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Abstract
In this paper, a new self-scaing VM-agorithm for unconstrained
non-linear optimization is investigated. Some theoretical and experimental
results are given on the scaling technique, which guarantee the Superlinear
of the new proposed algorithm.
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1.Introduction

Conjugate Gradient (CG) methods were first used to solve the
general unconstrained problem by Fletcher and Reeves[14]. Their algorithm
(or simple variants) is still frequently used, especially for problems with a
large number of variables since they require only a few vectors of length n
to be stored.

Given a symmetric positive definite matrix G, the finite set of non-
null vectors{d, d,, ..., di} aresaid to form a conjugate set if

d' Gd; =0 for all it ]

An important class of quas-Newton methods for solving the
unconstrained optimization problem, [13]

min f(x), 1)
xi R"

was proposed by [7]. It congistsf iterations of the form

where
dy =-By'gy (3)

Here |l i is a step length parameter satisfies the Wolfe conditions with exact
line search strategy, i.e.

f(x +1d)EF(x)+al grd, (4)

g(xy *+1 dy) " dy 3 bged, ()

for .4 < 1 anda <b < 1,and g denotesthe gradient of f at Xy.
2

The Hessian approximation By is updated by means of the formula
BkTSkSlBk + yﬁYI +f
S BSk Yk Sk
where f isascalar, yk = gk1-Gk, S = Xk+1-Xk and
é B.s U
Vk:é)T/k' = 7)
8Y«Sk  SkBiSc
The choice of the parameter f is important, since it can gresatly
affect the performance of the methods. The BFGS method corresponds to
f, =0

Byx =By - k(S-I[BkSk )Vle’ (6)
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Variable metric (VM) methods were originally proposed by Davidon
[11]. Subsequently, many authors have extended the theory and
practice,[12] for a survey. The search direction in a VM- method is the
solution of the system of equations.

dy =-H, g

where the matrix Hy is an approximation to G'kl, the inverse Hessian of the
function f(x). and:

T T
Vi Gy vy @vy Yy

This relationship is exact if the non-linear function f is exactly equal
g. The new approximation for the inverse Hessian Hy+1 is chosen to ensure
that

Hy Yo = Xg Vi

where X, is a scalar; generally for the quasi-Newton (QN) method X, =1
and hence (3.15) reduces to

Hi+1 Vi = Vi (called the QN-condition)
And
Hy+1 = Hi + Cy

The matrix Cy istherefore, the update to Hy .
For the next iteration By.1 is updated by Al-Bayati’s VM-update, i.e.
T T
B = By - oS SO Ty, ®
ScBisk  (ScYi)

See [1] for more details and properties of this algorithm.

Algorithm 1.1:, [6]

(1) For astarting point x; and non singular matrix V1 ; set k =1.
(2) Terminate if ||gk+1|| <1 ,I isasmal positive real number.
(3) Compute
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de =-Vi Vi ' gy
Xs1 = X + 1 dy
| « iscomputed by exact line search .

(4) Update Vi using Al-Bayati, 1991 VM-update.
Vi S S Vi + S Vi Vi
Se Vi S (Ve S)°
(5) Compute the scaling parameter s, 30 and m, >0 such that
S, £, . If w; represents the column of Wy put Cc = diag[c1, 2, -...,

W, =V, - - Yi Yk

cn] where
; 3
i
P Sk if |w,|<s,
i wi
P m -
o =f M it w, | >m, )
i wil
[ T
I'Z—", Where z, =M otherwise
f wi k Sk J
(6) Set Vi1 = Wi Ci
(7) set k =k +1 and go to step (1)
Note that:
1- In the above algorithm
B, =V, VlT u
B, =V, V, | (10)

y
=W,.; Cica Wiy k>1'|b

and the update is performed directly on V.

2. Basic Results for Super Linear Convergence
First we define the following quantities to be used in this section:

A A 1

Ek :G*ZBKG*Z 1 Wk =G* ZWk (11)
1 1

§k = G*Z Sk ) Vk = G*Zyk (12)
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T =
W, =2 M, = 2 (13)
Vi S Sk Sk
g =S BuS . Cos =3 B S (14)
Sk Sk |§k||||Bk Sk"

where G- isthe Hessan of f at the minimizer x- .

The limiting behavior of Q and Cosak is enough to characterize

the asymptotic rate of convergence of a sequence of iterates {xx} generated
by a quasi-Newton algorithm. Their result which can be seen as a
restatement of the[12] characterization, is reproduced in the following
lemma.

Lemma (2.1):

Suppose that the sequence of iterates {xy} is generated by algorithm
(1.1) usng some positive definite sequence{ B} ,and that | « = 1 whenever
this value satisfies Wolfe conditions(4)-(5).If xx ® x- then the following
two conditions are equivaent :

(i) The steplength | ¢ = 1 satisfies conditions (4)-(5) for al larg k and the rate
of convergence is superlinear.

