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Abstract.

For several subclasses of multivalent meromorphic functions in the punctured unit disc
having a pole at the origin of p order, the subordination and some of inclusion properties are
studied. Through combinations and iterations of operator .‘T/{;’,T?(a, c,6) for normalized regular

functions the subclasses under search are defined. In this paper the impact of the increase of
diverse parameters on the size of the subclasses are discussed. Applications are specified for the
subordination outcomes on the electromagnetic cloaking.
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1. Introduction and Definition
Let opbe the class of all functions f of the following form

f@ =% + i@y Z? (peN), (1.1)
which are regular in the following punctured open disk
U*: = U—{0} = {zeCand 0<|z|<1 }.
For function f € opgiven by (1.1) and geZpdefined in the following form

9@ =5 + T Gz P (zEW),
the Hadamard product denoted by f(z) * g(z) and defined below

14 27D -
f@xg(z) =222 = Ly 50, b y2P =g f(2), (zEW).
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A regular function f(z) is subordinate to regular function G(z) if there exist Schwarz
function £(z) which is regular and satisfying#(0) = 0, |£(z)| < 1 in U, such that
f(2) = G(£(2)),
We denote this subordination as following
f<Gorf(z2)<G(2) (zeW).
Furthermore, if the function G is univalent inll, then f(z) < G(2) is equivalent to f(0) =
G(0) and f(U) < G (U).For more details on the concept of subordination, (see [1]).

Many authors have lately used Hurwitz-Lerech Zeta function and scrutinized several

operators [2, 3]. In [2] El-Ashwah and Bulboaca defined the operator L, ;by using Hurwitz-
Lerech Zeta function as follows
L;,d: zP - ZP:
such that
Laf @ = 55+ Zi (g ) @ (12)

(seCdeC"= (C—ZO ; Z el”).

Setting J,, 4 as follows

k d
J3a(D) = = + TRy p(F22 ) 2K,
and
Upa* Iy )@ = m , (2>0),

We get

) Dk+p Sk
k+p+d (1)k+p

@D = = + iy s

With the Hadamard product the operator JS?& defined by El-Ashwah and Hassan in [4] as

follows
@) = TE@DH (D) = = + Ny ) 2 g 7,
p.d p.d k=1-p k+p+d Dk+p
(A>0,s € C,deC"= C—Z;; zeU"),
The above relation can be written
o) _
@) =5 + T )* oy M2 (1.3)
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where fe Xp is in the form (1.1) and (a) is the Pochammer symbol which is defined by

(1 fork =0,ae C— {0},
(a)"_{ ala+D@+2)....(a+k—-1) forkeN= {1,23...},and aeC.

Mishra and et al. [5] defined: For fe Xp of the form (1.1) set
cf(@ =12,

CEVF(2) = (1- Of () + %” 5 2 (55 ) @iy 27 = €4 (@), (20),
form=2,34,.....
ctmf@) = et (M V@)= 5 4IRS P, (2. (14)

From (1.3) and (1.4), we define the operator
Snm(@ Zp > Xp

(i)k)n( p—kt

Toa ™ DF @) = I f(@D)= + TR (2 (o 1 )™ @27 (zEU)

(1.5)

where n=0,1,2....
Motivated by [5], we introduced this paper

By specializing parameters, we get the well-known operators introduced by several researchers
as follows

1. For n =0, s = 0, the operator 17;](,)6’10’7” (A)=C &™) has been studied in [5].
2. Setting n=1and m =0, the operator f];:;}”n (i)zg]gjﬁ has been studied in [4].
3. Setting n=0,s=0and t =1, we get meromorphic similar of the salagean operator [6].
4. For n =0, s =0, m =1, we have the identity operator and for n =0, s=0, m =1 and
t =1, we obtain the Alexander transform for meromorphic function.
5. For n=1,s=1,m=0,A=1 and d=,
Toi " Df (2) = Fuf (2) = —i [ 4P F(0)d, (1>0). (cf. [7])
6. For n=1,s=0,m=0,A=1 and d—l
LA (Df(2) = pof(2) = pr( 2 Jo J, Qog D>~ P f(t)dt, (a>0)..[8]
7. For n=1, s=y,m=0,A=1 and d=a
1,0 4 — -
T Of (@) = 1j,of (2) = e [1 (log D717+ £(£)dt, (0, 7>0).09]
8. Forn=1,m=0,A=1 and p —1
TS (Df (2) = L (2) =+ + iy (oo )S a*PZEP . [10]
From (1 5), we show that: For n=1, psdl ) =T A).
Utilizing (1.5), we can get the identities relatlonshlps of the operator T>2" m(l) which are
necessary for our study
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2T Df @) =D TS (D (2) ~ LT () () (16)
2(7, S“”mu)f(z)) = a7y (D () - @+ Ty (DG (1)
2(TErm D (D) = 50m Gt DI = G+ TEm D@ (1)

