, the third last three hashes in the pattern are compared with those that

occurred in the last three hashes of the text window.

Character comparison: The first three characters of the pattern will be compared with the first three characters of the

text box. If these characters' match, the last three characters of the pattern will be compared with the last three

characters of the text box. If these characters also match, the rest of the characters of the pattern will be compared

with the Text Box.

The shift operation is initiated when some of the steps (specifically steps four to eight) lead to a mismatch in the

algorithm. To address this, the algorithm proceeds to the shift stage, where the pattern is shifted toward the right side

by a predetermined number of elements. This shift value is determined by selecting the maximum value from two

tables, namely, bmBc and brBc. Thus, the proposed algorithm incorporates various preprocessing techniques

inspired by E-AbdulRazaq, along with a search approach derived from FOHM. This combination offers a robust

mechanism for conducting string matching and provides a systematic approach to pattern matching within extensive

amounts of text data.

Pseudo code of Search phase

Algorithm E-ARFO (X [0 …..m−1], Y 0…….n−1])

1. //Input: Pattern X, Text Y

2. //Output: number of attempts and number of character comparisons of pattern with text and

 the consumed time

3. j 0

4. While j <= n − m Do

5. c y[j + m – 1]

6. // Comparing the Fh and Lh

7. If (fhx == fhy && Lhx == Lhy(

8. if first Ch == y[j] && second Ch ==y[j + 1] && third Ch== y[j + 2]) Then

9. if last Ch == c && second last Ch==y[j+m− 2] && third last Ch== y[j+m−3]) Then

10. // match

11. If (match(x + 2, m−3, y, j + 2,j+m−3, &temp) == 1) Then

12. Count //The first occurrence of the pattern in the text

13. End If

14. End If

15. End If

16. End If

17. Output the first attempt and character comparisons and the consumed time

18. //shifting//

19. j + = max (brBc[y [j + m]][y[j+m+1]],bmBc [y[j + m−1]])

20. // Rehash operation for the text window

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 50, No.1 , 2024, pp. 20-33

DOI: https://doi.org/10.25195/ijci.v05i1.452

Print ISSN: 2313-190X, Online ISSN: 2520-4912

26

21 . fhy 0,fhy (fhy<<1)+ y[0] , fhy (fhy<<1)+ y[1] , fhy (fhy<<1) + y[2]

22 . Lhy 0, Lhy (Lhy<<1)+ y[m−1], Lh (Lhy<<1)+ y[m−2] , Lhy (Lhy<<1) + y[m−3]

5. DATABASES

This study examines the varying performance and characteristics of the string-matching algorithms when applied to

different types of databases, each having a substantial data size of 230 MB. The method was evaluated using data

derived from DNA and proteins [26], [27]. Then, the information was gathered from the United States’ National

Centre for Biotechnology Information. The datasets included in this study were classified into distinct groups,

considering the duration of the patterns. The category consisted of concise patterns, ranging in length from eight to

1,024 characters.

6. IMPLIMENTATION AND ENVIRONMENT

The hybrid algorithm and other algorithms were implemented on a device with the following technical

specifications: Intel(R) Core(TM) i7-8665U processor, which exhibits exceptional performance in complex

computations; 16.0 GB RAM, 500 GB hard drive; Windows 10 operating system. For the implementation, Python

was designated as the preferred programming language.

7. RESULTS AND ANALYSIS

7.1 Implementation Evaluation And Result Analysis Of The E-Arfo Algorithm Compared With The

Original Algorithms

This section presents the results, which offer an overall view of the efficiency of the E_ARFO, E-AbdulRazzaq, and

FOHM algorithms under different character lengths for DNA sequencing. The DNA sequence average execution

time is shown in Figure 1. E_ARFO is on top of the average runtime compared with E-AbdulRazzaq and FOHM for

each character length. This result suggests that the E_ARFO algorithm is more efficient at handling DNA sequences

than the other two. Additionally, E_ARFO has lower runtimes with the increased character length, demonstrating the

efficiency of processing longer datasets. A critical parameter that shows the computational effort required by each

method is the number of character comparisons. Figure 2 displays the amount of character comparisons performed

by the E_ARFO algorithm for various character lengths. Regarding several character comparisons, E_ARFO

compares competently with that of E-AbdulRazzaq, with both exhibiting comparable feats. By contrast, FOHM

continuously entails more character comparison than the required number, making it a relatively less efficient pattern

recognition among DNA sequences.