(i) lim Cosq, =1im T, =1 (15)
k® ¥ k® ¥

Proof: Proof of thislemma can be found in [9]. The next theorem specifies

conditions on the scaling parameters sy and hy that alow ], and Cosak ,

produced by Algorithm 1.1, to exhibit the desirable limiting behavior of
Lemma 2.1 . Such conditions involve the following quantities:

¢ 1P SR (16)
) 2 ) 2 G. 2 wi G. 2 wi u
e s 2 u
g = 4 &(ln |G.2wi| -|G.2wi|)-(ns? . z —)a
[wi il g
€ u
é a
and
é 12 R
é 2 Wi 2 will a
: 12 P G.2wi G.2 wi 0 (17)
m = &In|G.2 wi| - |G.2wi| )- (InhZ - hi —)u
wil wil®
é d
3 H

3
a
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2 2

¢ 1 SN

€ L . p |GFw ew U (17g)
e T .= u
f,=a&n|G2wi| -|G.2wi| )- (Inz? -z2 —1)0
13,8 Jwil jwil® "4
e u
e ¢

and whether they sum finitely or not. Note that gc and mx need not be
positive. Recall that the sets I and J defined by:
e = (7 [ n]: | wi] <o)
and
Je = (“ [1’ n]:”Wi”> Hk)
contain the indices of the columns that are scaled down at iteration k.
We are now ready to state the theorem.

Theorem 2.1:
For the quadratic function f, X, B, Sk and hy satisfy the assumptions
intheorem 1.1 . In addition, assume that G is Lipschitz continuous at x-. Let

{x} ® x» be generated by Algorithm 1.1; then if

& g, <¥ (18)
k=1

&

am <¥ (29)
k=1

3

af,<¥ (199
k=1

the iterates converge superlinearly (for the case of non-quadratic functions,
see[2] and, [3].

Proof: Lety (B) =tr (B) - In(det (B) then,
Tr (ACAT) = tr (AAT) +tr [(C—1) ATA] and from (11), we have
1 1 1 1
Y (Bisy) =tr(G.2 W, C; W, G.2)-Indet (G.2 W, C; W, G.2)
=tr(W, C2 W) -Indet (W, W) -In det (C?)

-~ ~ n € 1 u
=y (W, W)+ &c’ -1)1G.2 W, |I” -Incfy
=18 g
Then by the definition (9) of ¢ ,
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_ _ 2 5 L s? u
y By =y (W, W)+ 21G.2 W, | -In
K Kk ||W|| p ||W||g
o &&h? 0 h2 U
_|| W, [P -In—k g
..Jkguwu : W ||Zg
22 U
Zi 1|| 2W||2 In
||W|| pa ||W||g
: ||G;wu 3
o € 2
=y (W, W, )+aes = G2 WP
Iakg W, |17
G'1 2 U
NCIWI e e
AR
H
é 1 )
o &, l1G2W, | 5
a31 T 1G.2 W, |
g
1 d
G.2 W,
-In h2 " " |n"G 2W||2u
W, |17
H
é 1
o &, ||G2W
3 GG 6y e
0.8 Wl
g
le ! y
In iuﬂnneﬁwinzﬁ
W, |2 ;
=y (\K/kWIZ)+gk+n]<+fk (20)

Since Wk WkT is the matrix obtained by updating Bi using the, [1]
formula, which isinvariant under the transformation (11) — (14), we have:
Y(WkaT)zy By)+ M, -Inm, -1) 21)
+(1- qzk +1n qzk ) + In cos 2q ,

Cos "q Cos "q
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Therefore, using (21) in (20), we have:

= n n"n qk qk
B - B M 'I '1 1' id I il
y ( k+1) y ( k) ( k k ) ( 2 X 2 k)

+In cos’ + g +m, +f

A N SO q
=y B)+8 M -Inm;-1)+ & [(1-—F_ 4in_dc) P (22
j=1 j=1 COS COS" (|

~ & & &
+|n0052qj]+a grtram+af,
j=1

j=1 j=1

Now by the following theorem due to [10].
Theorem 1.1:

Let x1 be a starting point for which f satisfies eq.(12) and let B; be a
positive definite starting Hessian approximation. Let {x} be generated by
the new proposed agorithm with sx and my satisfying eg.(18) and for any
r1 (0, 1) $ aconstant by ' for any k >1 the relation Cos g; 3 b holds for at
least [P] valuesof jT [1, K].

We know that the iterates converge to x- r-linearly. Using this and
the Lipschitz continuity of G at x- , it isnot difficult to show, see [9] that:

kK~
aM;-Inm, -1)<¥ (23)
j=1
Moreover, the hypothess of the theorem guarantees that the last two
summationsin (22) are bounded above. Therefore, inorder for y (B, ;) to

remain positive as K ® ¥ , the sum of the nonpositive terms in the square
brackets must aso be bounded. This can only be true if:

lim (1-—%_ +In— %) = |im Incos’qj =0
k@¥ — cos"qy Ccos"q, k®¥

Which implies that both ¢, and COSzak ® 1. Hence, superlinear

convergence follows from Lemma (2.1) #.

