0n the convergence sequence of intuitionistic fuzzy measurable functions on intuitionistic fuzzy measure space Mohammed J. Mohammed , Amneh Kareem Yousuf

Department of Mathematics , College of Education of pure sciences , university of Thi-Qar , Thi-Qar- Iraq.

Abstract : In this paper , the concepts of order-continuity , pseudometric generating property , autocontinuity and null-subtractive of an intuitionistic fuzzy measure on an intuitionistic fuzzy σ – algebra of intuitionistic fuzzy sets will be introduced , and we proved Egoroff's Theorem and three forms of Egoroff's Theorem for a sequence of measurable functions on an intuitionistic fuzzy σ –algebra.

1-Introduction :

The concept of fuzzy measure defined on a classical σ –algebra, were first proposed by Sugeno in [5] . Some structural characteristics of fuzzy measure were introduced and discussed by Wang [7] . A generalization of fuzzy measure were established on fuzzy sets by Qiao[9] , and the Lebesgu's theorem and Riesz's theorem for a sequence of measurable functions had been proved on fuzzy σalgebra of fuzzy set . In 1996, L. Jun and M. Yasuda^[4] show that the Egoroff's theorem for a sequence of fuzzy measurable functions also holds on fuzzy σ-algebra by using the concepts of order continuity and the pseudometric generating property of fuzzy measures .

Many authors defined new types of measures , Adrain I. Ban [2] one of the authors who defined an intuitionistic fuzzy measure on an intuitionistic fuzzy σ – algebra $\tilde{\mathcal{A}}$ on an intuitionistic fuzzy sets . The notion of intuitionistic fuzzy sets introduced by Atanassove [1] in 1983 , as a generalization of the notion of fuzzy sets which introduced by Zadeh [8] in 1965 .

In this paper , we will prove Egoroff's theorem and three forms of this theorem for a sequence of intuitionistic fuzzy measurable functions on an intuitionistic fuzzy σ -algebra by using the concepts of order-continuity , pseudometric generating property , autocontinuity and null-subtractive of an intuitionistic fuzzy measure.

2- Intuitionistic fuzzy measure

In this section , we recall some definitions which will be used for this work .

Definition(2.1)[8]:

Let X be a non-empty set and let I be the closed interval [0,1] of the real line . A fuzzy set μ in X is characterized by membership function $\mu: X \longrightarrow I$, which associates with each point $x \in X$ its grade or degree of membership $\mu(x) \in [0,1]$.

Definition(2.2)[1]:

Let X be a non-empty fixed set. An intuitionistic fuzzy set (IFS) \vec{A} is an object having the form:

 $A = \{(x, \mu_A(x), \nu_A(x)), x \in X\}$, where the functions $\mu_A: X \to I$ and $v_A: X \longrightarrow I$ denote the degree of membership and the degree of nonmembership of each element $x \in X$ to the set A ,respectively, and $0 \leq \mu_A(x) + \nu_A(x) \leq 1$ for each $x \in X$.

Definition(2.3)[3]: $\tilde{0} = \{(x, 0, 1), x \in X\}$ $\tilde{1} = \{(x, 1, 0), x \in X\}$

are the intuitionistic fuzzy sets corresponding to empty set and the entire universe respectively .

Note : Every fuzzy set A on a non-empty set X is obviously an IFS having the form $\{(x, \mu_A(x), 1 - \mu_A(x)), x \in X\}$.

Definition(2.4):

Let A be a subset of a set, we define the intuitionistic characteristic function of A as follows:

= 1, $if x \in$ 0, *if* $x \notin$

Definition(2.5)[1,6]:

Let X be a non-empty set and let A and B are IFSs in the form $A = \{ x, \mu_A(x), \nu_A(x) , x \mid X \}$, $B = \{ x, \mu_B(x), \nu_B(x) , x \mid X \}$. Then: **1)** A B if and only if $\mu_A(x)$ $\mu_B(x)$ and $\nu_A(x)$ $\nu_B(x)$ for all x X. **2)** $A = B$ if and only if A B and B A . **3)** $A^c = \{ x, v_A(x), \mu_A(x), x \mid X \}$. **4)** A = { $x, min\{\mu_A(x), \mu_B(x)\}$, $max\{\nu_A(x), \nu_B(x)\}$, x X }. **5)** A $B = \{ x, max\{ \mu_A(x), \mu_B(x) \} \}$, $min\{ v_A(x), v_B(x) \}$, $x \in X$. **6)** $A \angle B = A$ B^c .

Definition(2.6)[3]:

Let $\{A_i, i \quad J\}$ be an arbitrary family of IFSs in X , then **1)** $\bigcap_i A_i = \{ \langle x, \Lambda_i \mu_{A_i}(x), \forall i \nu_{A_i}(x), x \mid X \}.$ **2)** $\bigcup_i A_i = \{ \langle x, \bigvee_i \mu_{A_i}(x), \bigwedge_i \nu_{A_i}(x) , x \mid X \}.$

Definition(2.7)[2]:

An intuitionistic fuzzy -algebra ($-\text{field}$) on X is a family $\tilde{\mathcal{A}}$ of IFSs in X satisfying the properties :

 $1)$ $\tilde{1}$ \tilde{d} ;

2) If $A \sim \tilde{A}$ this implies that $A^c \sim \tilde{A}$;

3) If $(A_n)_{n \in \mathbb{N}}$ $\tilde{\mathcal{A}}$, then $\prod_{n \in \mathbb{N}} A_n$ $\tilde{\mathcal{A}}$.

The pair $(X, \tilde{\mathcal{A}})$ is called an intuitionistic fuzzy measurable space.