The number of attempts is an excellent measure for measuring the pattern identification efficiency of the algorithms,

as illustrated in Figure 3, which shows how little iterations there were for E_ARFO. Thus, it is extremely good for

finding patterns in DNA sequences. However, E-AbdulRazzaq made numerous attempts. Regarding this, the E-

AbdulRazzaq algorithm requires as much attempts as ARFO. By contrast, FOHM needs many more attempts to

obtain the same outcomes. DNA pattern matching appears to be improved by E_ARFO and E-AbdulRazzaq.

Running times, character comparisons, and attempts taken altogether imply the advantage of the E_ARFO method

for the problem of sequence alignment.

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 50, No.1 , 2024, pp. 20-33

DOI: https://doi.org/10.25195/ijci.v05i1.452

Print ISSN: 2313-190X, Online ISSN: 2520-4912

27

Fig. 1. Average runtime using the DNA database Fig. 2. Number of character comparisons using eht DNA database

Fig. 3 Number of attempts using the DNA database

Figure 4 shows the typical execution time when a protein sequence is used. The comparison of average run time for

proteins shows that all these algorithms are essentially different. By contrast, E_ARFO beats E-AbdulRazzaq and

FOHM in all string lengths. The E_ARFO program has a decreasing run time with growing character length, which

supports the program’s capability of working on long protein sequence datasets. The reduction in E_ARFO’s running

times shows that this tool would be effective when processing large protein sequences with many features as needed.

As far as the number of character comparisons is concerned (illustrated in Figure 5), E-AbdulRazzaq and E_ARFO

have equivalent results when it comes to determining patterns in protein sequences. By contrast, the FOHM

algorithm requires more frequent comparisons between characters, revealing its less efficient protein sequence

detection strategy.

Another point that reinforces the effectiveness of E_ARFO and E-AbdulRazzaq is the number of attempts made by

the algorithms (Figure 6). The number of attempts is almost equal for both algorithms at different amino acid

lengths, reflecting a high speed of pattern finding in protein sequences. By contrast, FOHM calls for much more

trials, indicating its weaknesses on the effective alignment of protein sequences. A comparison of characters and

attempts performed by E_ARFO demonstrates an optimal performance in protein sequence alignment.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000 E_ARFO E_abdulrazzaq FOHM

0

100

200

300

400

500

600

700

8 16 32 64 128 256 512 1024

E_ARFO E_abdulrazzaq FOHM

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000 E_ARFO E_abdulrazzaq FOHM

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 50, No.1 , 2024, pp. 20-33

DOI: https://doi.org/10.25195/ijci.v05i1.452

Print ISSN: 2313-190X, Online ISSN: 2520-4912

28

Fig. 4. Average runtime using a protein sequence

Fig. 5. Number of character comparisons using a protein sequence Fig. 6 Number of attempts using a protein Sequence

7.2 Evaluation And Result Analysis Of The E-ARFO Algorithm Compared With The Standard And Recent

Algorithms

To evaluate the performance of our enhanced hybrid algorithm, we conducted a comprehensive comparison with

existing string-matching algorithms, including Boyer–Moore, quick search, Raita, SSABS, ABSBMH, Ibrahim, and

FLPM. All algorithms were tested on the same collection of text and pattern datasets. Key performance metrics,

which researchers have used to evaluate algorithms, include attempts, i.e., instances repeated until a suitable pair is

found; comparisons, i.e., the number of character comparisons performed throughout the matching process; and

match, i.e., the total time consumed to find pattern matches in a text. Below is a description of our tests, a

comparison of the improved hybrid algorithm to the current methods, and a discussion of their ramifications.