Here, we start with the following definition:
Definition (1.1). A function f € X, is said to be in the class H}';™ (4, & 4, B) if it satisfies the
condition as follow:

N ) 1+ a7

V4
e B Tl

e ) (1.9)

where A,B and a are fixed parameters such that (—1 < B<A < 1),0 < a<p.
In particular case when n=1, we have

Hy 4™ (4 o; A,B) = HJ7 (4 a AB).
Note that in special cases, the followmg subclasses are obtained for the parameters A, B, n, t,
and m.
. For n=0m=0,s=0A4A=1,B=-1; H 000(1 o;1,—1) is the class of p-valent
meromorphic starlike functions of order a.
ii. Frm=0m=1,s=0,A=1,B=—1andt =1; Hg"g’l (4, a;1,—1) is the class of p-
valent meromorphic convex functions of order a.
In section four, we introduce some enough conditions under which subordination outcomes
of the following formula

asz;‘g'm (A+1) f(z)+bzpi7"snm(/1) f(z)]17 <q (Z)
a+b

satisfy for f € op and appropriate univalent function q in U. In addition, we examine the results

of subordination and its applications in electromagnetic cloaking.

2. Preliminaries
In our present investigation, we will need the following lemmas:

Lemma (2.1)[7]. Let A,B,y,B €C,B8 #+0,|B| <1,A + B.We suppose that, these constants
fulfill the following relations

Re[f(1—A)(1—-B)+y|1-B|*)] >0 (2.1)
and
Re[B(1 —A)(1 — B) +y|1 — BI?] Re[B(1 + A)(1 + B) + y|1 + B|?]
—Im[B(B—A) +y|B —B|?] =0
or
Re[f(1+A)(1+B)+y|1+B|?]=0 (2.2)
And

Re[f(1-A)(1 —B)+y|1-BI)]=3J[B(B-A) +y|B —BI’)] =0
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Then the following equation

zq(z) 1+Az
fq(2)+y 1+ Bz

q(2) +

has univalent solution given by
zB+V(1+Bz)B(A—B_B) y
. BB g (B #0)
q(z) = Bl tFrr(+Be)y B at (2.3)

k/z Jo tB+Y=1eBALqt B

If ¢(2) is regular in U and satisfies

z¢p(2) _ 1+Az
d)(Z) + Bo(D+y  1+BZ

then
1+ Az

1+ Bz

$(2) < q(2) <

and q(z) is the best dominant.

Lemma (2.2)[11]. Let v be positive measure on interval [0, 1]. Let h(z,t) be a complex valued
function defined on U X [0,1] such that h (. ,t) is regular in U for every t € [0,1] and h(z,.) is v-
integrable on[0,1] for each ze .

Addition, suppose that Re(h(z,t)) > 0, h(—r, t) is real and

1 1
Re (h(u)) >—— (IzZ<r<1Lteo1)).

If the function H (Zz) is defined by

1
H(2) = f h(z, )dv(t)
0

1 1
Re (}[@) > (2l <r <. (2.4)

Lemma (2.3)[12]. For real and complex numbers a, b,c (c € Z,), we have

[T A=) (1 —t2) 0 = %ZFI (a,b:c;z)  (2.5)

Where
Re(c) > Re(b) > 0,z € U),
oF1(a, b:c; 2)=,F (b, a:c; z), (2.6)
2Fi(a,bic z) = (1-2)"%F (a,¢ = bic; —), (2.7)
(b+1),F; (1, b:b + 1; z)= (b+1)+bzyF; (1, b + 1:b + 2; z) (2.8)

Lemma (2.4)[7]. Let q(z) be univalent function in U and let @ and 6 be regular in a domain
D containing q(U) and @(w) # 0 when w € q(U).
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Set
9(2) = z9'(2)®(q(2))
and
h(z) =6(q(2)) + 9(2).
Suppose that

(1) Q(z) is univalent starlike function in .

