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المستخلص

من Fمقسمھ الى (jobs)من النتاجاتnتناولنا في ھذا البحث دراسة مسألة جدولة 

ھدفنا في ھذه الدراسة ھو إیجاد الحل الأمثل والحلول . على ماكنة واحدة(families)العوائل

التقریبیة لجدولة النتاجات لتصغیر دالة الھدف وھي المجموع ألوزني لأوقات الإتمام و المجموع 

.ألوزني للنتاجات المتاخرة 

set-up)قت لإعدادبإرخاء شرط وجود وLB)(لحل ھذه المسألة تم اشتقاق قید أدنى 

time) وتجزئة  المسألة الأصلیة إلى مسألتین جزئیتین وذلك لاستخدامھ في خوارزمیة التفرع

كما قمنا أیضا باستخدام مجموعة من الطرائق التقریبیة  .والتقید والتي تستخدم لإیجاد الحل الأمثل

Local search methods للحصول على حل قریب من الحل الامثل منھا(Algorithm

AH , Threshold Accepting, Tabu Search (TS)) .

Abstract
In this paper we consider the problem of scheduling n jobs

on a single machine, where the jobs are divided into F families,

each family f, (f = 1, …, F) contains nf jobs. Our aim in this study is

to find the optimal and near optimal schedule for the n jobs to

minimize total weighted completion time and weighted number of

tardy jops.

For solving this problem we propose a new lower bound (LB)

based on relaxation of set-up times and decomposes the problem

into tow sub-problems. To be used in a branch and bound



algorithm which used to find the optimal solution. We also applied

some local search methods to find near optimal solution such as

(algorithm AH, Threshold Accepting, Tabu search (TS)).

1-Introduction
In some setting, the grouping of jobs into families is a

desirable or necessary tactic, because of the similarity of their

production requirements [9].

No set up time is required for job if it belongs to the same

family of the previously processed job. Otherwise it is necessary at

the start of the schedule and on each occasion when the machine

switches from a job in one family to a job in another family.

Various applications of family scheduling models are

reported in literature. An example described by Conway, Maxwell

and Miller (1967). [2], involves the production of different colors of

paint on the same machine, a set up time is incurred for cleaning

the machine whenever there is color change. This set up time

depends on both: the color being removed and the color for which

the machine being prepared.

In this case we talk about dependent set up time, that is

dependent on both: the job to be processed and the immediately

preceding one. A second example is the scheduling of computer

system; it was described by Bruno and Downey [1]. We remark

that the required set up time depends only on the time to load the

compiler for the current job and does not depend on the previous

job. Here we talk about the independent set up time.

2- Problem Formulation



To state our scheduling problem more precisely we are

given: n jobs that are divided into F families, each family f, for

f=1,2,3,…,F contains nf jobs. The jobs are numbered 1, 2, …, n.

Sometimes it is more convenient to refer to job (i, f), which is the i-

th job in family f, for i=1,2,3,…,nf .

All jobs are available for processing at time zero and to be

scheduled on single machine. We let pif denote the processing

time of job (i, f), a positive weight wif (importance weight for

completion time of job (i, f), ifw , a positive number (penalty for late

of job (i, f)) and due date dif.

Given a schedule, then for each job (i, f), we calculate the

completion time of job (i, f) 
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and the zero one variable

where )(i denote the position of job i in the ordering  and S

denoted the set of all sequences. The total cost for problem (p)

consists of multiple objective of minimizing sum of weighted

completion times ic
n

i iw
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and minimum number of weighted tardy

jobs iu
n

i
iw
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Using the three classifications suggested by Graham et. al [

4 ], this problem is denoted by 
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The problem (p) is NP-hard since the iuiw //1 problem is

NP-hard. Since our multiple objective problem is NP-hard, we may

find a sequence that gives minimum value for one of them but not

both.

For this problem, there are the following cases:



* If there are no set up times ( i. e. sf = 0, f =1, …, F)and setting iw

= iw , (i=1, …, n) the resulting problem(P1) is
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σ(i)Pσ(i)Cif1
σ(i)Pσ(i)Cif0

σ(i)U

The problem (P1) is NP- hard since the 


n
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NP- hard. It is clear that the sequence used to solve the problem

(P1) obtained by (SWPT) rule usually performs not good when both

objectives are to be considered.

* If there are no set up times ( i. e. sf = 0, f =1, …, F)and iw= iw=1,

(i=1, …, n). hence the problem (P) is reduced to the problem (P2)
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Also still the problem (P2) is not easy to be solved.