The results offered in this study offer valuable insights into the performance of several string-matching algorithms

across a range of character lengths (ch). The purpose of this discussion is to examine the obtained results thoroughly

and conduct a comprehensive analysis of the essential components.

Table 1 shows that the E_ARFO algorithm performs better than the other considered algorithms for the analysis of

DNA sequences. It is more effective than competitors in Boyer–Moore, quick search, Raita, SSABS, ABSBMMH,

FLPM, and Ibrahim across different length patterns between eight and 1,024. E_ARFO has low average runtimes,

which means that it processes short and long DNA sequences efficiently. E_ARFO is more effective in terms of

scalability because its run times also decrease with an increase in the pattern lengths. Table 2 illustrates that in terms

of character comparison, E_ARFO is great and surpasses most search algorithms, such as Boyer–Moore, quick

search, Raita, SSABS, ABSBMH, FLPM, and Ibrahim. E_ARFO repeatedly delivers less number of character

comparison, which suggests that it is good in recognizing existing patterns within DNA chains. This efficiency is

valid for short and long pattern lengths, stressing that the algorithm has minimum computational needs. Table 3

shows the high quantity of E_ARFO attempts, which indicates greater efficiency with similar or lower numbers

compared with other baseline techniques. Boyer–Moore, quick search, Raita, SSABS, ABSBMH, FLPM, and

Ibrahim usually have several attempts more when compared with E_ARFO, proving that the latter does an excellent

job in fast searching and recognizing a match. The algorithm proves its robustness by maintaining such efficiency for

0

10

20

30

40

50

8 16 32 64 128 256 512 1024

E_ARFO E_abdulrazzaq FOHM

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

8 16 32 64 128 256 512 1024

E_ARFO E_abdulrazzaq FOHM

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000 E_ARFO E_abdulrazzaq FOHM

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 50, No.1 , 2024, pp. 20-33

DOI: https://doi.org/10.25195/ijci.v05i1.452

Print ISSN: 2313-190X, Online ISSN: 2520-4912

29

different pattern lengths. A similar trend can be found when analyzing the protein sequences as E_ARFO beats

Boyer–Moore, quick search, Raita, SSABS, ABSBMH, FLPM, and Ibrahim,

As shown in Table 4. The algorithm has a low average runtime on various protein sequence lengths, demonstrating

its effectiveness.

Reducing runtime as the pattern length increases suggests an ability of the tool to process long sequences or patterns.

E_ARFO also competes with several benchmark algorithms in the character comparison tests. It clearly performs

different functions depending on the length of the pattern that involves protein sequences, as illustrated in Table 5. A

low number of character comparison highlights proving itself as the most reliable method in terms of string

matching. the effectiveness of E_ARFO against complexities associated with protein sequence matching. In the

analysis of protein sequences, Table 6 shows that the number of times attempted by E-ARFO is either the same or

less than that of other algorithms. This result implies that E_ARFO performs efficiently when locating and aligning

protein sequence patterns. The consistent performance of E_ARFO at various pattern lengths reinforces the

trustworthiness of the program. Furthermore, E_ARFO outperformed the other algorithms in DNA and protein

