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A B S T R A C T 

In recent years, extensive studies have been devoted to iron oxide 

nanoparticles (IONPs). Iron oxides are chemical compounds that have 

various polymorphic forms, including maghemite (γ-Fe2O3), magnetite 

(Fe3O4), and Hematite (α-Fe2O3). Among them, the most important 

studied is magnetite (Fe3O4) due to its low cost and low toxicity and its 

unique magnetic and physicochemical characteristics, which qualify it 

for use in various biomedical and technological applications. Magnetic 

particles should be small and have a narrow size distribution for these 

applications. The smaller the size of the iron oxide particles, the greater 

their reactivity and biodegradability. In this review, we display summary 

information on magnetite (Fe3O4) nanoparticles in terms of structure, 

characteristics, and preparation methods.   Because the prepared strategy 

has been proven to be critical for preferable control of the particle size 

and shape, in addition to producing monodispersed magnetite (Fe3O4) 

nanoparticles with a direct effect on their characteristics and 

applications, special attention will be placed on chemical preparation 

techniques including Hydrothermal synthesis, Coprecipitation 

technique, Sol-Gel process, and thermal decomposition method. This 

review offers specific information for selecting appropriate synthetic 

methods for obtaining appropriate sizes, shapes, and magnetic properties 

of magnetite (Fe3O4) nanoparticles (NPs) for target applications.
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1. Introduction 

Nanoparticles (NPs) have a higher surface area than macro-sized particles. At the atomic level (1–100) nm, NPs 

are referred to as controlled or manipulated particles. They exhibit size-related characteristics that vary 

significantly from bulk materials. Compared to similar materials in bulk dimensions, these structures have distinct 

and desirable chemical and physical properties, such as a unique surface area and optical, magnetic, electrical, 

thermal, and mechanical behaviour [1-6]. Magnetic nanoparticles (MNPs) contain numerous distinct magnetic 

properties, including high magnetic susceptibility, high coercivity, superparamagnetic, low Curie temperature, etc. 

[7].   MNPs have piqued the attention of researchers due to their fascinating properties and wide range of diverse 

applications in high-density data storage, ferrofluids, and catalysts. In bioapplications, containing detection of 

biological entities (viruses, bacteria, enzymes, nucleic acids, cells, protein, etc.) and magnetic bioseparation [7]. 
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In addition, MNPs have been employed to create heat to treat hyperthermia, produce contrast influences for 

magnetic imaging, and dominate targeted drug delivery remotely [8]. Iron oxide nanoparticles have been identified 

as the best candidate for various factors. (1) abundance, (2) simple preparation, (3) simple access to several 

oxidation states and polymorphs, (4) a diverse range of electrical and magnetic properties, and (5) Iron oxide 

nanoparticles are an appropriate prototype of functional material with a varied spectrum of electrical and magnetic 

properties due to their low toxicity and spontaneous elimination [9]. In addition, due to their high biocompatibility, 

iron oxide nanoparticles are promising nanomaterials. The biocompatibility of iron oxide nanoparticles is the 

primary factor propelling significant research efforts to commercialise these nanoparticles for use in sophisticated 

medical technology applications [8, 10, 11]. Iron oxide can be found in variations of forms in nature. The most 

prevalent are hematite (α-Fe2O3), maghemite (γ-Fe2O3), and magnetite (Fe3O4) [12, 13]. Magnetite (Fe3O4) is a 

promising candidate among known crystal polymorphs of iron (III) due to its biocompatibility and biodegradable 

activity [14]. Fe3O4 NPs exhibit either superparamagnetic (if the size is under 15 nm) or ferromagnetic behaviour 

[8]. Magnetite is a naturally occurring mineral that has been widely utilised in biological applications, including 

magnetic separation, magnetic drug delivery, magnetic resonance imaging, and magnetic hyperthermia [8, 15-20]. 

The physical, chemical, and biological approaches are the three most significant reported routes for creating Fe3O4 

nanoparticles [21, 22]. Chemical methods have an advantage over physical and biological ones when developing 

new materials with higher chemical homogeneity by combining different precursors and carefully regulating 

nanoparticle size, shape, and content. The chemical pathway also saves time and money because it does not require 

expensive tools or ingredients, making it a suitable method for manufacturing nanoparticles. Yet, the chemical 

method has significant downsides, such as producing excess intermediates and contaminants and the possibility of 

colloidal agglomeration occurring during the synthesis process [23]. In this paper, we will focus on the influence 

of chemical synthesis on the geometries, sizes, and, thus, magnetic characteristics of magnetite NPs, in addition to 

the structure and summary of the properties of Fe3O4 nanoparticles. 