(ii) Re (zg ((?) >0 for z € U. If p is a regular with p(0) = q(0), p(X) € D and

) 8(p(2)) + zp'(2)®(p(2)) < 6(q(2)) + zq'(2) 2(q(2)), (2.9)
then

P(2)<q(2) (zel)
and q(z) is the best dominant.

Lemma (2.5) [13]. Let q be a convex univalent function in U and let ¥ €C, yEC*where

C* = C — {0} with
2q' @) p
Re {1 + e } > max{O,—Re (7)}
If p(2) is a regular in U with p(0) = q(0) and

Wp (2) +v2zp'(2) < Yq(2) +v2q'(2), (2.10)
then
p(2)<q(2) (zeW)

and q is the best dominant.

Next, we discuss the inclusion relations and some of its properties for the class ]I-]I;'Z'm(k,
o; A, B).

3. Inclusion Properties of the function class H )™ (1, A, B)

In this section, we find some inclusion relations for the class Hsﬁm(l a; A, B) with relation

to changes in the parameters A,m and s . In particular, we show that increasing A by one

snm

decreasing the size of the class H,;' ;™ (A,a;A, B), but increasing the parameters s or m or A by

one decreasing its size. We start w1th inclusion relations related the parameter m of the class
™ m(k oA, B).

We start with the following inclusion relation with regard to the parameter A of the class
S“m()\ a; A, B)

Theorem (3.1) (i) If f € H4" (A + 1;; A, B) and
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fyuttrt (222 du B=0

Q(Z) — 7170 1+Bz
fol uMp=1 p=P-@A-1z gy, B %0

—(P-a)(A-B)
) 5

(-1<B<A<1,0<a<pA>-p)

then

L —z(rrﬁ_';’}t(a,c,a) f(z))
p-a\  THac8)f(2)

Q@)

and q,(z) is the best dominant of (3.3). As a result of this

H W A+ 1,0 A B)SH " (A, 0 A, B)

(ii) Moreover if the additional restricts, 0< B <1 and

o P=O@A-B)
B

are satisfied then

’

1-14| < 1 R z(TX’g'lt(a,c,é‘)f(Z))
-8l p-a € Tt (a.c8)f(2)

— o |<T.

where

A+p }
2F1( 1, £-DA4-B). “)EE,A B) A+p+1—)

1
r1=pTa{A+p_a_

Proof (i). Let f eH\"(A+ 1,05 A, B)

Set

win = [ AT Pr@)
@ == TS (@)

It is easy to show that W(z) is regular in U and 1 (0) = 1.

Using the identity (1.8) in (3.8), we get

M”"m (+1)f(2)
V(@) = (’H Poa——eommra )
or equivalently
AT (A41) f(2)
_ _ 31— — _"“pa VUM
(=) W) = A=p+a = — e

28
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Utilization, the logarithmic differentiation respect to z together for two sides of the relation
(3.9), we get

(p—-)z ¥ '(2) ( Ty A+ 1)f(Z))

S ¥@apra T P WY@ = oo
Multiplying by p_ia , we have
W [ Emenre) )
Y@+ 56 apre — e G )T e 2e- - G.10)

Combining relation (3.10) together with Lemma (2.1), for special case f = —(p — a), and
Yy =a—A—p, we get

1+Az
1+Bz

¥(2) < q1(2) <
where q; (z) is the best dominant to (3.10). The proof of part (i) of Theorem (3.1) is complete.
Proof (ii).From (1.9) in Definition (1.1) , we observe that

_ 2(T3™ D f(2) ’
] 'A'<p%a(_Re(< i 0re) )

1-|B T (Df(2)

In order to prove the left side of (3.6), we note that an application of subordination concept in

(1.9) yields

p—a

= su [—1 </1+ —a—Re( ! ))l

P =e\ TP 0@

_ i 1

i <A +p —a —infRe (Q(Z))> (3.11)

In this case, we shall to compute only inf,¢) Re (Q @ )) We have B # 0, therefore by (3.1), we

1 2(T ;'2"”(1#@ )'
—_ - — <

get

Q,(2)=(1+B 2)" fol w11 —uw) P11+ Buz)"du, (zel)

where
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C-IUD) | p=andy=B+1.

n:

Also since y > [ > 0, by successively utilizing (2.5)-(2.7) of Lemma (2. 3), we have

_r® Bz
Q1(2)= o) Fi(1,m,7, i1

) (3.12)

Moreover the condition A> =248

Other application of (2.5) in Lemma (2.3) to (3.12), gives
Ql(z):fol h(Z! u)dv(u)a

-1, with 0< B <1, implies that y>1n>0.

such that
1+Bz

h(Z, u) - 1+(1-u)Bz (

<u<1l
and

__ Iy n-1,14 _ \Y-1n—-1
dv(u) = roroem ¥ (1-uw du.

is positive measure on ue[0,1]. We note that Re [h(z,u)] > 0 and h( p,u) is real for 0< p < 1
and ue[0,1]. Hence, by Lemma(2. 2).