sequence analyses,

TABLE I. AVERAGE TIME CONSUMPTION OF THE E-ARFO ALGORITHM COMPARED WITH RECENT AND STANDARD ALGORITHMS WHEN

USING SHORT AND LONG PATTERN LENGTHS AND 230 MB DATA SIZE OF DNA DATABASE

Algorithm

name

Pattern length

8 16 32 64 128 256 512 1024

E-ARFO 47.154 40.853 16.881 24.856 18.652 19.689 19.801 19.483

Boyer–

Moore
112.743 113.670 102.222 47.450 66.885 48.275 40.276 29.837

Quick

search
57.477 44.266 38.232 34.869 31.644 33.899 38.605 32.416

Raita 78.740 48.451 47.487 42.825 35.848 46.808 59.291 27.417

SSABS 95.807 67.669 60.864 53.214 50.835 59.559 75.679 74.416

ABSBMH 81.402 57.474 50.822 44.870 41.836 49.884 61.820 51.008

FLPM 128.820 91.876 92.356 92.447 92.611 87.692 89.681 111.661

Ibrahim 157.289 118.488 119.877 122.422 121.226 103.843 104.497 138.889

TABLE II. NUMBER OF CHARACTER COMPARISONS FOR THE E-ARFO ALGORITHM COMPARED WITH RECENT AND STANDARD

ALGORITHMS WHEN USING SHORT AND LONG PATTERN LENGTHS AND 230 MB DATA SIZE OF DNA DATABASE.

Algorithm

name

Pattern length

8 16 32 64 128 256 512 1024

E-ARFO 43505433 25480008 15269871 15844021 11999374 12251059 11663221 9106589

Boyer–

Moore
139583205 153829319 142413901 66449178 89771755 75277434 58625325 41023149

Quick

search
99253097 98402350 85739481 79372990 72041463 72868751 80302186 68985914

Raita 129318035 94864743 93076559 82796186 68525210 95704192 106296138 49250641

SSABS 125234286 106802900 95388009 84104449 78230248 97114770 106356654 85007319

ABSBMH 131984027 107412431 96862143 85251578 78649001 104280969 114121634 85592424

FLPM 345937074 336080084 336538628 339320436 336852583 314237398 314261845 347907438

Ibrahim 339269803 339033031 338800664 354507264 340454395 312230331 312364294 345220957

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 50, No.1 , 2024, pp. 20-33

DOI: https://doi.org/10.25195/ijci.v05i1.452

Print ISSN: 2313-190X, Online ISSN: 2520-4912

30

TABLE III. NUMBER OF ATTEMPTS FOR E-ARFO AGAINST RECENT AND STANDARD ALGORITHMS WHEN USING SHORT AND LONG

PATTERN LENGTHS AND A 230 MB DATA SIZE OF DNA DATABASE

Algorithm

name

Pattern length

8 16 32 64 128 256 512 1024

E-ARFO 40112407 24949863 14573571 15067929 11556133 11931774 11356090 8732300

Boyer–

Moore
96746582 122647089 112994118 51858207 71795055 51264563 40663144 29277301

Quick

search
72232235 71255469 62127865 55214308 52051917 57559893 63291601 49049340

Raita 90534902 75321340 72711900 64186027 54257553 68690983 76577132 36026680

SSABS 72232235 71255469 62127865 55214308 52051917 57559893 63291601 49049340

ABSBMH 72232235 71255469 62127865 55214308 52051918 57559893 63291601 49049340

FLPM 21355015 13722928 14146739 13891259 13958057 14222206 14176386 21306141

Ibrahim 72614972 72614970 72614964 72614953 72424380 48914457 48914328 72424234

TABLE IV. AVERAGE TIME CONSUMPTION OF THE E-ARFO ALGORITHM COMPARED WITH RECENT AND STANDARD ALGORITHMS WHEN

USING SHORT AND LONG PATTERN LENGTHS AND 230 MB DATA SIZE OF PROTEIN SEQUENCE DATABASE

Algorithm

name

Pattern length

8 16 32 64 128 256 512 1024

E-ARFO 29.451 23.736 9.165 6.453 3.967 2.268 1.549 1.247

Boyer–

Moore
229.558 155.620 148.616 125.627 174.298 122.825 100.847 152.602

Quick

search
22.821 11.828 10.242 6.645 7.745 4.931 3.564 4.281

Raita 27.541 13.368 11.466 7.666 9.483 4.722 4.420 5.448

SSABS 30.547 15.443 13.628 8.063 10.687 5.777 5.604 6.385

ABSBMH 28.867 14.525 12.581 8.629 10.280 5.342 5.230 6.069

FLPM 90.647 67.409 70.149 66.657 67.495 67.647 68.571 75.693

Ibrahim 81.854 65.839 78.484 74.609 75.225 74.400 77.467 84.888

Table V. Number Of Character Comparisons For The E-Arfo Algorithm Compared With Recent And Standard Algorithms When Using

