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Abstract 

The objective of this study is to learn how to analyse a system of nonlinear differential 

equations through the techniques of finding their steady states and determining their stability. 

Also,we learn how to identify the dimensionless groupings in the model in terms of dimensional 

parameters.  In addition, use Maple to solve some problems and plotting the figures, it is very 

useful.  Finally,the objective of this study is to investigate the quality of the effluent leaving the 

reactor and to investigate the biological reaction of the interaction. 
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1. Introduction 

A bioreactor can be defined as a system in which a chemical process is carried out 

usingorganisms or biochemically active substance. In our model, the state of a continuous flow 

bioreactor is described in terms of two variables, the concentrations of a microorganism and a 

growth limiting substrate. The bioreactor is a well-mixed vessel containing microorganisms (X) 

through which a substrate(S) flows at acontinuous rate (F).An equation for the product is not 

required unless the concentration of the product species appears in the growth rate law .We write 

down the model equations for non-competitive substrate inhibition. This model arises in a 

multiplicity of applications. 

1.1The dimensional model 

The model equations for the dimensional model are [Nelson,2008] 

𝑉 
𝑑𝑆

𝑑𝑡
=𝐹(𝑆0 − 𝑆) −

𝜇(𝑆)

𝛼𝑠
 𝑉𝑋,(1) 

𝑉 
𝑑𝑋

𝑑𝑡
 = 𝛽𝐹(𝑋0 − 𝑋) +  𝜇(𝑆). 𝑉𝑋 − 𝑉𝑘𝑑𝑋.(2) 

The specific growth rate is given by 

                   𝜇(𝑆) =
𝜇𝑚𝑆

𝐾𝑠+𝑆+
𝑆2

𝐾𝑖

  .                                                       (3) 

Residence time    τ = 
𝑉

𝐹
.(4) 

The variables S and X denote the concentration of the substrate and the microorganisms 

respectively. The initial conditions, S (0) and X (0) must be non-negative. We denote the 

concentration of the substrate (S) and the microorganism (X) by |𝑆| and |𝑋| respectively. 
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In these equations F is the flow rate through the bioreactor (𝑑𝑚3ℎ𝑟−1 ),𝐾𝑖  is the substrate 

inhibition constant (|𝑆|), S is the substrate concentration within the bioreactor (|𝑆|),𝑆0 is the 

concentration of substrate flowing into the reactor ( |𝑆|) , Vis the volume of the 

bioreactor(𝑑𝑚)3, X is the concentration of microorganisms within the bioreactor (|𝑋|)𝑋0is the 

concentration of microorganisms flowing into the reactor ( |𝑋|) , 𝑘𝑑  is the decay, or death, 

coefficient (ℎ𝑟−1), t is the time (ℎ𝑟−1), 𝛼 is the yield factor  (|𝑋||𝑆|−1), 𝜇is the specific growth 

rate model, 𝜇𝑚 is the maximum specific growth rate (ℎ𝑟−1), and (τ) is the residence time(ℎ𝑟). 

For a specific waste-water, a given biological community and a particular set of environmental 

conditions the parameters 𝐾𝑖 ,𝐾𝑠 ,𝑘𝑑 ,α and 𝜇𝑚𝑎𝑥 are fixed. The parameters that can be varied are 

𝑆0 , 𝑋0 and τ. In equations (1) & (2) the main experimental control parameter, i.e. the primary 

bifurcation parameter, is the residence time (τ). 

2. Preliminary calculations : In this section we scale the equations and then find a positively 

invariant region. Then we show that if the dimensionless death-rate is too high that all the micro-

organisms must die (lim
𝑡→∞

𝑋∗(𝑡∗) = 0). 

2.1Scaling the equations:By introducing dimensionless variables for the substrate concentration 

(𝑆∗=
𝑆

𝐾𝑠
), the cell mass concentration ((𝑋∗) =X/(𝛼𝑠𝐾𝑠)) and time (𝑡∗ = 𝜇𝑚𝑡), the system of 

differential equations (1) & (2) can be written in the dimensionless form 

𝑑𝑆∗

𝑑𝑡∗
 =
1

𝜏∗
 (𝑠0

∗ − 𝑠∗) −
𝑋∗𝑆∗

1+𝑆∗+𝛾𝑆∗
2, (5)   

𝑑𝑋∗

𝑑𝑡∗
 =
𝛽

𝜏∗
 (𝑋0

∗ − 𝑋∗) −
𝑋∗𝑆∗

1+𝑆∗+𝛾𝑆∗
2 − 𝑘𝑑

∗𝑋∗.(6)          
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Consider equation (1).Since        𝑆∗ =
𝑆

𝐾𝑠
⇨ 𝑆 = 𝑆∗𝐾𝑠 ∙ 

Thus         
𝑑𝑆

𝑑𝑡
 =
𝑑

𝑑𝑡
(𝑆∗𝐾𝑠)⇨

𝑑𝑠

𝑑𝑡
 =  𝐾𝑠

𝑑𝑆∗

𝑑𝑡
 ∙ 

In the originalequations Sis a function of (t) and in the scaled equations 𝑆∗will be a function of 

𝑡∗.Thus the last equation is really 

𝑑𝑠

𝑑𝑡
 =  𝐾𝑠

𝑑𝑆∗(𝑡∗)

𝑑𝑡
 . 

Note that 𝑆∗ 𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡∗. It is not a function of (t).Thus using the chain rule we obtain   

𝑑𝑠

𝑑𝑡
 =   𝐾𝑠

𝑑𝑆∗

𝑑𝑡∗
𝑑𝑡∗

𝑑𝑡
, 

𝑑𝑠

𝑑𝑡
 =   𝐾𝑠

𝑑𝑆∗

𝑑𝑡∗
𝑑𝜇𝑚𝑡

𝑑𝑡
, 

𝑑𝑠

𝑑𝑡
=   𝐾𝑠.𝜇𝑚.