Example(2.8)[2]:

Let $A = \{ x, \mu_A(x), \nu_A(x), x \mid X \}$ IFSs. Let us denote $A = \{ x \mid X : \mu_A(x) > 0 \}$, $A_A = \{ x \mid X : \nu_A(x) > 0 \}$ and $N = \{A \mid IFS(X) : A \text{ or } A_A \text{ is a finite or countable} \}$, then the family N of IFSs is an intuitionistic fuzzy -algebra.

Definition(2.9)[2]:

Let $\mathcal A$ be an IF -algebra in X. A function $m:$ $\mathcal A \longrightarrow [0,$ is said to be an intuitionistic fuzzy measure if it satisfies the following conditions :

1) $\widetilde{m}(\widetilde{0}) = 0$;

2) For any A, B $\tilde{\mathcal{A}}$ and A B this implies that $\tilde{m}(A)$ $\tilde{m}(B)$.

The intuitionistic fuzzy measure \widetilde{m} is called -additive if $\widetilde{m}(\prod_{n\in\mathbb{N}}A_n)$ = $\sum_{n\in\mathbb{N}}\widetilde{m}(A_n)$ for every sequence $(A_n)_{n\in\mathbb{N}}$ of pairwise disjoint IFSs in $\tilde{\mathcal{A}}$.

The triple $(X, \tilde{\mathcal{A}}, \tilde{m})$ is called intuitionistic fuzzy measure space.

Definition(2.10):

The intuitionistic fuzzy measure \tilde{m} is called :

1) Finite if $\widetilde{m}(\widetilde{1}) < \infty$, and ininite if $\widetilde{m}(\widetilde{1}) = \infty$.

2) Finitely additive if $\widetilde{m}(A \quad B) = \widetilde{m}(A) + \widetilde{m}(B)$.

Example(2.11)[2]:

The function \tilde{m} : $\tilde{\mathcal{A}} \rightarrow [0, 1]$ defined by $\widetilde{m}(A) = \frac{1}{2} x X(\mu_A(x) + 1 - \nu_A(x))$ for A={ $x, \mu_A(x), \nu_A(x)$, $x \in X$ } $\tilde{\mathcal{A}}$, is a σ -additive intuitionistic fuzzy measure .

Definition(2.12):

Let $(X, \tilde{\mathcal{A}})$ be an intuitionistic fuzzy measurable space. An intuitionistic fuzzy measure $m: \mathcal{A} \to [0, 1]$ is said to be :

1) Order-continuous if $\widetilde{m}(A_n) \rightarrow 0$, whenever A_n $\widetilde{\mathcal{A}}$ and A_n $\widetilde{0}$. **2)** Auto-continuous from above if $\lim_{n \to \infty} \widetilde{m}(A \ B_n) = \widetilde{m}(A)$, whenever A, B_n $\tilde{\mathcal{A}}$, A $B_n = \tilde{0}$ for every n N and $\lim_{n \to \infty} \widetilde{m} (B_n) = 0.$

3) Auto-continuous from below if $\lim_{n \to \infty} \widetilde{m}(A \times B_n) = \widetilde{m}(A)$ whenever $A_i B_n$ $\tilde{\mathcal{A}}_i B_n \subseteq A$, for every n N and $\lim_{n \to \infty} \tilde{m} (B_n) = 0$.

4) Auto-continuous if it is auto-continuous from above and autocontinuous from below.

5) Null-subtractive if $\widetilde{m}(A \ B^c) = \widetilde{m}(A)$, whenever $A, B \ \widetilde{A}$ and $\widetilde{m}(B)=0$.

6) Have pseudometric generating property if for any $\epsilon > 0$, there exists >0 such that $\widetilde{m}(E) \sqrt{m}(F) < \delta$ this implies that $\widetilde{m}(E \mid F) < \epsilon$. **7)** Weakly-null-countable additive if $\widetilde{m}_{(1)} = A_i$ = 0, whenever A_i $\tilde{\mathcal{A}}$ with $\tilde{m}(A_i) = 0$.

3-The convergence sequence of an intuitionistic fuzzy measurable functions

In this section , we introduced the definitions of the convergence almost everywhere and the convergence almost uniformly and we proved some relationships between them .

Definition(3.1):

Let $(X, \tilde{\mathcal{A}}$, \tilde{m}) be an intuitionistic fuzzy measure space and $f \quad X \quad [0, 1]$ be a function, we say that f is an intuitionistic fuzzy real-valued measurable function on an IF -algebra $\tilde{\mathcal{A}}$ if $I\chi_{F_\alpha}$ $\tilde{\mathcal{A}}$, where $\alpha = \{x: f(x) \in \alpha\}$ and = 1 , $\mathbf 0$,

Let M denoted the collection of all intuitionistic fuzzy real-valued measurable functions on $(X, \tilde{\mathcal{A}}, \tilde{m})$.

Definition(3.2):

Let $f \mathcal{M}$, $A \mathcal{A}$ and $\{f_n, n \quad 1\} \mathcal{M}$ we say that : $\mathbf{1}$) $\{f_n\}$ converges to f everywhere on A and denote it by . on if there exists a subset D X with $I\chi_D$ $\tilde{\mathcal{A}}$ such that $\{f_n\}$ converges to f on D and A I_{χ_D} . **2)** $\{f_n\}$ converges to f almost everywhere on A and denote it by . . on A if there exists a subset D χ with $I\chi_D$ \mathcal{A} and $\widetilde{m}(I\chi_D) = 0$ such that $\{f_n\}$ converges to f everywhere on $A = I\chi_D^c$. **3)** $\{f_n\}$ converges to f pseudo-almost everywhere on A and denote it by $a.e.$ \rightarrow \rightarrow f on A if there exists D X with $I\chi_D$ \mathcal{A} and $\widetilde{m}(A - I\chi_D^c) = \widetilde{m}(A)$ and $\{f_n\}$ converges to f everywhere on $A - I\chi_D^c$.