1 1
> <
Re {Q (z)} z o el=p <)
and
_ 1) . 1 L -1
inf,ey {%} = infzeyn e(-p) fol h(-1wdu  Q(-1)
A+p
_ _ 3.13
2F1(1,—(P "”);A_B);Ml;%) ( :

The right hand of inequality (3.6) follows from (3.13).The bound r;is sharp by principle
subordination. The proof is complete.

The following theorem gives inclusion relationship with regard to the parameter m of the class
Hy g (4. 4, B).
Theorem (3.2) Suppose that
A>—p,0<o<p,—-1<B<AL1

and,A4, B, t,p, a , satisfy

p(-t
144 a——F—

1+B pP—a

t>0. (3.14)

If f (2) € Hyyy (L A, B) and the function Q defined on U as following

—p —(P-a)(A-B)
fluT_1(1+Bzu 7(111 B#0

Q@) =4"° -p o o
Pt emr-onteen g 5=0
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then
p%a(_Z(;gd’"(gj‘];)) B a) = p%a[(a_ p(lt_t)) Q(Z)] = 4:(2) <135, G W
(3.16)
and q,(2) is the best dominant of (3. 16). Therefore
HYG™ (4 @ A, B) € HYY™ (4 o A, B) (3.17)
Proof. Let f € ]H]S“mﬂ(l; o; A, B)
Suppose that
W(z) = L( _Z(T,inﬁzl(a ON@) a) , (zell) (3.18)
p-a Tipe  (@c6)f(z)
Using the relation (1.6) in (3.18), we obtain
b = L ( t+6PT/1np1?+1(a,z‘,i)f(z)—%f]f;?(a,c,é‘) f@ a)
p—a T (a,c,8)f (2)
or equivalently
- - =2+ a = jﬁ?(a“g)m (3.19)

Topt  (@cd)f(2)
Utilizing the logarithmic differentiation of both sides of (3.19) with regard to z, we get

CRONXO) Tope (@ed)f @) 2@ @cd)f @) (3.20)
(r-o) 1/)(2)—+—6p+a T (a,c,8)f (2) T (a,c,8)f (2) '
Put (3.8) in (3.20), we obtain
V'(2) _ 1 2T (acdf @)’ B 1+Az
11)(2) + a0z )+t+8p - p—a( Tﬁ‘fg(a,cﬁ)f(z) a)) 1+Bz ( u)
Putp=—-(p—a),y +T§p — o and implicate Lemma (2.1), we obtain
1+Az

P(2) < qz(2) < T2
where the best dominant g,(z) is defined by (3.16). The proof is complete.

Next theorem gives the corresponding outcomes due to the parameter s.
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Theorem (3.3) (i) If f € H\"(A; &; A, B) and

1+A d-p+a

1B < pa (3.21)
then
1 ([ —zTpracd)r@) ) 1
p—a( T aeof@ ) p- ld-p+a ol = 5@ <15 e (22)
Where

1 34p—11+Buz ZP=d(A-B) _
Q) = J'0 utrre (1+Bz) °oodu B=0 (3.23)
fol urP=1 o= (P-a)Au-1z g, B =0
(-1<B<A<1,0<o0<p, 1> —p),
and q3(z) is the best dominant of (3.22). As a result of this
HW" (A, o A, B)  HE ™™ (A, «; A, B) (3.24)

(ii) Moreover if the additional restrict, 0 < B < 1 and

d—p+1> 2D (3.25)
are satisfied then

1-lAl 1 (L (2T (Df (@) ) B )

Py < p_a( Re (—;gm(@f&) al<rsz. (3.26)
where

1 d+p
= —{a— d) — . 2

T3 p—a{a (p + ) 2F1(1’(P—a)B(A—B);1_p_d;%)} (3 7)
The bound r3is the best possible.
Proof (i). Let f € H ;'™ (A, o; A, B)
Set

1 (~205q " Df @)
X(Z) - pTa( Snm(/l)f(z) - ) (328)

It is easy to show that y(z) is regular inll and y(0) = 1.