Now we describe a specific and modified implementation of
algorithm 1.1 and make use of the theory developed so far to show that it is
superlinearly convergent for strictly convex objective functions.

New Algorithm:
Step (0) Choose x; and a nonsngular and lower matrix Vi ;
setk=1.
Step (1) Terminate if astopping criterion is satisfied.
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Step (2) Find an orthogonal matrix Qx such that Lx = Vi Qk is a lower
triangular.
Compute :
dy =-L3 Ly gk,
X =X 1 dy
Where | | is a steplenghth that satisfies the Wolfe conditions (The
stepsize | | =1 isawaystried first and is accepted if admissible).
Compute:
S = Xi+1 — Xk
Yk = Oi+1 — Ok
Step (3) Perform the following steps to update Ly to W so that W, WkT
become Al-Bayati update of L LT( as defined in (8):

(3.1) Compute r, =L} S,
(32) Find an orthogonal and lower matrix W, such that
Wy e =n/{r -
(3.3) Construct W, ={w* , w5 ,...,w*}, where w isgiven by
wk :I Yil\Yk S ,.i =1
Tt LW g ,1=22,3,...,n
Step (4) Compute the scaling parameters:

:
If k=1, sf:hf:ﬁ Y152

S Y1

: 1é . )
Otherwise, s 2 :Hé(n_“k -1y s, + 8 WKL |2
e

il q

o\

where I ={il [1,n]:| W [|<s 4},

1 0 :
AN hE =2 [0, DNEs + BIWSIP

i g
—riT . k-1
where J,; ={il [1,n]:[| W™ |>h, .}
Construct Cy = diagond (¢, ¢z, ... , Cy) Where ¢; is given by:
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s,

I if W |<s,
Al |

¢ = it W< > h,
i T ] ]
: Zkk , Wherew otherwise
T ITWE Yk Sk

Compute: gy, =W, C,
Step (5) Set k =k + 1 and go to step (1).

3.Numerical Results

In order to asses the value of this new technique, numerical tests on
twenty tests functions were carried out for uncongtraint optimization
problems. As a standard for the purpose of comparison, the test functions,
(from general literature) were solved using two different VM-algorithms.

0] The standard BFGS agorithm.
(i)  The new proposed algorithm (which it has been proved to be
superlinear convergent algorithm).

All the numerical results were presented in tables (1)-(2). All the
agorithms terminate whenever g,,, g,,, <1~ 10 °and the two

algorithms use exactly the same line search strategy, namely, the cubic
fitting technique directly adapted from that published by [8].

Analysis of the two tables shows that the new proposed
VM-algorithm is superior to the standard BFGS algorithm. The superiority
of the new algorithm is clear for high dimensionality test problems because
of the automatic scaling strategy.
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Table (1): Comparison of the new algorithm with the standard BFGS

Test Function

pd

for2<n<10.
New algorithm

Standard BFGS

NOI | NOF

NOI | NOF

osP

4 24

8 44

Helical

22 60

19 59

Cubic

I 34

8 26

Rosen

12 41

35 106

Powsell

16 72

19 79

Wood

20 72

30 84

NON

26 87

21 66

Miele

23 79

25 94

osP

RAABMRMBRBRWN

17 79

20

Full

9 19

9 19

Percentage improvement of the new algorithm compared with the

standard BFGS algorithm

100 % NOI

100 % NOF

124.358

120.282

Table (2): Comparison of the new algorithm with the standard BFGS

Test Function

for 100<n <900.

New algorithm

Standard BFGS

NOI | NOF

NOI | NOF

Powdll

29 89

34 107

Wood

122 340

232 747

Rosen

18 55

244 767

Miele

29 91

31 107

Dixon

644

244 644

Cubic

10 39

13 39

Wolfe

78

84

Powdll

32

39

Cantre

15

12

Miele

Total | |595 1715|966 |2869 |

31
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Percentage improvement of the new a gorithm compared to standard
BFGS agorithm

100 % NOI 100 % NOF

162.352 167.288

4. Final Remarksand Conclusions

We have described in this paper the conditions under which new
automatic self-scaling agorithms based on the direct form of [1] VM-
Update can be proved to be superlinearly convergent. Also some sort of
numerical experiments have been done to know the effectiveness of the new
proposed algorithm.

It is dso possble to describe another similar algorithm based on the
inverse scaed-BFGS agorithm. A column scaling algorithm which was
proposed by [15] may be modified and implemented with this family of
algorithms.

However, values of sy, nx selected in the new algorithm are
arbitrary. It might occasionally be better to increase s¢ and to decrease ni.
In any case, the theory developed in this paper will prove to be useful for
analyzing the super linear convergence of this algorithm.

Finally this, idea may be extended to constrained optimization
problems, see [5] for more details and for non-quadratic models see [4].
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