Definition(3.3):

Let $f \mathcal{M}$, $A \mathcal{A}$ and $\{f_n, n \quad 1\} \mathcal{M}$ we say that:

 $\mathbf{1}$) $\{f_n\}$ converges to f uniformly on A and denote it by . on A if there exists a subset D X with $I\chi_D$ $\tilde{\mathcal{A}}$ such that $\{f_n\}$ converges to f uniformly on D and $A = I\chi_D$.

2) $\{f_n\}$ converges to f almost uniformly on A and denote it by $\cdot u$. on A if for any $\delta > 0$ there exists $E - \mathcal{A}$ with $m(E) < -$, such that $\{f_n\}$ converges to f uniformly on A E^c .

3) $\{f_n\}$ converges to f pseudo almost uniformly on A and denote it by $. a.u.$ -_→ f on A if there exists a sequence $\{ E_n \}$ of IFSs in ${\cal A}$ such that $\lim_{n \to \infty} \widetilde{m}(A - E_n^c) = \widetilde{m}(A)$ and $\{f_n\}$ converges to f uniformly on $A \tE_n^c$.

Theorem(3.4):

Let $\{f_n, f, n \quad 1\}$ $\mathcal{M}, A \quad \tilde{\mathcal{A}}$ and \tilde{m} is weakly-null-countable additive ,

1- If . . and .e. on A , then $f = g$ a.e. on A. **2**- If . . on A and $\ g\,$ is an intuitionistic fuzzy real-valued measurable function such that $f = g \, \, a.e.$ on A , then \cdot e. on A. **3**- If .e. on A and $\{ g_n \}$ is a sequence of an intuitionistic fuzzy real-valued measurable functions such that $f_n = g_n$ a.e. on A, then .e. on A .

Proof:

1- Since $\cdot e$ on A , there exists a subset D X with and $m(I\chi_D)$ = 0 $\,$ such that . on A $I\chi_D^c$.

 \Rightarrow there exists H X with $I\chi_H$ $\tilde{\mathcal{A}}$ such that f_n converges to f on H and $A = I \chi_D^c = I \chi_H$. . . А Since on A , then there exists a subset N X with . and $m(I\chi_{N})=0~$ such that on $A = I \chi_N^c$. \Rightarrow there exists M X with $I\chi_M$ $\tilde{\mathcal{A}}$ such that f_n converges to g on M and $A = I \chi^c_M = I \chi^c_M$. Let $E = I\chi_D$ $I\chi_N = I\chi_{D\downarrow N} \implies E \quad \tilde{\mathcal{A}}$. Since \widetilde{m} is weakly-null-countable additive $\Rightarrow \widetilde{m}(E) = 0$. Since f_n converges to f on $H \Rightarrow f_n(x) \rightarrow f(x)$, x H and f_n converges to g on $M \implies f_n(x) \longrightarrow g(x)$, x M \Rightarrow x H M, $f(x) = g(x) \Rightarrow f = g \text{ on } H$ M Since $A = I\chi_D^c = I\chi_H$ and $A = I\chi_N^c = I\chi_M$ \Rightarrow (A $I\chi_D^c$) (A $I\chi_N^c$) $I\chi_H$ $I\chi_M$ \Rightarrow A $(I\chi_D \quad I\chi_N)^c = A \quad E^c \quad I\chi_{H\,M}$ Therefore, $f = g e$ on $A E^c$. Since D N X , $\widetilde{m}(I\chi_{D/N}) = 0$. $So, = g \ a \ e \ on \ A$. .е. **2-** Since on A , there exists a subset D X with . and $m(I\chi_D)$ = 0 such that on A $I\chi_D^c$. \Rightarrow there exists $H \times X$ with $I\chi_H \times \tilde{A}$ such that f_n converges to f on H and $A = I \chi_D^c = I \chi_H$. Since $f = g a.e.$ on A, then there exists a subset N X with $I\chi_N$ $\tilde{\mathcal{A}}$ and $\tilde{m}(I\chi_N) = 0$ such that $f = g e$. on $A \cdot I\chi_N^c$. \Rightarrow there exists M X with $I\chi_M$ $\tilde{\mathcal{A}}$ such that $f = g$ on M and $A \quad I \chi_N^c \quad I \chi_M$. Let $E = I\chi_D$ $I\chi_N = I\chi_{D,N} \implies E \quad \tilde{\mathcal{A}}$. Since \widetilde{m} is weakly-null-countable additive $\Rightarrow \widetilde{m}(E) = 0$.