Using the identity (1.7) in (3.28), we get
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B _ _ Y H0r@
(p=ax@ - +p)+a = —=smors

Utilization, the logarithmic differentiation respect to z together for two sides of the relation
(3.29), we get

(3.29)

(-2 x (@) B _ —Z@g " F @)
—(p-o) x(z2)—(d-p)+a + (- )x(2) = Tod (D (@)
Multiplying by p_% , we have
zx'(2) 1 —Z(T;ﬂ’m(ﬂ)f(z))/ _ 1+Az
@)+ ~(p-) x(2)—(d+p)ta p—a( Tod (D (@) @) < Tpr(ZEW- (3:30)

Combining relation (3.30) with Lemma (2.1), for special case § = —(p —a),andy = a — (d +
p), we get

X(2) < q3(2) < T, (zE).

where q3 is the best dominant to (3.30). The proof of part (i) of Theorem (3.4) is complete.

Proof (ii). For the purpose to prove (3.26), we utilize the similar technique used before. Write

Qs(2) = (1+B2)" [ P~ (1 — u)’ P2 (1 + Buz) "du,  (zel)

BZ

rp)
= szl (Ln,y, BZ+1)' 0
where
= D) e —d—pandy=p+1.

P—a)(A—-B)

Moreover the condition d> ( +p-1, with 0<B<1, implies that y>1>0.

Again application of (2.7) in Lemma (2.3) to (3.31), gives

Qs(2)=f, h(z, w)dv(w),
such that

1+Bz
1+(1-u)Bz

h(z,u) = (0<u<l)

and

—_IB =111
dv(u) roroem Y (1-u) du.
Hence, by Lemma (2.2)

1 1
> <
Re {Q3 (Z)} T Q3(-p) (|Z| sp<D
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and
, 1, . 1 1 -1
inf,ey Re{Q3(Z)} = infzey Q3 (-1) fol h(-1w)du Q3 (-1)
_d_p
_ . 3.32
2r1(1E=04B),_gpi1; B (32

The right hand of inequality (3.26), follows from (3. 32).The bound 75 is sharp by principle
subordination. The proof of Theorem (3.4) is complete.
In this section, we derive some subordination results involving the operator 17;;;? ™)

4. Subordination results

Theorem (4.1) Let r € C*. Let q be convex univalent function in U such that q(0) = 1, with

2q"(2) 1
Re {1+ W} > max {0,—pARe (3)},r = 0. 4.1)
If feo,, satisfies the subordination
ST A D@+ T < q(D) +520(2), (42)
then
PToI V(D) < q(@) (4.3)

Proof: Define the function G by

G(@) = 2PTEM™(Vf (2) (44)
Differentiating (4.4) with respect to z, we get
2G (2)=2°2(Ty0" " (W f (@) + P 2PT8" (M f @). (4.5)
It follows from (1.8) and (4.5), that
2G' ()= 2PAT " (L + D (@) = A 2PTo8" (D f @). (4.6)

It follows from (4.4) and (4.6), that
TS0+ D (2) = % 2G' (2)+G(2).
From the subordination condition of (4.2), we have
p—r}\ zG (2)+G(2)< q@) + p—a zq (2) 4.7)
An applying of Lemma (2.5) to (4.7), withy = ;—/1 and Y =1, leadsto (4.3).
By specializing function for q (z), we obtain the following result.

Corollary (4.2) Letre C", -1 <B<A<1land
o < PARe ). (4.8)

|B|+1

1+Az r (A-B)z
1+Bz = pA(1+Bz)?’

ST A+ D@ + 2P T (D () < (4.9)
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then
1+Az
1+BZ

PTIIMF(2) <

and =22 is the best dominant of (4.10) m
1+Bz

1+A
Proof: Let q(2) = ﬁ, we see that

2q'(z) 1-|B|
1{6{1_4__ETZT} >,1+43r

Consequently

2q"(2) 1
Re {1+ ﬁ} > max{0, PARe (3)}.
By Theorem (4.1), we get
1+ Az
PTSIMDf(2) <

1+Bz"

Thus the following Corollary would be thru, when we suppose that q(z) = g .