Short And Long Pattern Lengths And 230 Mb Data Size Of Protein Sequence Database

Algorithm

name

Pattern Length

8 16 32 64 128 256 512 1024

E-ARFO 25718933 14283197 7941016 4120680 2401470 1375525 895949 552585

Boyer–

Moore
232108905 187345623 184987396 150037223 212245166 153983822 120879033 174283185

Quick

search
35374116 23314223 20421161 12615660 15148875 7749799 6760284 7455468

Raita 39375707 23051136 20518920 12726632 16178910 8343667 6650141 7680099

SSABS 37149739 22606925 20973118 12294479 15920693 8809960 7298842 7895741

ABSBMH 37121856 22690387 20868132 12309667 15992852 8873128 7320759 7881768

FLPM 262633691 258263694 270625094 258581301 258013347 258223607 261868960 257917962

Ibrahim 262840327 258639370 271519743 259016070 257794833 258259629 261816437 258084870

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 50, No.1 , 2024, pp. 20-33

DOI: https://doi.org/10.25195/ijci.v05i1.452

Print ISSN: 2313-190X, Online ISSN: 2520-4912

31

Table VI: Number Of Attempts For E-Arfo Against Recent And Standard Algorithms When Using Short And Long Pattern Lengths And

230 Mb Data Size Of Protein Sequence Database

Algorithm

name

Pattern Length

8 16 32 64 128 256 512 1024

E-ARFO 25459195 14139251 7841113 4049334 2370659 1364439 880518 546945

Boyer–

Moore
219201934 182604690 175505731 148173369 203863168 143258918 114915223 167396938

Quick

search
32989276 21382028 18479897 11924776 14541698 7473724 6406753 7152774

Raita 36967086 22398090 19148218 12510131 15427425 7621713 6217205 7296716

SSABS 32989276 21382028 18479897 11924776 14541698 7473724 6406753 7152774

ABSBMH 32989276 21382028 18479897 11924776 14541698 7473724 6406753 7152774

FLPM 829164 269932 1349998 146024 518965 701759 789483 424815

Ibrahim 14610739 10844001 22003528 11255803 10336669 10336664 13896782 10336628

8. CONCLUSION

A thorough assessment of string-matching algorithms, including an evaluation of the E-ARFO algorithm, presents a

sophisticated understanding of how these algorithms operate when working with characters of varying lengths in

protein and DNA strands. When it comes to DNA sequences, E_ARFO leads the pack by being superior in runtime,

character comparisons, and attempts. Despite increasing character length, it manages to have a low runtime,

confirming its computing capacity. This algorithm exhibits high competitiveness in the process of comparing letters,

especially when compared with E-AbdulRazzaq. This result demonstrates the algorithm’s effectiveness in quickly

spotting patterns within DNA-related sequences. In addition, the similar number of attempts of E_ARFO and E-

AbdulRazzaq indicates that they have the same efficiency in solving complexities involved with DNA sequences.

Although FOHM exhibits some competencies, it remains slower than E_ARFO.

Extending the scope to protein sequences further bolsters E_ARFO’s supremacy. The algorithm outperforms its

opponents with shorter runtime and fast character comparison for different character lengths. The decreasing runtime

as the complexity of protein sequences increases highlights the scaling property of this algorithm to accommodate

big and complex datasets. Parallel character comparison and attempts by these findings go beyond algorithmic

comparisons. E_ARFO is also faster and more accurate in the potential for pattern recognition for genomic studies or

other computational areas.

References

[1] P. Mahmud, A. Rahman, and K. H. Talukder, “An Efficient Hashing Method for Exact String

Matching Problems,” 2022. doi: 10.1007/978-981-16-6460-1_21.