Since f_n converges to f on $H \implies f_n(x) \longrightarrow f(x)$, x H and $f = g \text{ on } M \Longrightarrow f(x) = g(x), \quad x \in M$ \Rightarrow x H M $f_n(x) \rightarrow g(x) \Rightarrow f_n \rightarrow g$ on H M. Since $A = I\chi_D^c = I\chi_H$ and $A = I\chi_N^c = I\chi_M$ \Rightarrow (A $I\chi_{D}^{c}$) (A $I\chi_{N}^{c}$) $I\chi_{H}$ $I\chi_{M}$ \Rightarrow A $(I\chi_D \quad I\chi_N)^c = A \quad E^c \quad I\chi_{H\,M}$. I herefore, on $A E^c$. Since N X , $\widetilde{m}(I\chi_{D/N}) = 0$. \cdot e. So , on A . $\cdot e$ **3**- Since on A , there exists a subset D X with . and $m(I\chi_D)$ = 0 $\,$ such that on A $I\chi_D^c$. \Rightarrow there exists H X with $I\chi_H$ $\tilde{\mathcal{A}}$ such that f_n converges to f on H and $A = I\chi_D^c = I\chi_H$. Since $f_n = g_n a.e.$ on, then there exists a sequence ${E_n}$ X with $I\chi_{E_n}$ $\tilde{\mathcal{A}}$ and $\tilde{m}(I\chi_{E_n})=0$ for all n 1 such that $f_n = g_n e$ on $A \quad I \chi^c_{E_m}$. \Rightarrow there exist M_n X with $I\chi_{M_n}$ $\tilde{\mathcal{A}}$ for all n 1 such that $= g_n$ on $\bigcap_{n=1}^{\infty} M_n$ and $A \quad I\chi_{\bigcup_{n=1}^{\infty} E_n} \quad I\chi_{\bigcap_{n=1}^{\infty} M_n}$. Let $C = I\chi_D$ $I\chi_{\bigcup_{n=1}^{\infty}E_n} = I\chi_{\bigcup_{n=1}^{\infty}(D-E_n)} \Rightarrow C$ \mathcal{A} , and since m is weakly-null-countable additive $\Rightarrow \widetilde{m}(C) = 0$. Since f_n converges to f on $H \implies f_n(x) \to f(x) \quad x \in H$ and $f_n = g_n$ on $\bigcap_{n=1}^{\infty} M_n \implies f_n(x) = g_n(x)$ x $\bigcap_{n=1}^{\infty} M_n$ $\Rightarrow g_n(x) \rightarrow f(x)$ x H $(\bigcap_{n=1}^{\infty} M_n) = \bigcap_{n=1}^{\infty} (H \setminus M_n)$ Thus , $g_n \to f$ on $\bigcap_{n=1}^{\infty} (H \setminus M_n)$. Since $A = I\chi_D^c = I\chi_H$ and $A = I\chi_{\lfloor \frac{1}{m-1}E_n \rfloor}^c = I\chi_{\lfloor \frac{1}{m-1}M_n \rfloor}^c$ \Rightarrow (A $I\chi_D^c$) $\left(A \cap I\chi_{\bigcup_{n=1}^\infty E_n}^c\right) \subset I\chi_H$ $I\chi_{\bigcap}$

$$
\Rightarrow A \quad \left(I\chi_D^c \quad I\chi_{\bigcup_{n=1}^\infty E_n}\right) = A \quad C^c \quad I\chi_{\bigcap_{n=1}^\infty (H \ M_n)}
$$
\nTherefore, $g_n \circ g$ on $A \subset C$

\nSince $\bigcup_{n=1}^\infty (D \ E_n) \quad X, \widetilde{m}\left(I\chi_{\bigcup_{n=1}^\infty (D \ E_n)}\right) = 0 \text{ and } g_n \circ g$ on $A \subset C$.

\nSo $g_n \xrightarrow{a.e.} g$ on A .

Theorem(3.5):

Let $\{f_n, f_n, n \quad 1\}$ \mathcal{M}, A $\tilde{\mathcal{A}}$ and \tilde{m} is weakly-null-countable additive , .e. on A and $\cdot e$ on A $, c$ R , then **1)** ∙ .e. \cdot , \cdot **2)** f_n + . . $+ g$. **3)** $|f_n|$.e. $|f|$.

Proof:

1- Since . . on A , there exists a subset D X with and $m(I\chi_D)$ = 0 such that . on A $I\chi_D^c$. \Rightarrow there exists H X with $I\chi_H$ $\tilde{\mathcal{A}}$ such that f_n converges to f on H and $A = I\chi_D^c = I\chi_H$. Since f_n converges to f on $H \Rightarrow f_n(x) \rightarrow f(x)$, x H $\Rightarrow f_n(x) \rightarrow c \cdot f(x)$, $x \quad H \Rightarrow c \cdot f_n \rightarrow c \cdot f$ on H. Therefore, ∙ .e. \cdot , \cdot **2**- Since $\cdot e$ on A , there exists a subset D X with and $m(I\chi_D)$ = 0 $\,$ such that . on A $I\chi_D^c$. \Rightarrow there exists H X with $I\chi_H$ $\tilde{\mathcal{A}}$ such that f_n converges to f on H and $A = I\chi_D^c = I\chi_H$. Since . . on A , there exists a subset N X with $I\chi_N$ \mathcal{A} and $(I\chi_N) = 0$ such that . on A $I\chi_N^c$.