Corollary (4.3) Letre C',p=A=1,B=—1and

Re G) >0
If feo, satisfies the subordination

I‘Zj];)s’é"m(k + 1)f(2) + (1 — r)zj})s'él.m(x)f(z) < E + r 2z

1-z A (1-2)?

then
1+z

2SO (D) < 22,

and 1—: is the best dominant m

(4, 10)

Theorem (4.4) Let r € C*. Let q be convex univalent function in U such that g(0) = 1, with

Re {1 + ZZ,;(ZZ))} > max {O, pd;i_rp Re G)},r # 0.

If feo, satisfies the subordination

(4.11)

rd(pd + d — rp)2P Ty (D f (2) + {1 — rd(pd + d — rp)ZP T ™ (ADf (2) < q(2) +

r(pd +d —rp)zq-(2), (4.12)
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then
PTIMF@) < q(2) .13)
Proof: Define the function p by
p(2) = 2PT, " (Df (2) (4.14)
Differentiating (4.14) with respect to z, we get
zp(2) = 2°2(T, " (Df () '+ PZPT "™ (D f (2). (4.15)

It follows from (1.7) and (4.15) and subordination condition of (4.12), we have
p@)+r(pd+d—rp)zp(2) < q(2) +r(pd +d —rp) zq (z) (4.16)
An applying of Lemma (2.5) to (4.16), with y = 2 and ¥ =1, leads to (4.13).

Taking q(z)= %, in Theorem (4.4), we obtain the following Corollary.

Corollary (4.5) Letre C", -1 <B<A<1land

|B|-1 1 1

|B]+1 < pd+d—rp ke (;) (4.17)
If feo, satisfies the subordination
rd(pd +d — rp)zpﬂ;;;l'"’m(/i)f(z) +{1—rd(pd +d — rp)}szIS)’Em(X)f(Z) <

1+Az (A-B)z
1vpz T T(pd+d—1p) (1+Bz)?

(4.18)

then
1+Az

1+Bz’

2T (D (@) < (4.19)

1+Az . .
and —— is the best dominant m
1+Bz

Corollary (4.6) Letr € C,p=A =1,B = —1 and (%) >0.

If feo, satisfies the subordination
rd(2d = )zT3;""(Df (@) + {1 - rd(2d — 0}2T"" (DS (2) <

1+z

2z
1-z

+r(2d - 1)

then
1+z

2T Df (@) < 22

1-z
and g is the best dominant m
Theorem (4.7) Let q(z)# 0 be univalent function in U such that q(0) = 1. Le tn € C*, a, beC
and a + b # 0. with

20’ @ 24
Re{1+ 4o-az }>0zeu (4.20)
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If feop, satisfies the next conditions

azP :r;'g'm A+Df@+bzPTy ™ (D f (2

L #0,zel.
a+b
az(T3 " A+ 1) f (@) +bz(Ty 7™ (D f () 2q-(2)
1 2 2 1 421
TP e G T @ i@ (@.21)
then
azPTp"d' (/1+1)f(z)+bzPTp"d‘ (ﬂ.)f(z)]T7 < q(Z), (4.22)

a+b

and q(z) is the best dominant.

Proof: Let us consider function P defined by

P(2) = [aszzf_'g‘m(/H1)f(z)+bzp7';“g'm(l) f@

a+b

Then P is a regular inU, P(0) = q(0) = 1.

Differentiating (4.23) logarithmically, we obtain
2P'@)_ az(Tyq ™" G+ Df () +b2(T; 4 ™" (Df ()
P al 3 M A DF@+bT ™ (S (2)

Setting
1
B(w) = 1and Y(w) = -
By observing that ¢p(w) is a regular in C and ¥y(w) # 0 is regular in C — {0}.
Moreover, we let
, 2q (2)
2):= 2q(z 7)) =
Q@)1= 24 @ Ya@) =~ >

and

h(2) = ¢(¢(@) + Q@) = 1+ Q(@).

