On Generalized Simple P-injective Rings

Nazar H. Shuker College of Computers Sciences and Mathematics University of Mosul

Received on: 20/6/2003

Accepted on: 9/9/2003

الملخص

في هذا البحث درسنا الحلقات البسيطة الغامرة من النمط-P المعممة وحصلنا على نتائج وصفات جديدة لمثل هذه الحلقات وأخيرا" أعطينا تميزا" للحلقات المقسومة والحلقات المنتظمة القوية بدلالة الحلقات ضمن النمط GSP

ABSTRACT

In this work, we study generalized simple P-injective rings. New properties of such rings are given, and a characterization of division rings and strongly regular rings in terms of GSP rings is obtained.

1. Introduction:

Throughout this paper, R denotes an associative ring with identity, and all modules are unitary right R-modules.

A right R-module M is said to be P-injective if, for any principal right ideal P of R, any right R-homomorphism $f: P \to M$, there exists y in M such that f(b)=yb for all $b \in P$. This concept was introduced by Ming [3].

Recall that: (1) R is called strongly regular if for every $a \in R$ there exists $b \in R$ such that $a=a^2b$, (2) a ring R is said to be zero commutative (briefly ZC) if for a, $b \in R$, ab=0 implies that ba=0 [2]; (3) For any element a in R, r (a) and $\mathbf{l}(a)$ denote the right and left annihilator of a respectively; (4) A ring R is called reduced if, R contains no non-zero nilpotent element, (5) R is said to be right uniform, if every right ideal of R is essential [4], (6) J(R) will state for the Jacobson radical.

2. GSP-Rings:

Definition 2.1: A ring R is called a GSP-ring (generalized simple P-injective) if, for any maximal right ideal M of R, any $b \in M$, bR/bM is p-injective.

Recall the following lemma which are due to Skin [5].

Lemma 2.2: For any ring R, the following statements are equivalent: (1) R is a ZC ring.

(2) For each $a \in \mathbb{R}$, r(a) (equivalently $\mathbf{l}(a)$) is a two-sided ideal of \mathbb{R} We shall begin this section with the following results.

Theorem 2.3: Let R be a ZC, GSP-ring. Then:

(1) J(R)={0}(2) R is a reduced ring.

Proof (1). Let $a \in J(R)$, if $aR+r(a) \neq R$. Then there exists a maximal right ideal M containing aR+r(a). Suppose that aR=aM, then a=ac for some c in M and this implies that a(1-c)=0, so $1-c \in r(a) \subseteq M$, whence $1 \in M$ contradicting $M \neq R$. If $aR \neq aM$, the right R-homomorphism g:R/M \rightarrow aR/aM defined by g(b+M)=ab+aM, for all b in R implies that R/M \cong aR/aM. Define $f : aR \rightarrow R/M$ as a right R-homomorphism by f(ax)=x+M, for all x in R, then f is a well-defined right R-homomorphism. Indeed; let x_1, x_2 be any two elements in R with $ax_1=ax_2$, implies that (x_1-x_2)

 \in r(a) \subseteq M, thus x₁+M=x₂+M. Hence, f(ax₁)=x₁+M=x₂+M=f(ax₂). Since R/M is P-injective, then there exists an element c in R such that f(ac)=(c+M) ax =cax+M, yields 1+M=f(a)=da+M, for some d in R, whence 1 \in M, again there is a contradiction.

Therefore aR+r(a)=R. In particular ay+d=1 fore some $y \in R$, $d \in r(a)$, thus we have $a^2y=a$. Now, since $a \in J$ (R), then there exists an invertible element u in R such that (1-ay)u=1 and this implies that $(a-a^2y)u=a$, whence a=0. Therefore J (R)=0.

Next, we consider the connection between GSP-ring and division rings.

<u>Proof (2)</u>. Let a be a non-zero element of R such that $a^2=0$. Then there exists a maximal right ideal M of R containing r(a). If aR=aM, then a=ac for some c in M, which implies that $1-c \in r(a) \subseteq M$, whence $1 \in M$, contradicting

 $M \neq R$. If $aR \neq aM$ the right R-homomorphism g: $R/M \rightarrow aR/aM$ defined by g(r+M)=ar+aM for all r \in R implies that $R/M \cong aR/aM$. Then R/M is Pinjective. Consider the canonical mapping $f: aR \rightarrow R/M$, then there exists an element b \in R such that 1+M=f(a)=ba+M. Now r(a) is a two sided ideal of R, so ba \in r(a) \subseteq M, whence 1 \in M, a contradiction. Therefore a=0, whence R is reduced ring.

Definition 2.4: Let R be a ring such that every maximal right ideal is a two sided ideal. Then R is called a quasi-duo ring.

Theorem 2.5: Let R be a quasi-duo, GSP-ring. Then any non-zero divisor of R is a right and left invertible.