 \Rightarrow there exists M X with I_{χ_M} $\tilde{\mathcal{A}}$ such that g_n converges to g on M and $A = I x_M^c = I x_M$. Let $E = I\chi_D$ $I\chi_N$, since \tilde{m} is weakly-null-countable additive \Rightarrow $\widetilde{m}(E) = 0.$ Since f_n converges to f on $H \implies x$ H and $f_n(x) \to f(x)$ and g_n converges to g on $M \implies x \in M$, $g_n(x) \to g(x)$ $\Rightarrow x$ H M, $f_n(x) + g_n(x) \rightarrow f(x) + g(x)$. Thus , $f_n + g_n$ converges to $f + g$ on $H \setminus M$. Since A $I \chi_D^c$ $I \chi_H$ and A $I \chi_N^c$ $I \chi_M$ \Rightarrow (A $I\chi_D^c$) (A $I\chi_N^c$) $I\chi_H$ $I\chi_M = I\chi_{D\ M}$ \Rightarrow A $(I\chi_D \quad I\chi_N)^c = A \quad E^c \quad I\chi_{H\;M}$. Therefore , $f_n +$. $+ g$ on $A E^c$. Since N X , $m(I\chi_{D/N}) = 0$ and f_n + . $+ g$ on A E^c , so + . . $+$ g on A. **3-** Since .е. on A , there exists a subset D X with and $m(I\chi_D)$ = 0 such that . on A $I\chi_D^c$. \Rightarrow there exists H X with $I\chi_H$ $\tilde{\mathcal{A}}$ such that f_n converges to f on H and $A = I\chi_D^c = I\chi_H$. Since f_n converges to f on $H \Rightarrow f_n(x) \rightarrow f(x)$, x H $\Rightarrow |f_n(x)| \rightarrow |f(x)|$, x $H \Rightarrow |f_n(x)| \rightarrow |f(x)|$ on H . Therefore , $|f_n|$ $\cdot e$. $|f|$.

Theorem(3.6):

Let ${f_n, f, n \quad 1} \quad \mathcal{M}, A \quad \tilde{\mathcal{A}}$, if \tilde{m} is p.g.p. and weakly-nullcountable additive, then:

1) If
$$
f_n \stackrel{au}{\rightarrow} f
$$
 and $f_n \stackrel{au}{\rightarrow} g$ on A, then $f = g$ a.e. on A
2) If $f_n \stackrel{au}{\rightarrow} f$ on A and $f = g$ a.e. on A, then $f_n \stackrel{au}{\rightarrow} g$ on A.

3) If
$$
f_n \xrightarrow{au} f
$$
 and $f_n = g_n$ a.e. on A, then $g_n \xrightarrow{au} f$ on A.
\n**Proof:**

1) since $\cdot u$. on A , then for any $\delta > 0$, there exists $E = \mathcal{A}$ with $\widetilde{m}(E) < \delta$ such that f_n converges to f uniformly on A E^c \Rightarrow there exists a subset D X with $I\chi_D$ $\tilde{\mathcal{A}}$ and f_n converges to f uniformly on D and $E^c = I\chi_D$. Since $\cdot u$. on A then for any > 0 , there exists $F - A$ with $\widetilde{m}(F) < \delta$ such that f_n converges to g uniformly on A F^c \Rightarrow there exists a subset H X with $I\chi_H$ $\tilde{\mathcal{A}}$ and f_n converges to g uniformly on H and F^c $I\chi_H$. Since \widetilde{m} is p.g.p. $\Rightarrow \widetilde{m}(E \mid F) < \epsilon$, since ϵ arbitrary so $\widetilde{m}(E \mid F) = 0$ Since f_n converges to f uniformly on $D \implies x \in D$, $f_n(x) \in f(x)$ and f_n converges to g uniformly on $H \implies x \in H$, $f_n(x) \in g(x)$ $\Rightarrow x \quad D \quad H \cdot f(x) = g(x)$, so $f = g \text{ on } D \quad H$. Since A E^c $I\chi_D$ and A F^c $I\chi_H$ \Rightarrow A $(E \t F)^c$ $I \chi_{D \t H}$. Since E F \tilde{A} and $\tilde{m}(E \mid F) = 0$. Therefore, $f = g$ a.e. **2)** since $\cdot u$. on A , then for any $\delta > 0$, there exists $E - A$ with $\widetilde{m}(E) < \delta$ such that f_n converges to f uniformly on A E^c \Rightarrow there exists a subset D X with $I\chi_D$ $\tilde{\mathcal{A}}$ and f_n converges to f uniformly on D and $E^c = I\chi_D$.

Since $f = g$ a.e. on A, then there exists $F = X$ with $I \chi_F = \tilde{\mathcal{A}}$ and $\widetilde{m}(I\chi_F) = 0$ such that $f = g$ everywhere on $A \quad I\chi_F^c$

 \Rightarrow there exists a subset H X with I_{X_H} $\tilde{\mathcal{A}}$ and $f = g$ on H and $I\chi_F^c$ $I\chi_H$.

Since
$$
\widetilde{m}(I\chi_F) = 0 < \delta
$$
 and \widetilde{m} is p.g.p. , then $\widetilde{m}(E \quad I\chi_F) < \epsilon$.