2. Iron Oxides 

There are eight known iron oxides [24]. Because of their polymorphism, which involves temperature-induced 

phase transitions, Hematite, maghemite, and magnetite are such widespread candidates among these iron oxides, 

and each one has distinct catalytic, magnetic, biochemical, and characteristics that make them suitable for a variety 

of biomedical and technical applications [25]. 

2.1 Hematite (α-Fe2O3)  

With an antiferromagnetic order below Néel temperature and a corundum crystal structure, α-Fe2O3 is the most 

stable iron oxide phase (955 K). Two-thirds of the octahedral sites limited through the roughly ideal hexagonal 

close-packed Oxygen lattice are occupied by Fe3+ ions, as revealed in Fig. 1(a). Due to its inexpensive and high 

corrosion resistance, Hematite (α-Fe2O3) is commonly used in gas sensors, pigments, and catalysts and as a source 

for preparing magnetite and maghemite. Hematite is a 2.1 eV band gap n-type semiconductor under the 

circumstances of the environment [25- 27]. 

2.2 Magnetite (Fe3O4)  

Magnetite has a face-centred cubic with an inverse spinel structure, set up on thirty-two Oxygen ions and packed 

closely along the direction [28]. Magnetite includes both divalent and trivalent iron, unlike most other iron oxides. 

Fe2+ ions occupy 1/2 octahedral positions, and the Fe3+ ions are distributed equally across the residual tetrahedral 

and octahedral positions. Fe3+ ions in the A and B positions are antiferromagnetically coupled, whilst Fe2+ ions in 

the B position participate in macroscopic ferromagnetic characteristics, as displayed in Fig. 1(b).   Fe3+ ions within 

the A and B positions are coupled antiferromagnetically, while Fe2+ ions within the B position share macroscopic 

ferromagnetic characteristics. The divalent irons can be replaced partially or completely by another divalent ion 

(Zn, Mn, Co, etc). So, magnetite can be either p-type or n-type semiconductors. Due to its low band gap (0.1 eV), 

magnetite possesses the lowest resistivity among all iron oxides. Fe3O4 readily undergoes a phase transformation 

to maghemite at room temperature [25, 27]. 
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2.3 Maghemite (γ-Fe2O3) 

Maghemite has a cubic structure; each unit of γ- Fe2O3 has 21⅓ Fe3+ ions, 2⅓ vacancies, and 32 O2− ions. The 

O2− ions form a cubic packed close array, whilst the Fe3+ is spread between tetrahedral sites (8 Fe ions per unit 

cell) and octahedral positions (the residual iron ions and vacancies), as shown in Fig. 1 (c). Maghemite is oxidised 

magnetite and a 2.0 eV bandgap n-type semiconductor. An inexpensive technique can synthesise maghemite with 

good dispersivity in aqueous media. It is classified as a ferromagnetic oxide with a spinel structure nearly that of 

magnetite [25, 27]. 

 
Figure 1: Crystal structure of the Hematite, Magnetite, and Maghemite (the black ball is Fe2+, the green ball is 

Fe3+, and the red ball is O2−) [25]. 

3. Properties of Magnetite (Fe3O4) Nanoparticles 

The magnetic characteristics of Fe3O4 NPs are controlled via the size of the particle. When ferrimagnetic Fe3O4 

NPs are small enough, they exhibit superparamagnetic attributes with a great response to the magnetic field 

applied. Fig. 2 depicts the transformation of ferrimagnetic to superparamagnetic characteristics, where the MNPs 

change to single-domain magnetism from multi-domain magnetism as their size decreases. The increase of 

coercivity to a maximum value is due to the reduction in size to a specific size called the critical diameter, Ds. At 

this point, the magnetic spins indicate the same direction, improving the magnetic property, and MNPs are 

typically hard to demagnetise due to their high coercivity. Decreasing size rapidly reduces the coercivity value 

until it equals zero; at this point, the NPs are said to be in a superparamagnetic state. Generally, Fe3O4 NPs with 

diameters less than 20 nm have superparamagnetic properties [8, 23]. 

 
Figure 2: Relation between coercivity, HC, and magnetic particle diameter, D [23]. 

As displayed in Fig. 3, superparamagnetic Fe3O4 NPs differ from ferrimagnetic particles in that they lack coercive 

force and hysteresis loops because of single-domain magnetism, allowing them to be magnetised just in the 

existence of an external magnetic field. As a result, employing an external magnetic field to control these 

superparamagnetic Fe3O4 nanoparticles is simple. Superparamagnetic nanoparticles exhibit a stronger and quicker 

magnetic response to an external magnetic field, which is also worth noticing [23].  
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Figure 3: Magnetization vs the applied field (M–H) curve of the superparamagnetism (blue colour) and 

ferrimagnetism (orange colour) [23]. 