𝑑𝑆∗

𝑑𝑡∗
∙ 

Consider equation (2). Since    𝑋∗ =
𝑋

(𝛼𝑠𝐾𝑠)
⇨ 𝑋 = 𝑋∗.(𝛼𝑠𝐾𝑠) 

𝑑𝑋

𝑑𝑡
=
𝑑

𝑑𝑡
(𝛼𝑠𝐾𝑠𝑋

∗). 

 = 𝛼𝑠𝐾𝑠
𝑑𝑋∗

𝑑𝑡
 . 

In the original equations X is a function of (t) and in the scaled equations 𝑋∗is a function of𝑡∗. 

Thus the last equation is real            
𝑑𝑋

𝑑𝑡
= 𝛼𝑠𝐾𝑠

𝑑𝑋∗(𝑡∗)

𝑑𝑡
. 

Note that 𝑋∗ 𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡∗. It is not a function of (t).Thus using the chain rule we obtain 

𝑑𝑋

𝑑𝑡
=  𝛼𝑠𝐾𝑠

𝑑𝑋∗

𝑑𝑡∗
𝑑𝑡∗

𝑑𝑡
, 
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          =𝛼𝑠𝐾𝑠
𝑑𝑋∗

𝑑𝑡∗
𝑑𝑡∗

𝑑𝑡
 , 

𝑑𝑋

𝑑𝑡
= 𝛼𝑠𝐾𝑠

𝑑𝑋∗

𝑑𝑡∗
𝑑𝜇𝑚𝑡

𝑑𝑡
 , 

=(𝛼𝑠𝐾𝑠)( 𝜇𝑚) 
𝑑𝑋∗

𝑑𝑡∗
 . 

Now, we substitute equation (3) into equation (1), to obtain   

𝑑𝑆

𝑑𝑡
 =
𝐹

𝑉
 (𝑆0 − 𝑆) −

𝜇𝑚 𝑆 𝑋

𝛼𝑠(𝐾𝑠+𝑆+
𝑆2

𝐾𝑖
)
. 

 We substitute   
𝑑𝑠

𝑑𝑡
  =   𝐾𝑠.𝜇𝑚.

𝑑𝑆∗

𝑑𝑡∗
    into this equation. 

We obtain            𝐾𝑠.𝜇𝑚.
𝑑𝑆∗

𝑑𝑡∗
=
𝐹

𝑉
 (𝑆0 − 𝑆

∗𝐾𝑠) −
   𝐾𝑠𝑆

∗𝑋∗𝛼𝑠  𝐾𝑠𝜇𝑚

𝛼𝑠(𝐾𝑠+𝑆∗𝐾𝑠+
(𝑆∗   𝐾𝑠 )

2

𝐾𝑖
)
 

⇨    𝐾𝑠.𝜇𝑚
𝑑𝑆∗

𝑑𝑡∗
=
(𝑆0−𝑆

∗𝐾𝑠)

τ
–

𝑆∗𝑋∗   𝐾𝑠𝜇𝑚

(1+𝑆∗ +
   𝐾𝑠𝑆

∗2

𝐾𝑖
)

 

⇨            
𝑑𝑆∗

𝑑𝑡∗
=
(𝑆0 − 𝑆

∗𝐾𝑠)

   𝐾𝑠. 𝜇𝑚τ
–

𝑆∗𝑋∗   𝐾𝑠𝜇𝑚

   𝐾𝑠. 𝜇𝑚(1 + 𝑆∗  +
   𝐾𝑠𝑆∗

2

𝐾𝑖
)

 

𝑑𝑆∗

𝑑𝑡∗
=
   𝐾𝑠(

𝑆0
 𝐾𝑠
 − 𝑆∗)

   𝐾𝑠. 𝜇𝑚τ
   −

𝑆∗𝑋∗   𝐾𝑠𝜇𝑚

   𝐾𝑠. 𝜇𝑚(1 + 𝑆∗  +
   𝐾𝑠𝑆∗

2

𝐾𝑖
)

 , 

𝑑𝑆∗

𝑑𝑡∗
 =
(
𝑆0
 𝐾𝑠
 −𝑆∗)

𝜇𝑚τ
–

𝑆∗𝑋∗

(1+𝑆∗ +
   𝐾𝑠𝑆

∗2

𝐾𝑖
)

 ,(a)  

𝑑𝑆∗

𝑑𝑡∗
 = 

1

𝜏∗
 (𝑠0

∗ − 𝑠∗) −
𝑋∗𝑆∗

1+𝑆∗+𝛾𝑆∗
2  ∙ (b) 
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 Comparing equation (a) and equation (b), we find that𝑠0
∗ =

𝑠0

   𝐾𝑠
,  𝜏∗ = 𝜇𝑚τ ,    

 𝛾 =   
   𝐾𝑠
𝐾𝑖
 ∙  

Now, we substitute equation (3) into equation (2), to obtain 

𝑑𝑋

𝑑𝑡
 = 

F β

  𝑉 𝐾𝑠
 (𝑋0 − 𝑋) +

𝜇𝑚𝑆𝑋

𝐾𝑠+𝑆+
𝑆2

𝐾𝑖

− 𝑉𝑘𝑑𝑋 ∙ 

We now substitute  
𝑑𝑋

𝑑𝑡
 =(𝛼𝑠𝐾𝑠)( 𝜇𝑚) 