Since $f_n(x)$ $f(x)$ uniformly x D and $f(x) = g(x)$ x H $\Rightarrow f_n(x)$ g(x) uniformly x D H, so f_n g uniformly on D H. Since A E^c $I\chi_D$ and A $I\chi_F^c$ $I\chi_H$ this implies that $A (E I \chi_F)^c I \chi_{D \ H}$ Since $E \tI\chi_F \t\tilde{\mathcal{A}}$ and $\tilde{m}(E \tI\chi_F) < \epsilon$. $\cdot u$. 50 on A . $\cdot u$. **3)** since on A , then for any $\delta > 0$, there exists $E = \mathcal{A}$ with $\widetilde{m}(E) < \delta$ such that f_n converges to f uniformly on A E^c \Rightarrow there exists a subset D X with $I\chi_D$ $\tilde{\mathcal{A}}$ and f_n converges to f uniformly on D and E^c $I\chi_D$. Since $f_n = g_n a.e.$ on A, then there exists a sequence ${F_n}$ X with $I\chi_{F_n}$ $\tilde{\mathcal{A}}$ and $\tilde{m}(I\chi_{F_n})=0$ for all n 1 such that $f_n = g_n e$. on $A \quad I \chi_{F_n}^c$. \Rightarrow there exist M_n X with $I\chi_{M_n}$ $\tilde{\mathcal{A}}$ for all n 1 such that $= g_n$ on $\bigcap_{n=1}^{\infty} M_n$ and A $I\chi_{\bigcup_{n=1}^{\infty} F_n}$ $I\chi_{\bigcap_{n=1}^{\infty} M_n}$. Since $\widetilde{m}(I\chi_{F_n})=0 \ \forall n \quad 1$ and \widetilde{m} is weakly-null-countable additive $\Rightarrow \widetilde{m}(U I \chi_{F_n}) = \widetilde{m}(I \chi_{\cup F_n}) = 0 < \delta$ and since \widetilde{m} is p.g.p. $\Rightarrow \widetilde{m}(E \cup I_{\chi|_{F_n}}) < \epsilon.$ Since f_n converges to f uniformly on $D \implies f_n(x) = f(x)$ uniformly x D and $f_n = g_n$ on $\bigcap_{n=1}^{\infty} M_n \implies f_n(x) = g_n(x)$ x $\bigcap_{n=1}^{\infty} M_n$. This implies that $g_n(x)$ $f(x)$ uniformly x D $(\bigcap_{n=1}^{\infty} M_n)$, so g_n fon $(\bigcap_{n=1}^{\infty} M_n)$.

$$
A \quad E^c \quad I\chi_D \text{ and } A \quad I\chi_{\bigcup_{n=1}^c F_n}^c \quad I\chi_{\bigcap_{n=1}^\infty M_n}
$$
\n
$$
\Rightarrow A \quad (E \cup I\chi_{F_n})^c \subset I\chi_D \underset{(\bigcap_{n=1}^\infty M_n)}{\otimes} \text{ and Since } E \quad I\chi_{\bigcap F_n} \quad \tilde{\mathcal{A}}
$$
\n
$$
\text{and } \tilde{m}(E \cup I\chi_{\bigcap F_n}) < \epsilon \Rightarrow \text{Therefore, } g_n \xrightarrow{a.u.} f \text{ on } A.
$$

Theorem(3.7):

Let $\{f_n, f_n, n \in \mathbb{N}\}$ $\mathcal{M}, A \in \mathcal{A}$ and m is p.g.p., $c \in \mathbb{R}$, $\cdot u$, $\cdot u$. , on A, then: **1)** ∙ $\cdot u$. \cdot f. **2)** f_n + $\cdot u$ $+ g$. **3)** $|f_n|$.u. $|f|$.

Proof:

We only prove (2) and the proofs of (1) and (3) are similarly. **2)** since $\cdot u$. on A , then for any $\delta > 0$, there exists $E - \mathcal{A}$ with $\widetilde{m}(E) < \delta$ such that f_n converges to f uniformly on A E^c . \Rightarrow there exists a subset D X with $I\chi_D$ $\tilde{\mathcal{A}}$ and f_n converges to f uniformly on D and $E^c = I\chi_D$. since $\cdot u$. on A , then for any $\delta > 0$, there exists $F - A$ with $\widetilde{m}(F) < \delta$ such that g_n converges to g uniformly on A F^c . \Rightarrow there exists a subset M X with $I\chi_M$ $\tilde{\mathcal{A}}$ and g_n converges to g uniformly on M and A F^c $I\chi_M$. Since \widetilde{m} is p.g.p, then $\widetilde{m}(E \mid F) < \epsilon$, for $\epsilon > 0$. Since f_n converges to f uniformly on D \Rightarrow $x \quad D \cdot f_n(x) \rightarrow f(x)$, and g_n converges to g uniformly on M $\Rightarrow x \in M$, $g_n(x) \rightarrow g(x)$ $\Rightarrow x \quad D \quad M, f_n(x) + g_n(x) \rightarrow f(x) + g(x)$, then $f_n + g_n$ converges to $f + g$ uniformly on D M . Since A E^c $I\chi_D$ and A F^c $I\chi_M \implies (E \ F)^c$ $I\chi_{D \ M}$. Since E F \tilde{A} and $\tilde{m}(E \mid F) < \epsilon$. So , f_n + $\cdot u$. $+ g$ on A.

Lemma (3.8):

Let \tilde{m} have pseudometric generating property . If $\lim_{n \to \infty} \widetilde{m}(E_n) = 0$, then there exists a sequence $\{\delta_r\}_r$ of positive real numbers and a subsequence ${E_{n(i)}}$, ${E_{n}}$ with δ_r 0 such that $\widetilde{m}(\bigcup_{i=r+1}^{\infty} E_{n(i)}) < \delta_r$, $r \neq 1$.

Theorem(3.9):

Let ${f_{n}}_{n}$ *M*, *f M*, *A* \tilde{A} and *A* $A^{c} = \tilde{0}$ for every *A* \tilde{A} , then :

1) If \tilde{m} is order-continuous and has p.g.p., then

if . . on $A \implies$ $\cdot u$. on A .

2) If \tilde{m} is order-continuous, p.g.p and autocontinuous from below, then if .e. on $A \implies$ $. a.u.$ \rightarrow f on A .