[2] M. Bicer and X. Zhang, “An Efficient, Hybrid, Double-Hash String-Matching Algorithm,” in 2019

IEEE Long Island Systems, Applications and Technology Conference, LISAT 2019, 2019. doi:

10.1109/LISAT.2019.8816827.

[3] S. Faro and T. Lecroq, “The Exact Online String Matching Problem: a Review of the Most Recent

Results”, ACM computing survey, vol. 45(2), pp.1-42, 2013.

[4] M. G. Osamah S . Alrouwab, “Evaluating Efficiency of Some Exact String-Matching Algorithms

on Large-Scale Genome,” American Journal of Computer Science and Information Technology,

vol. 9, no. 112, 2021.

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 50, No.1 , 2024, pp. 20-33

DOI: https://doi.org/10.25195/ijci.v05i1.452

Print ISSN: 2313-190X, Online ISSN: 2520-4912

32

[5] A.W. Mahmood, N.A. Abdul Rashid, and A.A. AbdulRazzaq, “BM-KMP HYBRID

ALGORITHM FOR EXACT AND SUBSEQUENCE STRING MATCHING’, Proceeding of the

3rd International Conference on Informatics and Technology, Informatics '09,pp. 81-87, 2009.

[6] A. A. AbdulRazzaq, N. A. Abdul Rashid, A. A. Abbood, and Z. Zainol, “The Improved Hybrid

Algorithm for the Atheer and Berry-Ravindran Algorithms,” International Journal of Electrical and

Computer Engineering(IJECE), vol. 8, no. 6, pp. 4321-4333, 2018, doi: 10.11591 /ijece

.v8i6.pp4321-4333.

[7] A.A. AbdulRazzaq, N.A. Abdul Rashid, M. A. Abu-Hashem, and A. A. Hasan, “A New Efficient

Hybrid Exact String Matching Algorithm and Its Applications”, LifeScience Journal (Life Sci J),

vol. 11(10), pp.474-488, 2014.

[8] S. Al-Dabbagh and N. Barnouti, “A New Efficient Hybrid String Matching Algorithm to Solve the

Exact String Matching Problem,” British Journal of Mathematics & Computer Science, vol. 20, no.

2, pp. 1–14, Jan. 2017, doi: 10.9734/bjmcs/2017/30497.

[9] A.A. AbdulRazzaq, N.A. Abdul Rashid, H. B. Y. Hamdani, R. M. Ghadban, and A.W. Mahmood,

“Influenced Factors on Computation Among Quick Search, Two-Way and Karp-Rabin

Algorithms”, Proceeding of the 3rd International Conference on Informatics and Technology,

Informatics '09, pp. 100-106, 2009.

[10] A. A. Karcioglu and H. Bulut, “The WM-q multiple exact string matching algorithm for DNA

sequences,” Comput Biol Med, vol. 136, Sep. 2021, doi: 10.1016/j.compbiomed.2021.104656.

[11] A. A. Karcioglu and H. Bulut, “Improving hash-q exact string matching algorithm with perfect

hashing for DNA sequences,” Comput Biol Med, vol. 131, Apr. 2021, doi:

10.1016/j.compbiomed.2021.104292.

[12] S. I. Hakak, A. Kamsin, P. Shivakumara, G. A. Gilkar, W. Z. Khan, and M. Imran, “Exact String

Matching Algorithms: Survey, Issues, and Future Research Directions,” IEEE Access, vol. 7, 2019,

doi: 10.1109/ACCESS.2019.2914071.

[13] A.A. AbdulRazzaq, N. A. Abdul Rashid, w. A. Hasan, M.A. Abu-Hashem, and Z. Zainol "New

Searching Technique of Hybrid Exact String Matching algorithm". International Review on

Computers and Software(I.RE.CO.S.), vol.11 (10), pp. 884-897, 2017.