Proof. Let y be a non-zero element of R. If $yR \neq R$, let M be a maximal right ideal of R containing yR. Suppose that yR=yM. Then y=yc for some c in M. which implies that $1-c \in r(y)$, whence $1=c \in M$, contradicting $M \neq R$. now, if $yR \neq yM$ the right R-homomorphism $g:R/M \rightarrow yR/yM$ defined by g(r+M)=yr+yM, for all r in R implies that $R/M \cong yR/yM$. Since yR/yM is P-injective then R/M is P-injective. Consider the canonical mapping f: $yR \rightarrow R/M$, then there exists an element b in R such that f(y)=1+M=by+M. Hence $1-by \in M$, since $y \in M$ and R is a quasi-duo ring, implies that $by \in M$. thus $1 \in M$, again there is contradiction. Therefore yR=R, in particular yr=1, for some $r \in R$, and then we have yry=y, implies that $ry \in r(y)=0$, thus ry=1. This proves that y is a right and left invertible.

<u>Corollary 2.6</u>: Let R be a quasi-duo, GSP-ring without zero divisors. Then R is a division ring.

The next result considers other conditions for GSP-ring to be a division ring.

<u>Theorem 2.7</u>: Let R be a ZC, right uniform GSP-ring. Then R is a division ring.

Proof. Let $0 \neq y \in R$, if r(1-y)=0, then $\mathbf{l}(1-y) = 0$ (R is ZI). Then by Theorem (2.5) 1-y is an invertible element and hence $y \in J$ (R), so by Theorem (2.3) y=0, a contradiction. Therefore $r(1-y)\neq 0$, let $0 \neq x \in r(1-y)$, then x=yx. We claim that $xR \mathbf{I} r(y) = 0$, if not, let $z \in xR \mathbf{I} r(y)$, then z=xr for some $r \in R$ and yz=0, this implies yxr=0, yields xr=0, whence z=0. Therefore $xR \mathbf{I} r(y) = 0$. Since R is a right uniform ring, and $xR \neq 0$ then r(y) must be zero. Since R is ZC, then $\mathbf{l}(y) = 0$. Then by Corollary (2.6) R is a division ring.

Lemma 2.8: If R is a reduced ring, then R/r(a) is a reduced ring. **Proof.** See [1]

Theorem 2.9: Let R be a reduced ring, such that for every $a \in R$, R/r(a) is GSP-ring. Then R is strongly regular.

Proof. Let a be a non-zero element in R, and let $d=a+r(a) \in R/r(a)$. Clearly, $d \neq 0$ because otherwise if d=0, then a+r(a)=r(a), and this yields $a^2=0$, gives a=0 (since R is reduced). Let $d\bar{x} = 0$, we shall prove that $\bar{x} = 0$. Observe that (a+r(a))(x+r(a))=r(a), implies that ax+r(a)=r(a) and hence $ax \in r(a)$, so $a^2x=0$. Thus $x \in r(a^2)$ (since R is reduced). Therefore, $x \in r(a)$ implies that ax=0. Hence $\bar{x} = 0$, this means that d is a right non-zero divisor. In a similar way we can prove that d is a left non-zero divisor. Since R/r(a) is GSP-ring, then by Theorem (2.5) d is an invertible element. then there exists

 $0 \neq y = y + r(a) \in R/r(a)$ such that d = 1, then (a+r(a))(y+r(a))=1+r(a), so $ay-1 \in r(a)$ and a(ay-1)=0. Thus $a^2y=a$. this proves that R is a strongly regular ring.

Theorem 2.10: Let R be a GSP-ring, and let I be a reduced right ideal of R. Then I is a strongly regular ring.

Proof. Since I is reduced, for any $b \in I$, $L(b) \subseteq r(b)$. If $bR+r(b) \neq R$, let M be a maximal right ideal containing bR+r(b). If bR=bM, then b=bc for some $c \in M$ which implies that $1-c \in r(b) \subseteq M$, whence $1 \in M$, contradicting $M \neq R$. If $bM \neq bR$, the right R- homomorphism g:R/M $\rightarrow bR/bM$ defined by g(a+M)=ba+bM for all $a \in R$ implies that $R/M \cong bR/bM$, since bR/bM is P-injective, then R/M is P-injective. Consider the canonical mapping $f:bR \rightarrow R/M$, then there exists an element a in R such that f(b)=1+M=ab+M, whence $1 \in M$, again there is a contradiction. Thus bR+r(b)=R for any $b \in I$ from which $b=b^2u$, $u \in R$.

Now $b=bbu=b(b^2u)u=b^2v$, where $v=bu^2 \in I$, and $(b-bvb)^2=0$ implies that b=bvb which proves that I is a strongly regular ring.

REFERENCES

- [1] Ahmad S.H. (2001), "On Generalized Simple Flat Rings", M.Sc. Thesis, Mosul University.
- [2] Kim N.K., S.B. Nam and J.Y. Kim (1999), "On Simple Singular GPinjective modules", *Comm. In Algebra*, 27(5).
- [3] Ming R.Y.C. (1974) "On Simple P-injective modules" *Math. Japonica 19*, pp. 173-176.
- [4] Ming R.Y.C. (1994) "A note on regular rings, II", Bull. Math. Soc. Sc. 38.
- [5] Shin G. (1973), "**Prime ideals and Sheaf Representation of a Pseudo Symmetric Ring**" *Trans Amer. Math. Soc.* 84, pp. 43-60.