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Abstract 

The aim of the study is to find exact solutions for focusing-defocusing NLS system by 

using the first integral method. This method depends on reciprocal algebra theory in 

getting an exact solution for nonlinear equations. Results show that the proposed method 

is effective and general. 

  

 المستخلص

باسخخذاو طزيقت انخكامم  (focusing-defocusing NLS system)انهذف مه دراسخىا هى ايجاد انحهىل انذقيقت نـ 

انىخائج بيىج ان هذي . هذي انطزيقت حعخمذ عهى وظزيت انجبز في انحصىل عهى حم دقيق نهمعادلاث غيز انخطيت. الاول

                                  .انطزيقت كفؤة وعامت

Key words: Exact solution; first integral method; theory of commutative algebra;        

focusing-defocusing NLS system. 

 

1.Introduction 
Most of the phenomena that arise in real world are described by nonlinear differential 

and integral equations. Nonlinear equations are widely used to describe complex physical 

phenomena in various fields of sciences, especially in fluid mechanics, solid state 

physics, plasma physics, plasma wave and chemical physics. Nonlinear equations also 

cover the cases of the following types: surface waves incompressible fluids, hydro 

magnetic waves in cold plasma, acoustic waves in inharmonic crystal, etc. However, they 

are usually very difficult to solve, either numerically or theoretically. An effective 

method is required to analyze the mathematical model that provides solutions conforming 

to physical reality. Wide variety of the powerful and direct methods to find all kinds of 

analysis solutions of nonlinear evolution equations have been developed such as the tanh 

function method [9], the extended tanh function method [10], the Jacobi elliptic function 

expansion method [7], the F-expansion method [4]  and so on. The first integral method 

is one of many methods that used to find the exact solution for some partial differential 

equation and this method is proposed by Feng [5] to obtain new exact solution for some 

of these equation such as [2, 3,8]. 

The main aim of this paper is to apply the first integral method to solve the focusing-

defocusing NLS system of nonlinear coupled one-dimensional partial differential 

equations. This system and the close form to it appear in many studies such as [1,6] and 

the references there  in. An important goal of the present work is to show that the 

efficiency and ability of the first integral method for finding new forms for the exact 
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solutions of nonlinear coupled one-dimensional partial differential equations of focusing-

defocusing NLS system. 

 

2.The first integral method 

Let us consider the nonlinear system of partial differential equations with independent 

variables x and t and dependent variables u and v : 

R1(u, v, ut  , vt  , ux , vx , utt  , vtt  , uxx , vxx , . . . )  =  0,               
R2(u, v, ut  , vt  , ux , vx , utt  , vtt  , uxx , vxx , . . . )  =  0.      (1) 

Applying the travelling wave solution transformation u(x, t)  =  f (ξ) and  

v x, t =  g(ξ), where   ξ =  x − ct, now, by using chain rule we get: 

∂

∂t
 .  = −c

d

dξ
 .  ,

∂

 ∂x
 .  =

d

dξ
 .  ,

∂2

∂x2
 .  =

d2

dξ2
 .  , … (2) 

 

Using  (2) into (1) to transfer the partial differential equations into ordinary differential 

equations (ODEs) as follows: 

T1 f, g, f ′ , g′ , …… .  = 0    ,         
T2 f, g, f ′ , g′ , ……  = 0                  (3)   

Where prime denotes the derivative with respect to the same variable    ξ. 

Make this system a single equation with one dependent variable of the second order, 

using the integration we have the equation as follows: 

 H f, f ′ , f ′′  = 0                     (4) 

We define new independent variables: 

X (ξ)  = f (ξ), Y (ξ)  = f ′(ξ)               (5) 
This leads to a system of ordinary differential equations:  

  
X′ ξ = Y ξ ,           

Y′ ξ = F(X ξ , Y ξ )
               (6)                                                                 

   Now, the division theorem which is based on ring theory of commutative algebra is 

adopted to obtain one first integral to(6), which reduces  4  to a first-order  integrable 

ordinary differential equation. Finally, an exact solution to (1) is established, through 

solving the resulting first-order integrable differential equation. 

 

Division Theorem: Suppose that P(w, z)  and Q(w, z) are polynomials of two variables 

w and z in complex domain C[w, z] and P(w, z) is an irreducible polynomial in C[w, z]. 
If Q(w, z) vanishes at all zero points of P(w, z), then there exists a polynomial G(w, z) in 

C[w, z] such as: 

 Q w, z = P(w, z)G(w, z) 
 

3. Exact solution for focusing-defocusing NLS system 

Let us consider the focusing-defocusing NLS system [6] as follows:                            

iut + uxx +   u 2 −  v 2 u = 0 ,     (7a) 

ivt + vxx +   u 2 −  v 2 v = 0        (7b) 

Assume that eq. (7) has traveling wave solutions in the form: 

u(x, t) = f(ξ)  ,        v(x, t) = g(ξ)         
where ξ = x − ct and c is a constant. By using (2) equations (7a) and (7b) become: 

−icf ′ ξ + f ′′  ξ +  f 2 ξ − g2 ξ  f ξ = 0   (8a) 
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−icg′ ξ + g′′  ξ +  f 2 ξ − g2 ξ  g ξ = 0  (8b) 

Suppose     α = −(f 2 ξ − g2 ξ ), this implies that: 

g ξ = ∓ f 2 ξ + α                        (9) 

Then, equation (8a) becomes:                                    

f ′′ (ξ)  = icf ′(ξ) + αf(ξ)               (10) 