3) If \tilde{m} is order-continuous, p.g.p and null-subtractive, then if $a.e.$ \rightarrow \rightarrow f on A \Rightarrow $\cdot u$. on A. **4)** If \tilde{m} is order-continuous, p.g.p, null-subtractive and

autocontinuous from below , then if $a.e.$ \rightarrow \rightarrow f on A \Rightarrow $. a u$ \rightarrow \rightarrow f on A. **Proof:**

1) Since .e. on A , then there exists a subset D X with and $m(I\chi_D) = 0\,$ such that on A $I\chi_D^c$ Let $B = A$ $I \chi_D^c$. \Rightarrow there exists H X with $I\chi_H$ $\tilde{\mathcal{A}}$ such that f_n converges to f on H and $I\chi_H$. Let $E_n^{(m)} = \bigcap_{i=1}^{\infty} \{x \in X, |f_i(x) - f(x)| < \frac{1}{m}\}, \forall m$ 1 Then, for each fixed $\,m\,-\,1$, $E_n^{(m)}$ is increasing on n and , therefore, $I\chi_{E_{\infty}^{(m)}}$ is increasing on n .

Since f_n converges everywhere to f on $B \implies B$ lim $\sum_{k=1}^{\infty} I \chi_{E_k}(m)$ $\Rightarrow B \qquad \bigcup_{n=1}^{\infty} I\chi_{E_n^{(m)}}$. Therefore we have $B \left(\bigcup_{n=1}^{\infty} I\chi_{E_n^{(m)}}\right)^c = \tilde{0}$ $\Rightarrow B \quad (\bigcup_{n=1}^{\infty} I\chi_{E_n^{(m)}}\big)^c = \bigcap_{n=1}^{\infty} (B \quad I\chi_{E_n^{(m)}}^c) = \tilde{0}.$ Thus, we get $\lim_{n\to\infty} B$ $I\chi_{E_n^{(m)}}^c = \tilde{0} \implies B$ $I\chi_{E_n^{(m)}}^c = \tilde{0}$. From the order-continuity of \widetilde{m} , we have $\lim_{n\to\infty} \widetilde{m}(B - I\chi_{E_n}^{c}(n)) = 0$, and hence, there exists a subsequence $\{B\}$ $I\chi_{E_{nm}}^c$ $\}$ of (m) , such that $m \mid B \cap I\chi_{E_{\kappa}^{(m)}} \mid < \frac{1}{m}$ for any $m=1.$ Thus, $\lim_{n \to \infty} \widetilde{m} \left(B \cap I \chi^c_{E_n^{(m)}} \right) = 0$. Therefore , by lemma(3.8), there exists a sequence $\{\delta_r\}_{r=1}^\infty$ of positive real numbers and a subsequence $\{B \cap I\chi_{E_{nm_i}}^{c_{(m_i)}}\}$ of $\{ B \quad I \chi_{E_{nm}}^c \}$ such that δ_r 0 and $\widetilde{m} \left| \bigcup_{i=r+1}^{\infty} \left[B \cap I \chi_{E_{nm}^{(m_i)}}^{c} \right] \right| < \delta_r, r \geq 1.$ For any > 0 , since \tilde{m} has p.g.p. there exists $\sigma > 0$ such that $\widetilde{m}(E)$ $\widetilde{m}(F) < \sigma \Longrightarrow \widetilde{m}(E \mid F) < \delta$. For $\sigma > 0$ above, we can find r_0 1 such that $\delta_{r_0} < \sigma$. If we take $E = \bigcup_{i=r_0+1}^{\infty} (B - I \chi^c_{E_{n_m}^{(m_i)}})$, then $E - \tilde{\mathcal{A}}$ and $\tilde{m}(E) < \sigma$. Since $\widetilde{m}(I\chi_D) = 0$ < therefore $\widetilde{m}(I\chi_D E)$.

To prove that $\{f_n\}$ converges to f almost uniformly on , we will prove that $\{f_n\}$ converges to f uniformly on A $(I\chi_D$ $E)^c$.

Since $A \quad A^c = \tilde{0}$ for every \tilde{A} , we have $B \quad B^c = \tilde{0}$ $(I\chi_D E)^c$ = ⋂ . for any $\epsilon > 0$, we take $i_0 > r_0$ such that $m_{i_0+1} > \frac{1}{\epsilon}$. Then , $x \in \bigcap_{i=r_0+1}^{\infty} E_{n_{m_i}}^{(m_i)} \implies x \in E_{n_{m_i}}^{(m_i)}$ as $i > r_0 + 1$. Thus , $x \cap_{i=n_{m_{i_{0}+1}}}^{\infty} \{x \mid X, |f_{i}(x)-f(x)| < \frac{1}{m_{i_{0}+1}}\}.$ This means that $|f_i(x) - f(x)| < \frac{1}{m_{i+1}} < \epsilon$ as $i = n_{m_{i_0+1}}$ so that converges to f uniformly on $\bigcap_{i=r_0+1}^\infty E^{(m_i)}_{n_{m_i}}$ and since $(I\chi_D E)$ ⋂ and $m(I\chi_D E)$ = Therefore , f_n converges to f almost uniformly on A . **2)** Since \cdot ^e. on A , there exists a subset D X with and $m(I\chi_D)$ = 0 $\,$ such that . on A $I\chi_D^c$. Let $B = A \quad I \chi_D^c$. \Rightarrow there exists H X with $I\chi_H$ $\tilde{\mathcal{A}}$ such that f_n converges to f on H and $I\chi_{H}$. Let $E_n^{(m)} = \bigcap_{i=1}^{\infty} \{x \in X, |f_i(x) - f(x)| < \frac{1}{m}\}, \forall m$ 1 Then for each fixed $\,m\quad 1$, $E_n^{(m)}$ is increasing on n and , therefore, $I\chi_{E_{n}^{(m)}}$ is increasing on n and as in proof (1), we have $\widetilde{m}(I\chi_D E)$. Therefore, $\lim_{n \to \infty} \widetilde{m}(I\chi_D \quad E) = 0.$ Let $B_n = I\chi_D$ $E \Longrightarrow \lim_{n \to \infty} \widetilde{m}(B_n) = 0$. By using the autocontinuity from below of \tilde{m} , we have $\lim_{n \to \infty} \widetilde{m}(A \quad B_n^c) = \widetilde{m}(A)$. Now, we will prove that f_n converges to f uniformly on B_n^c . Since B $B^c = \tilde{0}$,