𝑑𝑋∗

𝑑𝑡∗
  into the above equation .We obtain 

   𝐾𝑠.𝜇𝑚.𝛼𝑠
𝑑𝑋∗

𝑑𝑡∗
=
 β

𝜏
(𝑋0 − 𝑋𝛼𝑠𝐾𝑠) −

   𝐾𝑠𝑆
∗𝑋∗𝛼𝑠  𝐾𝑠𝜇𝑚

𝛼𝑠(𝐾𝑠+𝑆∗𝐾𝑠+
(𝑆∗   𝐾𝑠 )

2

𝐾𝑖
)
 -𝑘𝑑𝛼𝑠𝐾𝑠𝑋

∗, 

𝑑𝑋∗

𝑑𝑡∗
=

 β

𝜏 𝜇𝑚
(
𝑋0

𝛼𝑠𝐾𝑠
− 𝑋∗) + 

𝑆∗𝑋∗

(1+𝑆∗ + 
   𝐾𝑠𝑆

∗2

𝐾𝑖
)

− 
𝑘𝑑

𝐾𝑖
𝑋∗,(c) 

𝑑𝑋∗

𝑑𝑡∗
 =
𝛽

𝜏∗
 (𝑋0

∗ − 𝑋∗) −
𝑋∗𝑆∗

1+𝑆∗+𝛾𝑆∗
2 − 𝑘𝑑

∗𝑋∗.(d) 

Comparing equation(c) and equation (d), we find that 

𝑋0
∗=

𝑋0

𝛼𝑠𝐾𝑠
 , 𝑘𝑑

∗ =
𝑘𝑑

𝐾𝑖
. 

In these equations 𝑆0
∗
is the dimensionless substrate concentration in the feed [𝑠0

∗ =
𝑠0

   𝐾𝑠
 ] ,𝑋0

∗ is 

the dimensionless cell mass concentration in the feed [𝑋0
∗=

𝑋0

𝛼𝑠𝐾𝑠
],𝑘𝑑

∗
is the dimensionless decay 

coefficient [𝑘𝑑
∗ =

𝑘𝑑

𝐾𝑖
], 𝛾 is the dimensionless substrate inhibition constant [𝛾 =   

   𝐾𝑠

𝐾𝑖
], and 𝜏∗is 

the dimensionless residence time [𝜏∗ = 𝜇𝑚τ ]  . 
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The main experimentally controllable parameter is the dimensionless residence time. From now 

on we make a standard assumption that the growth medium fed into the bioreactor is sterile, i.e. 

there are no microorganisms in the influent (𝑋∗ = 𝑋0
∗=0). 

2.2 An invariant region for the model 

Definition:  A domain Ʃ is called invariant for a system of differential equations if for each  x in 

Ʃ, the solution of the differential equation with initial condition  x(0) = x  is defined and 

remains in the domain Ʃ for all time  t ≥ 0,[Britton, 1986], [Nelson et. al, 2008]. 

The region (R)bounded by   

                                               0≤ 𝑆∗≤ 𝑆0
∗
,𝑋∗ 𝑆0

∗
 

   0≤𝑋∗,𝑆∗ 

is(positively) invariant for system 5. 

We must prove confirm that f.n=�̇� .n ˂0 along the three sides of the invariant region and check 

the direction of the vector at the two corner points of the invariant region  

Edge (1): Consider the edge 𝑆∗ = 0with 𝑋∗ > 0(The case (𝑆∗,𝑋∗) = (0, 0) is point one). The unit 

outward normal is the vector (-1, 0) and we have  

𝑓(𝑆∗,𝑋∗).𝑛(𝑆∗,𝑋∗) =(
𝑑𝑆∗

𝑑𝑡∗
,
𝑑𝑋∗

𝑑𝑡∗
) . (−1,0), 

= −(
𝑑𝑆∗

𝑑𝑡∗
), 
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= −
1

𝜏∗
 (𝑠0

∗ − 𝑠∗) +
𝑋∗𝑆∗

1+𝑆∗+𝛾𝑆∗
2 , 

= −
𝑠0
∗

𝜏∗
                       as𝑆∗=0 along edge 1, 

< 0,                        As𝑆0
∗
>o and 𝜏∗ > 0. 

Edge (2):Consider the edge  𝑋∗ = 0 with 0≤ 𝑆∗ ≤ 𝑆0
∗
(the cases (𝑆∗,𝑋∗) = (0, 0) and 

(𝑆∗,𝑋∗) =(𝑆0
∗
, 0) correspond to points one and two respectively). The unit outward normal is the 

vector (0,-1) and we have  

𝑓(𝑆∗,𝑋∗).𝑛(𝑆∗,𝑋∗)= ( 
𝑑𝑆∗

𝑑𝑡∗
,
𝑑𝑋∗

𝑑𝑡∗
). (0 , −1), 

= −
𝑑𝑋∗

𝑑𝑡∗
 , 

= −
𝛽

𝜏∗
 (−𝑋∗) +

𝑋∗𝑆∗

1+𝑆∗+𝛾𝑆∗
2 + 𝑘𝑑

∗𝑋∗, 

=
𝛽𝑋∗

𝜏∗
+

𝑋∗𝑆∗

1+𝑆∗+𝛾𝑆∗
2 + 𝑘𝑑

∗𝑋∗, 

 = 0,as (𝑋∗ =0 along edge 1). 

Note that we cannot apply the lemma because 𝑓 . 𝑛^ = 0. 