* If there are no set up times( i. e. sf = 0, f =1, …, F)and setting

( iw=0, for(i=1, …, n))yields a polynomial algorithm to



minimize the total weighted completion time (i. e. iciw//1

problem) jobs should be sequenced in order of non-decreasing

processing time (SWPT) schedule[ 8 ].

* If (wi =0 and iw=1, i=1, …, n)for(p), then to minimize the number

of tardy jobs     (i. e. 


n
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//1 problem) jobs should be sequenced in

order of non- decreasing due date, the earliest due date(EDD)

schedule, and can be used Moore’s algorithm(MA)[ 6 ].

Let ))(),...,1(( n  be the sequence obtained by ordering

the jobs in (EDD) rule. In this sequence if there exists a job )(i

(with i as small as possible) that is completed after its due date,

then one of the jobs sequenced in the first i positions and with

largest processing time is selected to be late and removed from

the set n.The procedure of (MA) continues until all the remaining

jobs are completed by their due dates.

3- Lower and upper bounds
3-1 Lower bounds procedure:
In this section, we derive lower bound for our problem (p). At

the root node of the search tree an initial lower bound (LB) on the

cost of an initial schedule is obtained by relaxation of the set up

times. We first relaxed the set up times for each family f(i. e. Sf=0,

f=1, …,F), to get 
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//1 problem. Now we decompose

the problem into tow sub- problems with a simple structure. Then

the lower bound of the problem (P) is the sum of the minimum

value of the sub- problem (P3) and the lower bound of the sub-

problem (P4) where,
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This decomposition has the following properties. First, (p3) and (p4)

have simpler structure than (p), and thus appear easily to solve

optimality for (p1) (i. e. ((p1) is solved in O(n log n) steps by

(SWPT)rule). Second a lower bound can be obtained for (p2), by

using Moore’s algorithm [MA].

Hence the lower bound LB is equal to the sum of ic
n

i iw
1

for

(p1) and iu
n

i
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number of late jobs for (p2). This means that LB=

ic
n

i iw
1

+ iu
n
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.

3-2 The upper bound (UB) procedure:
The procedure begins by using two heuristic methods to

schedule the jobs. The better of the two heuristic sequences is

used to provide an initial upper bound (UB) at the root node of the

search tree.



The first heuristic method ordered the jobs according to the

shortest weighted processing time (SWPT) rule. (i. e. in non-

decreasing order Pi/Wi (i=1, …, n)), then for this sequence we

calculate the sum of weighted completion time and weighted

number of tardy jobs and their value is (UB). The second heuristic

method indexed the jobs within each family f(f=1, …, F) in

(SWPT)order.

4- Branch and Bound (BAB) algorithm:
This section describes a (BAB) algorithm, which is the most

widely solution technique that is used in scheduling problems.

Initially, the procedure begins by using two heuristic methods of

section (3-2) to generate an upper bound (UB) on the cost of an

optimal schedule. Also, at the root node of the search tree an initial

lower bound (ILB)on the cost of an optimal schedule is obtained

from the procedure described in section(3-1). At any level, if a

node has a lower bound greater than or equal to the current upper

bound (UB) already computed, then this node is discarded.

Otherwise, it may be selected for our next branching. The (BAB)

method continues in a similar way by using a forward branching

rule. Whenever a complete sequence is obtained, this sequence is

evaluated and the upper bound (UB) is altered if the new value is

less than the old one. The procedure is repeated until all nodes

have been considered. Feasible solution with this (UB) is an

optimal solution.

5- Local search for the problem (p):
It is clear that in solving scheduling problems one tends to

use Branch and Bound (BAB) algorithm or Dynamic Programming



(DP) to find optimal solutions, however, these approaches have

two main disadvantages:

 They are mathematically complex and thus a lot of times

have to be invested.

 When it concerns NP-hard problem, the computation time

requirements are enormous for large sized problem.

To avoid these drawbacks we can appeal to heuristic

methods. In recent years, the improvement in heuristic methods

becomes under the name ‘local search heuristic’ and implemented

on the problem of scheduling(n) jobs on single machine  to

minimize total weighted completion time and weighted number of

tardy jobs. the natural representation will be used to represent the

solution. For each local search method a set of parameter setting

is necessary for arriving at high performance algorithm.

First we introduce some neighborhoods for a permutation

problem, where the step of feasible solutions is given by the set of

permutation of (n) jobs [7].