$$
A \t B_n^c = A \t I \chi_D^c \t E^c \t I \chi_{\bigcap_{r_0+1}^{\infty} E_{n_{m_i}}^{(m_i)}} ,
$$

and as in proof (1) we get f_n converges to f uniformly on $\bigcap_{r_0+1}^\infty E^{(m_i)}_{n_{m_i}}$ and therefore , $a u$ \rightarrow f on A . **3)** Since $a.e.$ \rightarrow \rightarrow f on , there exists a subset D X with and $m(A \quad I\chi_D^c) = m(A)$ such that . on A $I\chi_D^c$ Let $B = A \tI\chi_D^c$. \Rightarrow there exists H \overline{X} with $I\chi_H$ $\overline{\mathcal{A}}$ such that f_n converges to f on H and $I\chi_H$. Since \widetilde{m} is null-subtractive and $\widetilde{m}(A \mid I\chi_D^c) = \widetilde{m}(A) \Rightarrow \widetilde{m}(I\chi_D) = 0$. Let $E_n^{(m)} = \bigcap_{i=1}^{\infty} \{x \in X, |f_i(x) - f(x)| < \frac{1}{m}\}, \forall m$ 1 Then, for each fixed $\,m\quad 1$, $E_n^{(m)}$ is increasing on n and , therefore, $I\chi_{E^{(m)}}$ is increasing on n and as in proof (1), we have $\widetilde{m}(I\chi_D E)$.

To prove that $\{f_n\}$ converges to f almost uniformly on, we will prove that $\{f_n\}$ converges to f uniformly on A $(I\chi_D$ $E)^c$. Since $B^c = \tilde{0}$,

 $(I\chi_D E)^c$ = ⋂ ,

and as in proof $\,$ (1) we get f_n converges to f uniformly on $\bigcap_{r_0+1}^\infty E^{(m_i)}_{n_{m_i}}$ and therefore , a *u*. \rightarrow f on A .

4) Since $a.e.$ \rightarrow \rightarrow f on A , there exists a subset D X with and $m(A \quad I\chi_D^c) = m(A)$ such that . on A $I\chi_D^c$. Let $B = A \t \chi_D^c$. \Rightarrow there exists H X with $I\chi_H$ $\tilde{\mathcal{A}}$ such that f_n converges to f on H and I_{X_H} .

Since \widetilde{m} is null-subtractive and $\widetilde{m}(A \mid I\chi_D^c) = \widetilde{m}(A) \Rightarrow \widetilde{m}(I\chi_D) = 0$. Let $E_n^{(m)} = \bigcap_{i=1}^{\infty} \{x \in X, |f_i(x) - f(x)| < \frac{1}{m}\}, \forall m$ 1 Then, for each fixed $\,m\,-\,1$, $E_n^{(m)}$ is increasing on n and , therefore, $I\chi_{E_m^{(m)}}$ is increasing on n and as in proof (1), we have $\widetilde{m}(I\chi_D E)$. Therefore, $\lim_{n \to \infty} \widetilde{m}(I\chi_D \quad \mathsf{E}) = 0.$ Let $B_n = I\chi_D$ E $\lim_{n \to \infty} \widetilde{m}(B_n) = 0$. By using the autocontinuity from below of \tilde{m} , we have $\lim_{n \to \infty} \widetilde{m}(A \quad B_n^c) = \widetilde{m}(A)$ Now, we will prove that f_n converges to f uniformly on B_n^c . Since $B^c = \tilde{0}$, = ⋂ ,

and as in proof (1) we get f_n converges to f uniformly on $\bigcap_{r_0+1}^\infty E^{(m_i)}_{n_{m_i}}$ and therefore , $a u$ \rightarrow f on A .

References:

1- K. T. Atanassove , " Intuitionistic fuzzy sets " , VII ITKR's Session, Sofia , 1983 .

2- A. I. Ban ," Examples of intuitionistic fuzzy algebras and intuitionistic fuzzy measures " , NIFS Vol 9 (2003) 3, 4-10 .

- **3-** D. Coker , " An introduction to intuitionistic fuzzy topological spaces ", Fuzzy Sets and Systems 88 (1997) 81-89 .
- **4-** L. Jun and M. Yasuda," Egoroff's theorem on fuzzy measure space " , Journal of Lanzhou University 32 (1996) 19-22 .

5- Sugeno M. , "Theory of fuzzy integrals and its applications " , Ph, D. Dissertation , Tokyo Institute of Technology , 1974 .

- **6-** B. Riecan and K.T. Atanassove , " A set –theoretical operation over intuitionistic fuzzy sets " , NIFS 12 (2006) ,2, 24-25 .
- **7-** Wang Z. , "The autocontinuity of set function and the fuzzy integral ", J Math Anal Appl , 99 ,(1984) 195-218 .
- **8-** L. A. Zadeh , " Fuzzy Sets " , Information and control ,8 , (1965) 338-353 .
- **9-**Q. Zang , "On fuzzy measure and fuzzy integral on fuzzy sets " , Fuzzy Sets and Systems , 37 (1990) 77-92 .