Using (5) in (10), we obtain: 

X′(ξ)  = Y(ξ)                                 (11a) 

Y′  (ξ)  = icY(ξ)  + αX(ξ)            (11b) 
Now, we are applying the division theorem to seek the first integral method to equation 

(7). Suppose that X ξ  and Y ξ  are the nontrivial solutions to equations (11a) and 

(11b), and  

q X, Y =  ai X 

m

i=0

Yi = 0  

is an irreducible polynomial in the complex domain C[X, Y] such as: 

q X ξ , Y ξ  =  ai X Yi = 0

m

i=0

          (12) 

where ai x  i = 0,1, … , m  are polynomials of X and all relatively prime in C[X, Y], 
am (X) ≠ 0. Equation (12) is also called the first integral to (11). Assuming that m = 2, 

note that 
dq

dξ
   is a polynomial in X and Y, and q[X(ξ), Y(ξ)] = 0 implies 

dq

dξ
= 0, due to the 

division theorem, there exists a polynomial (g(X) + h(X)Y) in C[X, Y] such as: 

dq

dξ
=

∂q

∂X

∂X

∂ξ
+

∂q

∂Y

∂Y

∂ξ
=  g X + h X Y  ai X 

2

i=0

Yi      13  

Comparing the coefficients of Yi(i = 3,2,1,0) on both sides of equation (13), we get: 

a2
′  X = a2 X h X                       (14a) 

a1
′  X = a2 X g X + a1 X h X − 2ica2 X            (14b) 

a0
′  X = a1 X g X + a0 X h X − ica1 X − 2αa2 X X   (14c) 

αa1 X X = a0 X g X                    (14d) 

Since  a2(X) is polynomial of X, then from (14a)  we conclude that a2(X)  is constant 

and h(X)  = 0. To simplify, we take a2(X) = 1, and balance the degrees of g(X), a1(X) 

 and a0(X), we conclude that deg g(X) =  0 only. Now, we discuss this case:  

If deg g(X)  =  0, suppose that g(X) = A1, then we can find a1 X  and a0(X) ∶ 
a1 x =  A1 − 2ic X + B0              (15) 

a0 X = d +  A1B0 − icB0 X +
A1  

2 − 3icA1 − 2c2 − 2α

2
X2   (16) 

where B0 are arbitrary integration constants. By substituting a0(X) and g(X) in (14d) and 

setting all the coefficients of powers X to be zero, we obtain a system of nonlinear 

algebraic equations: 

2αA1 − 2icα =
A1  

3

2
−

3icA1  
2

2
− A1c2    (17a) 

αB0 = A1  
2 B0 − icB0A1                 (17b) 

A1d = 0                                         (17c) 

By solving the last algebraic equations, we obtain: 



The Proceedings of the 4
th

 Conference of College of Education for Pure Sciences 

______________________________________________________________________ 

62 

A1 = 0  ,                 α = 0         (18a) 

A1 = ic  ,      d = 0,      α = 0         (18b) 

By using the condition (18a) into (12), we obtain: 

Y ξ = icX ξ +
 B0  

2 −4d  −B0 

2
       (19a) 

Y ξ = icX ξ −
 B0  

2 −4d+B0

2
         (19b) 

By combining (19a) with (11), we obtain the exact solution to (10) as follows: 

f ξ = eic ξ+ξ0 +
i B0  

2 −4d−iB0

2c
       (20) 

By substituting (20) in (9), we get: 

g ξ = ∓(eic ξ+ξ0 +
i B0  

2 −4d−iB0

2c
) (21) 

where ξ0 is an arbitrary constant. Then the exact solution to eq. (7) can be written as: 

u x, t = eic(x−ct +ξ0) +
i B0  

2 − 4d − iB0

2c
      (22) 

v x, t = ∓(eic x−ct +ξ0 +
i B0  

2 −4d−iB0

2c
)    (23) 

Similarly, for (19b), the exact solution to (10) is: 

f ξ = eic(ξ+ξ0) −
iB0+i B0  

2 −4d

2c
          (24) 

By substituting (24) in (9), we get: 

g ξ = ∓ eic ξ+ξ0 −
iB0 + i B0  

2 − 4d

2c
   (25) 

 Then, the exact solution to eq. (7) can be written as: 

u x, t = eic x−ct +ξ0 −
iB0 + i B0  

2 − 4d

2c
 (26) 

v x, t = ∓ eic x−ct +ξ0 −
iB0 + i B0  

2 − 4d

2c
           (27) 

By using the condition (18b) in (12), we get: 

Y ξ = icX ξ − B0                         (28) 

By combining (28) with (13), we obtain the exact solution to (10) as follows: 

f ξ = eic(ξ+ξ0) −
iB0

c
                      (29) 

By substituting (29) in (9), we get: 

g ξ = ∓(eic(ξ+ξ0) −
iB0

c
)             (30) 

Then, the exact solution to eq. (8) can be written as: 

u x, t = eic(x−ct +ξ0) −
iB0

c
              (31) 

v x, t = ∓(eic(x−ct +ξ0) −
iB0

c
)        (32) 
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Conclusions: 

In this paper we introduce some new exact solutions to the focusing-defocusing NLS 

system in one dimension which obtained by using the first integral method and we can 

apply it to solve some nonlinear evolution equations. The key idea is using the travelling 

wave solution and by using the division theorem to solve nonlinear equations by using 

this method. It is worthwhile to mention that the method can be applied to solve some 

different phenomena and this method is very useful and important and easy at 

application. 
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