 Jump(JU): In  a permutation ))(),...,1(( n  , select an

arbitrary job )(i and jump it to a smaller position j, i>j, or to a

large position k, k>i . Thus, we have .2)1()(  nN 

 Pairwise Interchange (PI) In a permutation  select two
arbitrary jobs  i and   ji,j  and interchange them, and

    21 nnN  .
 Adjacent pairwise interchange (API): This is a special

case of the jump  interchange neighborhood. In a

permutation  , two adjacent jobs )(i and

)1,...,3,2,1(),1(  nii are interchanged to generate a

neighbor  , where ).1()(  nN 



Now, we propose algorithm AH which is applied at local search
methods to provide a best solution.

5-1 Algorithm AH [5]:
Step (1): ( Initialization) to obtain an initial current solution the jobs

are ordered according to the shortest weighted processing

time(SWPT)rule, in which the jobs are sequenced in non-

decreasing order of Pi/Wi (i=1, …, n) to obtain the current

sequenced ))(),...,1((int n  with its objective function value of

int say f(
int )=

intf .

Step (2): In this step the initial sequence
int will be changed by

the others neighborhoods and function values are calculated for

every one i. e.

a.For the neighbor Ju, have Ju and Juf .
b.For the neighbor PI, have PI and PIf .

c.For the neighbor API, have API and APIf .

Step(3): Now choose  IniAPIPIJu fffff ,,,min *  and
 IniAPIPIJu  ,,,min *  , then set *

Ini fminf  and
*

Ini min  .
Step (4): (Termination) the algorithm is terminated after (500)

iterations at a feasible solution.

5-2 Threshold Accepting (TA) method
Threshold Accepting (TA) method is similar to Simulated
Annealing (SA) that uses deterministic acceptance rule for a
solution that causes a deterioration in the objective value. Here a
move is accepted providing that it doesn't increase the objective
function by more than where is threshold value. Now, the TA
method can be described as follows:
Step (1) :( Initialization) to obtain an initial current solution

int in

the same way used in section (5-1).



Step(2) Using algorithm AH to generated new solution * .
Step(3) In this step we are updating the threshold values Vk for

lk 1 .We use 1 kk VV  with   1

1

1  ll VV where V1 and Vl are
initial and final threshold values respectively and set

 
 







lll sfrV

sfrV 111

where r1, rl are parameters that determine r1 = 0.02, rl = 0.0001
and s1 is a feasible solution.

Step(4) (Termination) The algorithm is terminated after (500)
iterations at a feasible solution.

5-3Tabu search (TS) method:
Glover [3] combines the deterministic iterative improvement

algorithm with a possibility to accept cost increasing solution. In

this way the search is directed a way from local minima, such that

other parts of the solution space can be inspected. This is done by

maintaining a finite list are not acceptable in next few iterations.

This list is called the Tabu list. However, a solution on the Tabu list

may be accepted if its quality is in some sense good enough, in

which case it is said to attain a certain aspiration level.

Determination of (TS) algorithm parameters:

To determine the parameters of TS for the problem
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//1 , we discuss each of the following issues:

Step (1) :( Initialization) To obtain an initial current solution
int in

the same way used in section (5-1).

Step (2) :( Neighbourhood generated) the neighbor solution of the

current solution is generated by the same procedure described in

section (5-1) step (2).



Step (3): Add the new neighborhoods in the Tabu list if it is not

existed, otherwise ignore it.

Step (4): (Termination) This termination condition used here is the
same one described in section (5.1).

6-Computational experience
6-1   Test problems
The BAB algorithm was tested by coding it in Microsoft

FORTRAN Power Station and the local search methods were

tested by coding them in Matlab R2008a and run on a Pentium IV

at 3.33 GHz, 512 MB computer.

A set of test problem was created to compare the performance of

the algorithms. Forty random test problems were generated for

different combination of numbers of jobs and families: the size of

the test problems used are n=10, 20, 30, 50, 60, 70, 80 with F= 2,

5, 8. Jobs are distributed uniformly across families, so that each

family contains either    FnorFn // jobs. Processing times,

weights and set-up times are randomly generated integers from

the uniform distribution [1, 10]. An integer penalty 
iW was

generated from the uniform distribution [1, 100].

We used the (BAB) algorithm described in section (4). The optimal

solution of all 10-jobs and 20-jobs test problem with F=2, 5, 8 are

obtained with reasonable limits on computation time. For problems

that are not solved to optimality, the best solution was found by

any of local search methods.

The local search methods that are described in section (5) were

applied to all test problems and were compared.