From (4.20), we see that Q(z) is starlike univalent inU, and

Re (Zg((zz))) = Re (Zg(g)) = Re {1 + ZZ//(,(;) - z;;(zz))} >0,z

Using (4.24) in (4.21), we get

2P (2) <1+ 2q-(2)

1+ .
P q(2)

It is equivalent to

(P(2) + 2P Y(P(2) < $(q(@) + 24 (D (q(2)).
Hence by Lemma (2.5), we obtain

P(2) < q(2),(z€W).
And q(2) is the best dominant. The proof of Theorem (4.7) is complete.
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We obtain the following corollary by takinga = 0,b = 1 and q(z) =

Corollary (4.8) Let,—1 < B< A < 1andn € C". Let feo, and suppose that
T Df(2) # 0

If
2Ty " Df (@) (A-B)z
l+n(p+ S”m(z)f( ) <1+ (1+A4z)(1+Bz)’
then
pasnm 1+Az
[z T (ﬂ)f (Z)] 1+B7

and =22 is the best dominant m
1+Bz
Next, we choose the following special function

z
Ya,p @ = Tﬁ(z),

where

kop(2)=2z(1 —az) 2P z en,0<p<l,0<a<1.
We will therefore take q(z) as the following form

@) = (1-az)>tP.

Corollary (4.9).Let f(z) be univalent meromorphic starlike function in U* with 0 < a <1
and 0 < f <1, then

[z f(D]" < (1 — az)?(=A) (4.25)
Proof: From (4.21) in Theorem (4.7), we get

zf-(2) _
1+7 [1+f()] —2a(1 - f)

Hence, puttinga = 0,b=1,A=p=1,s =m=0and q(z) = (1 — az)*@ in Theorem

1-az’

(4.7), we get (4.25). The proof is completem

Corollary (4.10).Let f(z) be univalent meromorphic starlike function in U* with || < 1, then
[zf(D]" < e™, (4.26)

Proof: Put a =0,b=1,A=p=1,s =m = 0and q(z) = e in (4.21) of Theorem (4.7), to

obtain

zf(2)
f@

which is turn to give the target in (4.26). The proof is complete m

1+n[1+ ]<1+e”,
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5. Subordination and Electromagnetic Cloaking

In the field of defense and its applications, it is a matter of concealing things from the most
important issues and preventing the response of the electromagnetic spectrum, which leads to
unclear identity of the hidden body. Recent RCS studies discuss the hidden body's response to
electromagnetic radiation. Electromagnetic cloaking has aroused increasing interest in the
scientific community, especially amongst researchers who are developing so-called
metamaterials - artificial composites having exotic electromagnetic properties.

In the mathematical sense, the two-dimensional cloak and cloaked object can be considered
as simple connected regions in complex plane. Both regions are equivalent to conformal maps of
the unit circle according to Riemann Mapping Theorem. Let the function g(z) denote to the
cloaked object and by the function q(z) to the cloak then, we obtain

9(2) <a(@).
In Theorem (4.1), we consider the cloak function q(z) is a regular univalent convex function.

We know that a regular function q(z) maps open unit disk U on to convex region if and only if

2q'(2)
Re {1+ e }>0,(zew. 4] (5.1)

In formula (1.5), the rate of the change of the angle between the polar axis and tangent vector at
z=re®, 0<r<1,onf(|z] =7),as 0 <6 < 2m.

As per condition (4.2) in Theorem (4.1), and (4.12) in Theorem (4.4), we have the smallest
possible cloak q(z) for the cloak object g(z). Take a special cases of the Theorem (4.7), given in
the Corollary (4.9) and Corollary (4.10). Through, the data of function

ap(@) = (1—az)*P

and give special values for the parameters @ and  ,we see that the geometric properties as the
following below:

Alpha (o) Beta () q(z) Figure

No.

2 2 T 2 R s

3 3 1- §c059 —1 (§ sm@)

z : T

3 5 1- §c059 —1 (§ sm@)

5 s s 5 i 53

6 5 1- gcosé? —i (E szn@)
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Figure 5.1

Figure 5.2
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Figure 5.3

In Corollary (4.9), put n = land 8 = 0, we get the following cloak function
q(2)= (1 - az)?,
We can write the previous relation in another method
q(@) = (1 —ae®)?
=1+ a®cos26 — 2asinf + i(a’sin26 — 2asind)
U, = 1+ a?cos26 — 2acosh,
v, = 2a%cosfsinfd — 2asiné.

Thus the enclosed region (u,(0), v,(6)) in this case represents full cardioid symmetric with
respect to the real axis which means that the cloak is not a convex region.

Therefore, the function g(z) is a candidate for the representation of the hidden object and q(z)=
(1 — @z )? represents to smallest cloak function. These functions represent the following figure.
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2.5 T T T T T T T

0.5

-2 [

Figure 5.4

Finally, since the cloak depends on the hidden body and the rays reflected by the body may be
cloak for not containing all reflected rays so it is better to be a three-dimensional cloak.
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