Note, when 𝑋∗ =0 system (5) reduces to 

𝑑𝑆∗

𝑑𝑡∗
 = 

1

𝜏∗
 (𝑠0

∗ − 𝑠∗)      and        
𝑑𝑋∗

𝑑𝑡∗
  =0. 
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The solution of this system of differential equations moves along the edge 𝑋∗ =0 to the steady –

state solution (𝑆∗,𝑋∗) = (𝑆0
∗
, 0) without leaving the invariant region .Note that the line  𝑋∗ =0 is 

itself invariant. 

Edge (3): Consider the edge 𝑆∗=𝑆0
∗
with 𝑋∗>0 (the case (𝑆∗,𝑋∗)=(𝑆0

∗
, 0) is point two).  

The unit outward normal is the vector (1, 0) and we have  

𝑓(𝑆∗,𝑋∗).𝑛(𝑆∗,𝑋∗)= ( 
𝑑𝑆∗

𝑑𝑡∗
,
𝑑𝑋∗

𝑑𝑡∗
).(1,0), 

=
𝑑𝑆∗

𝑑𝑡∗
, 

                                 = 
1

𝜏∗
 (𝑠0

∗ − 𝑠∗) −
𝑋∗𝑆∗

1+𝑆∗+𝛾𝑆∗
2 , 

 =−
𝑋∗𝑆∗

1+𝑆∗+𝛾𝑆∗
2,       as  𝑆0

∗ = 𝑆∗ along edge 3, 

<0 , as 𝑆0
∗
>0 and 𝑋∗ > 0along edge 3. 

Point (1):Aunit outward normal along the invariant region is not defined at the point (𝑆∗,𝑋∗) = 

(0, 0). At this point system (5) reduces to 

𝑑𝑆∗

𝑑𝑡∗
 = 
𝑠0
∗

𝜏∗
> 0          ;                

𝑑𝑋∗

𝑑𝑡∗
  = 0 . 

The solution trajectory at the point (𝑆∗,𝑋∗) = (0, 0) therefore points along the invariant region. 

Point (2): A unit outward normal along the invariant region is not defined at the point at the 

point (𝑆∗,𝑋∗) = (𝑆0
∗
, 0).This point is a steady- state solution of system (5). Consequently no 
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solution can leave the invariant region through this point.We have therefore shown that the 

invariant region (R) is (positively) invariant. 

2.3 Death takes us all  

We show that the solution of system (5) converges to the steady-state (𝑆∗,𝑋∗) = (𝑆0
∗
, 0) if 𝑘𝑑

∗
≥1. 

Proof:  

Let𝑋∗ = 𝑋1
∗
. 

Then 
𝑑𝑋1

∗

𝑑𝑡∗
 = (−

𝛽𝑋1
∗

𝜏∗
) +

𝑋1
∗𝑆∗

1+𝑆∗+𝛾𝑆∗
2 − 𝑘𝑑

∗𝑋1
∗. 

If 𝑘𝑑
∗
≥1 then 𝒮 =  𝑘𝑑 −

𝑆∗

1+𝑆∗+𝛾𝑆∗
2 > 0. 

Since       
𝑑𝑋1

∗

𝑑𝑡∗
<−

𝛽𝑋1
∗

𝜏∗
− 𝒮𝑋1

∗ 

                          =− 𝛾𝑋1
∗, 

where 𝛾 =
𝛽

𝜏∗
+ 𝒮>0. 

Hence 𝑋1
∗(𝑡∗) ≤ 𝑋^∗𝑒−𝛾𝑡, 

where   𝑋^∗ is the initial condition. 

Hence as   t →∞    ⇨𝑋1
∗(𝑡∗) →0. 

If  𝑋∗ →0 for 𝑡∗»1         

then  
𝑑𝑆∗

𝑑𝑡∗
≅ 

1

𝜏∗
 (𝑠0

∗ − 𝑠∗)⇨𝑠∗→𝑠0
∗. 
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This solution (𝑆∗,𝑋∗) = (𝑆0
∗
, 0)  is known as the (washout steady-state solution) because the 

steady-state value of the microorganism concentration is zero. As microorganisms do not flow 

into the reactor ( 𝑋0
∗=0) this means that all the original microorganisms present in the system 

have been literally “washed-out” .In practical applications, we want to avoid this solution.  

3. Steady-state solutions 

In this section we find the physically meaningful steady-state solutions of the model. 

The steady state solutions of (5) and (6) are found by putting the time derivatives equal to zero 

and solving the resulting set of equations, 

1

𝜏∗
 (𝑆0

∗ − 𝑆∗) −
𝑋∗𝑆∗

1+𝑆∗+𝛾𝑆∗
2 =0                                                   (7) 

𝛽

𝜏∗
 (𝑋0

∗ − 𝑋∗) −
𝑋∗𝑆∗

1+𝑆∗+𝛾𝑆∗
2 − 𝑘𝑑

∗𝑋∗ =0                                       (8) 

⇨𝑋∗ [−
𝛽

𝜏∗
−

𝑆∗

1+𝑆∗+𝛾𝑆∗
2 − 𝑘𝑑

∗] = 0                                           (9) 

Looking at equation (9) we find that there two solution branches. One of these corresponds to 𝑋∗ 

= 0 whilst the other corresponds to  
𝛽

𝜏∗
−

𝑆∗

1+𝑆∗+𝛾𝑆∗
2 − 𝑘𝑑

∗
=0. We consider these two cases 

separately. First, we consider the case 𝑋∗ = 0, which is known as the “washout branch”.  

3.1 Washout branch 

Let  𝑋∗ = 0. Therefore, from equation (7) we have  

1

𝜏∗
 (𝑆0

∗ − 𝑆∗) = 0, 
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⇨  (𝑆0
∗ − 𝑆∗) = 0, 

⇨𝑆∗ = 𝑆0
∗
. 