[14] A. Fadlil, S. Sunardi, and R. Ramdhani, “Similarity Identification Based on Word Trigrams Using

Exact String Matching Algorithms,” INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi

Sistem Informasi, vol. 6, no. 2, 2022, doi: 10.29407/intensif.v6i2.18141.

[15] P. Pangestu and S. E. Wahyuningrum, “WORD SEARCH USING BOYER-MOORE

ALGORITHM,” Proxies : Jurnal Informatika, vol. 2, no. 1, 2021, doi: 10.24167/proxies.v2i1.3195.

[16] J. Allmer, “Exact pattern matching: Adapting the Boyer-Moore algorithm for DNA searches,”

2016. doi: 10.7287/peerj.preprints.1758v1.

[17] A. A. Almazroi et al., “A Hybrid Algorithm for Pattern Matching: An Integration of Berry-

Ravindran and Raita Algorithms,” in Lecture Notes on Data Engineering and Communications

Technologies, 2022. doi: 10.1007/978-3-030-98741-1_15.

[18] R. Rahim et al., “Searching Process with Raita Algorithm and its Application,” in Journal of

Physics: Conference Series, 2018. doi: 10.1088/1742-6596/1007/1/012004.

Iraqi Journal for Computers and Informatics
Information Technology and Communications University

Vol. 50, No.1 , 2024, pp. 20-33

DOI: https://doi.org/10.25195/ijci.v05i1.452

Print ISSN: 2313-190X, Online ISSN: 2520-4912

33

[19] T. Raita, “Tuning the Boyer-Moore-Horspool String Searching Algorithm,” 1992.

[20] Al-Dabbagh, Sinan Sameer Mahmood, et al. “Parallel quick search algorithm for the exact string

matching problem using OpenMP.” Journal of Computer and Communications 4.13 (2016): 1- 11

[21] T. Islam and K. H. Talukder, “An improved algorithm for string matching using index based

shifting approach,” in 20th International Conference of Computer and Information Technology,

ICCIT 2017, 2018. doi: 10.1109/ICCITECHN.2017.8281772.

[22] B. A. Hamed, O. A. S. Ibrahim, and T. Abd El-Hafeez, “Optimizing classification efficiency with

machine learning techniques for pattern matching,” J Big Data, vol. 10, no. 1, 2023, doi:

10.1186/s40537-023-00804-6.

[23] O. A. S. Ibrahim, B. A. Hamed, and T. A. El-Hafeez, “A new fast technique for pattern matching in

biological sequences,” Journal of Supercomputing, vol. 79, no. 1, 2023, doi: 10.1007/s11227-022-

04673-3.

[24] A. A. Abdulrazzaq, N. A. Abdul Rashid, and A. M. Taha, “The Enhanced Hybrid Algorithm for the

AbdulRazzaq and Berry-Ravindran Algorithms,” International Journal of Engineering &

Technology, vol. 7, no. 3,pp. 1709-1717, 2018, doi: 10.14419/ijet.v7i3.12436.

[25] T. Berry and S.A. Ravindran, “fast string matching algorithm and experimental results”, In

Proceedings of the Prague Stringology Club Workshop`99, J. Holub and M. Simáneked,

Collaborative, Report DC-99-05, pp. 1-17, 1999.

[26] RefSeq: NCBI Reference Sequence Database, “DNA Dataset,” Homo sapiens isolate CHM13

chromosome 2, alternate assembly. Accessed: Nov. 19, 2023. [Online]. Available:

https://www.ncbi.nlm.nih.gov/nuccore/NC_060926.1.

[27] RefSeq: NCBI Reference Sequence Database, “Protein Dataset,” RefSeq: NCBI Reference

Sequence Database. Accessed: Nov. 19, 2023. [Online]. Available:

https://ftp.ncbi.nih.gov/refseq/daily/

https://www.ncbi.nlm.nih.gov/nuccore/NC_060926.1
https://ftp.ncbi.nih.gov/refseq/daily/