6-2 Comparative results:



In this section we will report the results of the computational

tests to show the effectiveness of the BAB algorithm and the local

search methods. Twenty test problems for n=20 and F=4 are

tested and the results are given in Table (1).

It is seen from Table (1) that each of the algorithms:

algorithm AH, Threshold Accepting (TA), Tabu search (TS)

generates solutions of high quality with respect to the difficulty of

our objective function. It is clear from Table (1) that the best result

as measured by the number of optimal solutions generated and

the average deviations are obtained by Tabu search (TS), followed

by Threshold Accepting  and then algorithm AH.

Local search methods described in section (5) are compared

in Table (2) which shows the importance of each method. An

optimal solution to each test problem is obtained by (BAB)

algorithm. Whenever a problem was not solved to optimality within

a reasonable limit on computation time, the best solution value

found by any of the local search methods forms the basis for

comparison.

The local search methods are compared by listing for each

value of n the number of times out of 40 that an optimal solution is

found (NO).

Number BAB AH TA TS

1 99251 99251* 99941 99251*

2 73539 80609 78734 74785



3 79388 84382 79388* 79946

4 96954 99767 99359 98906

5 73199 73837 73199* 73199*

6 91272 91272* 93358 91272*

7 82387 87948 86413 87227

8 78177 79436 78177* 78177*

9 93291 99106 95820 94128

10 50474 59002 57034 50474*

11 77556 77557* 77557* 77557*

12 83219 87055 83966 83219*

13 97580 98515 97580* 97580*

14 78257 78257* 78838 78257*

15 78458 79717 79035 79598

16 75129 76659 75129* 77663

17 77893 77893* 78761 77893*

18 65691 68013 67393 67296

19 68769 69372 68791* 68791*

20 63932 63923* 63923* 63923*



The results in Table (2) shows that (TS) method performs

very well, especially for the large problem instances, but it is

computationally time consuming. Also it is clear from Table (2) that

(AH) and (TA) gave reasonable results.

The main conclusion to be drawn from the computation

results is that (TS) is more effective method for our problem. For

the large problem instances (TA) and (AH) have generated a good

quality solution.

Finally, all heuristics presented in this paper generate quite

good solutions to our problem with respect to the difficulty of our

objective function.

Table (1). Comparison between local  search  method values and

optimal solution.

* Indicates that the value of heuristic method is equal to the
optimal value.
BAB: Branch and Bound method.
AH: The algorithm AH.
TA: Threshold Accepting method.
TS: Tabu Search method.

Table (2). Comparative results



N F
AH TA TS

N
O

AD ACT N
O

AD ACT N
O

AD ACT

10

2 1
7

70 0.32 19 82 0.41 2
1

47 0.63

5 1
0

186 0.38 13 131 0.46 1
6

74 0.62

8 2
3

164 0.44 25 45 0.44 2
8

56 0.74

20

2 2
1

320 0.50 24 221 0.59 1
8

216 0.98

5 1
2

304 0.27 12 128 0.72 8 338 1.33

8 1
5

209 0.27 17 332 0.74 1
1

145 1.98

30

2 1
3

613 0.43 10 302 0.50 2
0

315 1.40

5 1
5

998 0.66 12 465 0.68 2
3

328 1.83

8 1
4

1274 0.71 11 864 0.79 2
5

454 1.46

50

2 9 5344 0.33 10 1139 0.83 1
7

357 2.32

5 1
1

5846 0.23 6 1674 0.91 3
1

276 2.32

8 1
3

4556 0.17 5 1431 0.55 2
4

987 3.27

60

2 8 7654 0.66 3 3530 1.32 3
4

368 1.78

5 6 7562 0.28 4 2318 1.45 2
7

573 2.46

8 2 8725 0.09 4 4238 1.66 3
9

235 2.80

70 2 4 9893 0.22 6 5456 1.73 3
6

783 3.11



5 3 14168 0.23 4 4367 1.76 4
0

0 4.45

8 4 15425 0.22 7 3473 2.00 4
0

0 3.23

80

2 0 17452 0.28 3 8227 2.20 3
5

524 4.84

5 0 18357 0.35 2 3626 2.20 3
9

243 4.79

8 0 15460 0.67 3 6382 2.72 4
0

0 4.62

N: Number of jobs.
F: Number of families.
NO: Number of times out of 40 that an optimal solution is found.
AD: The average deviation.
ACT: The average computation time in seconds.
TA: Threshold Accepting method.

TS: Tabu Search method.
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