Therefore, the steady-state solution for the washout branch is 

 (𝑆∗, 𝑋∗) =(𝑆0
∗, 0)                                                             (10) 

The “washout” state is so-named because the steady-state value of the cell mass concentration is 

zero. As new cell mass does not flow into the reactor(𝑋0
∗) = 0, this means that all the original 

cell mass present in the system has been literally “washed-out” of the reactor. 

 

3.2 No-washout branch 

Now, we consider the second case. This is known as “no-washout solution”. This corresponds to 

𝛽

𝜏∗
−

𝑆∗

1+𝑆∗+𝛾𝑆∗
2 − 𝑘𝑑

∗
=0, 

⇨
𝑆∗

1+𝑆∗+𝛾𝑆∗
2 =

𝛽

𝜏∗
 + 𝑘𝑑

∗
, 

⇨𝑆∗=( 1 + 𝑆∗ + 𝛾𝑆∗
2
)(
𝛽

𝜏∗
 + 𝑘𝑑

∗
), 

⇨𝑆∗
2
[𝛾(𝑘𝑑

∗𝜏∗ + 𝛽 )] -𝑆∗([𝑘𝑑
∗ − 1]𝜏∗ − 𝛽) + (𝑘𝑑

∗𝜏∗ + 𝛽 ) =0. 

 Let   𝐺(𝑠^
∗
) = a𝑠^

∗2
+b𝑠^

∗
+𝑐 = 0. 

Where𝑠^
∗
 is a root of the equation (G). 
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The coefficients   a, b and c are defined by 

a =  𝛾(𝑘𝑑
∗𝜏∗ + 𝛽), 

                                      b=−[(1 − 𝑘𝑑
∗) 𝜏∗ − 𝛽], 

                                       c =(𝑘𝑑
∗𝜏∗ + 𝛽). 

   So,      𝑠^
∗
=
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 ∙ 

From equation (7), we have that           
1

𝜏∗
 (𝑠0

∗ − 𝑠∗) =
𝑋∗𝑆∗

1+𝑆∗+𝛾𝑆∗
2                 (11) 

From equation (8), we have that           
𝛽

𝜏∗
𝑋∗ + 𝑘𝑑

∗𝑋∗ =
𝑋∗𝑆∗

1+𝑆∗+𝛾𝑆∗
2  ∙(12) 

 By equating (11) and (12) we have that  

1

𝜏∗
 (𝑆0

∗ − 𝑆∗)=
𝛽

𝜏∗
𝑋∗ + 𝑘𝑑

∗𝑋∗, 

⇨𝑥∗ =
𝑆0
∗−𝑆∗

𝛽+𝜏∗𝑘𝑑∗
 . 

Now, we substitute  𝑆∗^ = 𝑆∗ , we have that 

𝑥∗ =
𝑆0
∗− 𝑆∗

^

𝛽+𝜏∗𝑘𝑑∗
 . 

Therefore, the steady-state solution for “no-washout branch “is 

                                    (𝑠∗, 𝑥∗) =  ( 𝑠∗^,
𝑠0
∗− 𝑠∗

^

𝛽+𝜏∗𝑘𝑑∗
 ) ∙ 
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Note: The no-washout solution branch will not exist for all values of 𝑘𝑑∗ and all values of 

𝜏∗because the no-washout branch is physically meaningful only when the substrate and cell mass 

concentrations are positive.We want 𝑠^
∗
> 0. 

We consider the case 𝛽 = 1. 

Recall that 𝛽^
∗
=
−𝛽±√𝛽2−4𝛽𝛽

2𝛽
,    

since𝛽 > 0, 𝛽 > 0     ,𝛽 < 0     

where         a =  𝛽(𝛽𝛽
∗𝛽∗ + 1), 

                                      b = −[(1−𝛽𝛽
∗) 𝛽∗ − 1] ,   

                                       c =(𝛽𝛽
∗𝛽∗ + 1). 

The no-washout branch will be not be physically meaningful when 

𝛽2 − 4𝛽𝛽 < 0(*) 

By substituting a, b, c into (*) we obtain 

𝛽 = 𝛽2 − 4𝛽𝛽 = 𝛽1𝛽
∗2 +𝛽1𝛽

∗ +𝛽1 

Where   𝛽1 = [1− 2𝛽𝛽
∗ +𝛽𝛽

∗2(1− 4𝛽)], 

𝛽1 = 2[𝛽𝛽
∗(1− 4𝛽) − 1], 

𝛽1 = (1− 4𝛽) 
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By solving the(H) equation, we find the roots𝜏∗ =
−𝛽1±√𝛽1

2−4𝛽1𝛽1

2𝛽1
where H=0. 

After some algebra we find that  √𝛽1
2 − 4𝛽1𝛽1  = 4√𝛽 . 

So,𝛽∗ =
−𝛽1±4√𝛽

2𝛽1
 . 

Hence, 
−𝛽1−4√𝛽

2𝛽1
< 𝛽∗ <

−𝛽1+4√𝛽

2𝛽1
⇨𝛽∗− < 𝛽∗ < 𝜏∗+ 

So, 0 < 𝛽∗ < 𝛽∗+     with    0 < 𝛽𝛽
∗ < 1. 

 The solution is physically meaningful when  𝛽∗ > 𝛽∗+ . 

The limit point function: At a limit point bifurcation of the singularity function (𝛽) satisfies the 

set of the equations 𝛽 = 𝛽𝛽 = 0, 

and the inequalities   𝛽𝛽𝛽 ≠ 0 ,   𝛽𝛽 ≠ 0   . 

Since     𝛽 = 𝛽𝛽^∗2 +𝛽 𝛽^∗ +𝛽 = 0, 

We have  𝛽𝛽 = 2𝛽𝛽^∗ +𝛽. 

Then   𝛽𝛽 = 0 ⇨ 𝛽^∗ =
−𝛽

2𝛽
 .Hence  𝛽 = 0 ⇨ 𝛽𝛽 = 𝛽^∗2𝛽𝛽

∗ −𝛽^
∗
(1− 𝛽𝛽

∗) ,  with 𝛽^∗ =

−𝑏

2𝛽
 

Since 𝛽^∗ > 0,  0 < 𝛽𝛽
∗ < 1⇨𝛽𝛽 ≠ 0, 

By substituting 𝛽^∗ =
−𝛽

2𝛽
   into (𝛽)  we find  𝛽 =

−𝛽2

4𝛽
+𝛽, 
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Thus there is a limit point bifurcation at the point (𝛽^∗,𝛽∗+). 

Figure (1): 

 

              UNSTABLE                        STABLE 

 

Figure (1): Substrance concentration in an ideal bioreactor as a function of residence time. 

Parameter values: 𝛽0
∗ = 1, 𝛽𝛽

∗ = 0.1 .Figure (1) shows the substrate concentration in an ideal 

bioreactor (S).The physically meaningful solution (𝛽∗ ≤ 𝛽0
∗ = 1)decreases with increasing 

residence time (tau). This sketch contains one bifurcation point which is limit point. 

By superimposing the washout steady-state solution (𝛽∗ = 𝛽0
∗)upon the solution curve for 𝛽 =

0 we find that there three generic steady-state diagrams that we need to consider.  
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 The figure (1) contains two branches. The first branches corresponds to positive 

value and the second branches correspond to negative value in the quadratic formula. 

We have 𝛽^
∗
=
−𝛽±√𝛽2−4𝛽𝛽

2𝛽
     where   a =  𝛽(𝛽𝛽

∗𝛽∗ + 1) > 0, 

 b = −[(1−𝛽𝛽
∗) 𝛽∗ − 1]<0, 

 c =(𝛽𝛽
∗𝛽∗ + 1)>0. 

We must factorise √𝛽2 − 4𝛽𝛽to find the sign of root, 

√𝛽2 − 4𝛽𝛽  =√( −[(1−𝛽𝛽
∗) 𝛽∗ − 1])2 − 4𝛽(𝛽𝛽

∗𝛽∗ + 1)2   = 

√([((1−𝛽𝛽
∗) 𝛽∗ − 1) − 2𝛽

1
2(𝛽𝛽

∗𝛽∗ + 1)][((1−𝛽𝛽
∗) 𝛽∗ − 1) + 2𝛽

1
2(𝛽𝛽

∗𝛽∗ + 1)] 

The first factor  ((1−𝛽𝛽
∗) 𝛽∗ − 1) + 2𝛽

1

2(𝛽𝛽
∗𝛽∗ + 1)  is a positive when((1−𝛽𝛽

∗) 𝛽∗ −

1) > 0 ⇨ 𝛽∗ >
1

(1−𝛽𝛽
∗)

 . 

The second factor (((1−𝛽𝛽
∗) 𝛽∗ − 1) − 2𝛽

1

2(𝛽𝛽
∗𝛽∗ + 1)) will be that      

if (((1−𝛽𝛽
∗) 𝛽∗ − 1) − 2𝛽

1

2(𝛽𝛽
∗𝛽∗ + 1))<0 ⇨ don’t have S.S 

if([((1−𝛽𝛽
∗) 𝛽∗ − 1) − 2𝛽

1

2(𝛽𝛽
∗𝛽∗ + 1)]> 0⇨have S.S  

Hence |𝛽| > √𝛽2 − 4𝛽𝛽  , 

Then, if    b >0 ⇨ we have two positive solution, with[|𝛽| − 2√𝛽𝛽] > 0; 
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 if    b <0⇨ we have two negative solution ,with [|𝛽| − 2√𝛽𝛽] > 0. 

 

Limit point 𝛽^
∗
=
−𝛽+√𝛽2−4𝛽𝛽

2𝛽
,+ve, UNSTABLE𝛽^

∗
=

−𝛽−√𝛽2−4𝛽𝛽

2𝛽
  ,-ve,STABLE 

 

Along the branch of the no-washout solution which is a negative sign, we have                                        

𝛽𝛽∗

𝛽𝛽∗
< 0 , 

Since    𝛽∗=𝛽^
∗
=
−𝛽−√𝛽2−4𝛽𝛽

2𝛽
     where   a =  𝛽(𝛽𝛽

∗𝛽∗ + 1) > 0 

                                                        b = −[(1−𝛽𝛽
∗) 𝛽∗ − 1]<0  

                                                        c =(𝛽𝛽
∗𝛽∗ + 1)>0 

to derivative𝛽∗  for 𝛽∗  ,we obtain with using MAPLE  
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𝛽𝛽∗

𝛽𝛽∗
=  

<0 ,  

 

Note: this result need more time to prove it’s. 

 

Where𝛽𝛽 = 𝛽𝛽
∗,    𝛽 = 𝛽∗,    𝛽 = 𝛽, 

 

Thus, the substrate concentration is a decreasing function of the residence time. It follows from 

the relationship (𝛽∗,𝛽∗) =  ( 𝛽∗
^
,
𝛽0
∗− 𝛽∗

^

𝛽+𝛽∗𝛽𝛽∗
 ) that the microorganism’s concentration is an 

increasing function of the residence time. 

4. Physically meaningful solutions 

As noted earlier, the quantities 𝛽∗,𝛽∗  are related to the concentrations of the substrate and 

microorganisms within the reactor. These quantities cannot be negative. Consequently, we are 

only interested in “physically meaningful” steady-state solutions. That is to say, we are only 

interested in steady-state with    

𝛽∗ > 0,𝛽∗ > 0. 
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There is a critical value of the residence time,𝛽𝛽𝛽
∗ , such that 𝛽∗ > 𝛽𝛽𝛽

∗  that “no-washout 

solution” becomes physically meaningful,  

 Since 𝛽𝛽𝛽
∗ =

−𝛽1+4√𝛾

2𝛽1
  = 4.285714286, 

Since,the no-washout solution has been the physical unmeaningful with0 < 𝛽∗ <

𝛽𝛽𝛽
∗ ⇨𝛽∗ <4.285714286 

So, the no-washout solution has been the physical meaningful when𝛽∗ > 𝛽𝛽𝛽
∗ . 

5. Stability of the steady state solutions 

The stability of the steady state solutions for the system composing equations (5) and (6) are 

determined by the eigenvalues of Jacobin matrix evaluated at the steady state 

solution(𝛽𝛽
∗ ,𝛽𝛽

∗ ).The Jacobin matrix is defined by  

 

𝛽(𝛽∗,𝛽∗) = [
𝛽𝛽∗(𝛽

∗,𝛽∗) 𝛽𝛽∗(𝛽
∗,𝛽∗)

𝛽𝛽∗(𝛽
∗,𝛽∗) 𝛽𝛽∗(𝛽

∗,𝛽∗)
]. 

The eigenvalues,of the Jacobian matrix are defined by  

|𝛽−𝛽𝛽| = 0 ⇨ 𝛽2 − (𝛽𝛽𝛽)𝛽+ det𝛽 = 0, 

where (𝛽𝛽𝛽)  is the trace of the Jacobinmatrix [𝛽𝛽𝛽 = 𝛽𝛽 +𝛽𝛽] and det𝛽  is the 

determinant of the Jacobin matrix [det𝛽 =𝛽𝛽 ×𝛽𝛽 −𝛽𝛽 ×𝛽𝛽].The steady state is stable if 

the real part of all eigenvalues is less than zero. This is true provided that(𝛽𝛽𝛽) <

0  𝛽𝛽𝛽 det𝛽 > 0.  

It is unstable if either (𝛽𝛽𝛽) > 0  𝛽𝛽𝛽/𝛽𝛽  (det𝛽) < 0. 
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The Jacobian matrix for the system (1.5) and (2.5) is given by 

𝛽(𝛽∗,𝛽∗) =

[
 
 
 
 
 −

1

𝛽∗
−

𝛽∗(1− 2𝛽𝛽∗
2

)

(1+𝛽∗ +𝛽𝛽∗
2
)2

−𝛽∗

1+𝛽∗ +𝛽𝛽∗
2

𝛽∗(1− 2𝛽𝛽∗
2

)

(1+𝛽∗ +𝛽𝛽∗
2
)2

       −
𝛽

𝛽∗
+

𝛽∗

1+𝛽∗ +𝛽𝛽∗
2
−𝛽𝛽∗

]
 
 
 
 
 

 

5.1 Stability along the washout branch 

Evaluating, the Jacobian matrix along the washout branch we obtain  

𝛽(𝛽0
∗, 0) = [

−
1

𝛽∗

−𝛽0
∗

1+𝛽0
∗+𝛽𝛽0

∗2

0        −
𝛽

𝛽∗
+

𝛽0
∗

1+𝛽0
∗+𝛽𝛽0

∗2
−𝛽𝛽∗

]. 

The characteristic equation for the determinate is given by : 

(−
1

𝛽∗
−𝛽) (−

𝛽

𝛽∗
+

𝛽0
∗

1+𝛽0
∗+𝛽𝛽0

∗2
−𝛽𝛽∗ −𝛽) = 0. 

Hence, the eigenvalues are: 

𝛽1 = −
1

𝛽∗
    and   𝛽2 = −

𝛽

𝛽∗
+

𝛽0
∗

1+𝛽0
∗+𝛽𝛽0

∗2
−𝛽𝛽∗. 

It is clearly that   𝛽1 < 0 , what about 𝛽2?  When is 𝛽2 negative? 

 

 𝛽2 = −
𝛽

𝛽∗
+

𝛽0
∗

1+𝛽0
∗+𝛽𝛽0

∗2
−𝛽𝛽∗ < 0 

Note that 
𝛽0
∗

1+𝛽0
∗+𝛽𝛽0

∗2
< 1 

It follows that the washout branch is always stable if: 
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1. 𝛽𝛽∗ ≥
𝛽0
∗

1+𝛽0
∗+𝛽𝛽0

∗2
 , 0 < 𝛽 ≤ 1 

2. 𝛽𝛽∗ >
𝛽0
∗

1+𝛽0
∗+𝛽𝛽0

∗2
with 𝛽 = 0 . 

3. 𝛽𝛽∗ <
𝛽0
∗

1+𝛽0
∗+𝛽𝛽0

∗2
   the washout steady-state is stable provided : 

𝛽

𝛽∗
>

𝛽0
∗

1+𝛽0
∗+𝛽𝛽0

∗2
−𝛽𝛽∗    𝛽𝛽𝛽 0 < 𝛽 ≤ 1. 

𝛽

𝛽∗
>

𝛽0
∗−(1+𝛽0

∗+𝛽𝛽0
∗2)𝛽𝛽∗  

1+𝛽0
∗+𝛽𝛽0

∗2
, 

𝛽∗ <
𝛽 (1 +𝛽0

∗ +𝛽𝛽0
∗2)

𝛽0
∗ − (1+𝛽0

∗ +𝛽𝛽0
∗2)𝛽𝛽∗  

  . 

5.2 Stability along the no- washout branch: The Jacobian matrix along the No-washout branch 

is given by  

𝛽(𝛽∗,𝛽∗) =

[
 
 
 
 
 
−

1

𝛽∗
−
(𝛽0

∗ −  𝛽∗
^
)

(1+𝛽∗𝛽𝛽
∗)

(1− 2𝛽 𝛽∗
^2
)

(1+𝛽∗ +𝛽𝛽∗
2
)2

− 𝛽∗
^

(1+  𝛽∗
^
+𝛽 𝛽∗

^2
)

(𝛽0
∗ −  𝛽∗

^
)

(1+𝛽∗𝛽𝛽
∗)
.
(1− 2𝛽𝛽∗

2

)

(1+𝛽∗ + 𝛾𝛽∗
2
)2

      0 
]
 
 
 
 
 

 

   We have the element𝛽22 = 0,𝛽ℎ𝛽𝛽 𝛽𝛽  because  

𝛽22 = 𝛽𝛽   and    𝛽𝛽 = −
𝛽

𝛽∗
+

𝛽0
∗

1+𝛽0
∗+𝛽𝛽0

∗2
−𝛽𝛽∗, 

Since “No-washout solution”   = −
𝛽

𝛽∗
+

𝛽0
∗

1+𝛽0
∗+𝛽𝛽0

∗2
−𝛽𝛽∗ equal to zero, 

So, 𝛽𝛽 = −
𝛽

𝛽∗
+

𝛽0
∗

1+𝛽0
∗+𝛽𝛽0

∗2
−𝛽𝛽∗ = 0 
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⇨𝛽𝛽 = 𝛽22 = 0. 

Since,  𝛽𝛽𝛽 = [𝛽𝛽 +𝛽𝛽] 

= −
1

𝛽∗
−

(𝛽0
∗− 𝛽∗

^
)

(1+𝛽∗𝛽𝛽
∗)

(1−2𝛽 𝛽∗
^2
)

(1+𝛽∗+𝛽𝛽∗
2
)2

 

= −[
1

𝛽∗
+

(𝛽0
∗− 𝛽∗

^
)

(1+𝛽∗𝛽𝛽
∗)

(1−2𝛽 𝛽∗
^2
)

(1+𝛽∗+𝛽𝛽∗
2
)2
] 

Since𝛽∗ > 0 ,𝛽0

∗
> 0 ,𝛽 > 0  𝛽𝛽𝛽   𝛽0

∗ > 𝛽
∗^
> 0 ,  

so,  (𝛽0
∗ −  𝛽∗

^
)>0,  

since (1+𝛽∗𝛽𝛽
∗) > 0,  

So, we have 
1

𝛽∗
,    

(𝛽0
∗− 𝛽∗

^
)

(1+𝛽∗𝛽𝛽
∗)

   are positive. 

Since (1+𝛽∗ +𝛽𝛽∗
2

)2 > 0 , 

We need have (1− 2𝛽 𝛽∗
^2

)>0              𝛽∗
^
<

1

√2𝛽
 

so,    
(1−2𝛽 𝛽∗

^2
)

(1+𝛽∗+𝛽𝛽∗
2
)2
> 0, 

Then, we have−[
1

𝛽∗
+

(𝛽0
∗− 𝛽∗

^
)

(1+𝛽∗𝛽𝛽
∗)

(1−2𝛽 𝛽∗
^2
)

(1+𝛽∗+𝛽𝛽∗
2
)2
] <0  ⇨𝛽𝛽𝛽 < 0.   

Since 𝛽𝛽tJ =
 𝛽∗

^
(𝛽0
∗− 𝛽∗

^
)

(1+𝛽∗𝛽𝛽
∗)

(1−2𝛽𝛽∗
2
)

(1+𝛽∗+𝛽𝛽∗
2
)3

 , 
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since 𝛽0
∗ > 0,𝛽0

∗ >  𝛽∗
^
> 0,(𝛽

0

∗ −  𝛽∗
^
) > 0 and (1+𝛽∗𝛽𝛽

∗) > 0, 

So,    
 𝛽∗

^
(𝛽0
∗− 𝛽∗

^
)

(1+𝛽∗𝛽𝛽
∗)
> 0. 

Since (1+𝛽∗ +𝛽𝛽∗
2

)3 > 0   𝛽𝛽𝛽 (1− 2𝛽𝛽∗
2

) > 0  𝛽ℎ𝛽𝛽  𝛽
∗^

<
1

√2𝛽
  , 

So 
(1−2𝛽𝛽∗

2
)

(1+𝛽∗+𝛽𝛽∗
2
)3
> 0, 

Then, we have   
 𝛽∗

^
(𝛽0
∗− 𝛽∗

^
)

(1+𝛽∗𝛽𝛽
∗)

(1−2𝛽𝛽∗
2
)

(1+𝛽∗+𝛽𝛽∗
2
)3
> 0 ⇨ 𝛽𝛽tJ > 0 . 

Thus, the no-washout solution is stable when  𝛽∗
^
<

1

√2𝛽
 ∙ 

6. Conclusion  : In this project we have investigated an ideal bioreactor model for the interaction 

between a substrate and a microorganism. We started with dimensional model equations and 

from these we derived the non-dimensional model equations. The steady-state solutions of this 

model were found and their stability determined as a function of the residence time. We have 

found the importance of the critical value of the residence time. If the residence time is between 

zero and the critical value the process fails and the reactor stops working. 
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