Table 1 displays the physical and magnetic properties of Fe3O4 NPs [24, 29, 30]. The saturation magnetisation 

values are the most important feature in the biological field. High saturation magnetisation values improve drug 

delivery to cancer cells, image projection resolution in MRI, and heat dissipation in MHT. 

Table 1: Summary of the properties of Fe3O4 nanoparticles. 

Property Magnetite 

Molecular formula Fe3O4 

Type of magnetism Ferrimagnetic 

Density (g/cm3) 5.18 

Curie temperature (K) 850 

Saturation magnetisation (Ms) at 300K [emug-1] 92–100 

Melting point (oC) 1583-1597 

Standard Gibbs free energy of formation (∆Gf0) [kJ/mol] -1012.6 

Structural type Inverse spinel 

Crystallographic system Cubic 

Lattice parameter (nm) a = 0.8396 

Lattice angles  α =  γ = β = 90 

Band gap energy (Eg) [eV] 2.6 

Color Black 

Formula units/unit cell 8 

Hardness 5.5 

4. Chemical Methods for Synthesis of Fe3O4 NPs  

 A typical magnetite preparation reaction is explained below by depicting the compound's composition [29]. 

FeO                       +                 Fe2O3                                                    Fe3O4 

(Ferrous Oxide)                        (Ferric Oxide)                                       Magnetite 

Much research has been developed in the last few decades to prepare iron oxide nanoparticles, and considerable 

studies have been published that describe efficient synthesis methods for producing stable, biocompatible, shape-

controlled, and monodispersed iron oxide NPs. Hydrothermal synthesis [7], Coprecipitation [31], Sol-Gel, and 

thermal decomposition methods [28] are all Chemical methods for producing high-quality magnetite NPs. 
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4.1 Hydrothermal Synthesis 

These reactions occur in aqueous media in autoclaves or reactors where the pressure (generally between 0.3 and 4 

MPa) and temperature can be adjusted (in general from 130-250oC. To achieve supersaturating, hydrothermal 

procedures depend on the capability of water to hydrolyse and dehydrate metal salts at extreme conditions, as well 

as the very low solubility of the resultant metal oxides in water at these limits [7, 32]. Iron oxide NPs with 

appropriate shape and size control are technologically significant because of the robust correlation between these 

parameters and magnetic characteristics [33]. The hydrothermal approach is environmentally friendly, 

inexpensive, and straightforward, and the reaction was carried out at relatively low temperatures. This technique 

controls particle size in crystallisation and morphology via reaction time and temperature, allowing for the creation 

of high-quality nanoparticles [28, 34-38]. The hydrothermal method is sometimes used to prepare single crystal 

particles free of dislocation defects, and grains created in this technique may possess higher crystallinity than 

grains formed in other methods, implying that hydrothermal synthesis is more likely to produce iron oxide NPs 

with highly crystalline [7]. Many researchers successfully fabricated iron oxide NPs by hydrothermal method [39-

44]. In 2014 [40], conducted a comprehensive investigation of the influence of reaction time and temperature on 

particle size in this process. As stated by transmission electron microscopy examination, the size of the NPs 

increased from (14.5- 29.9) nm at a reaction temperature raised from 100 – 180°C for twelve hours. At 180°C, the 

size of nanoparticles grows from (20.6 –123.44) nm as the reaction time was raised from (1 – 48) h. This means 

that the reaction times had a more significant impact on the particle size than temperature. N. Gómez et al. [28] 

fabricated Fe3O4 NPs via a hydrothermal process. In addition, they investigated the influence of reaction 

temperature on the morphology, phase structure, particle size, and shape of products. The X-ray diffraction pattern 

displayed that all the NPs were Fe3O4 in a pure magnetite phase. The produced NPs had uniform morphology with 

a high level of crystallinity at all temperatures, as noticed by TEM. Fig. 4 revealed a TEM image of NPs prepared 

at 120oC. As a result, by elevating the temperature to 120°C, 140°C, and 160°C, it was feasible to create quasi-

spheres, octahedrons, and cubes in the nanometric regime. The hydrothermal method was chosen by S. Ni et al. 

[44] to produce well-dispersed, well crystallised and high-purity Fe3O4 nanoparticles, which this method can 

quickly obtain. The product was received at 90 C for 24 h with an average diameter of approximately 160 nm in 

the presence of sodium sulfate. S. Ahmadi et al. [43] have used a facile hydrothermal technique to fabricate highly 

crystallite Fe3O4 nanocrystals. The calculated average crystallite sizes are 13.4, 20.8, and 22.8 nm for the magnetite 

formed at 100, 150, and 200oC, sequentially. It is suggested that elevated temperature is desirable for preparing 

bigger magnetite NPs. Both crystallite and average particle sizes of the magnetite NPs are identical, showing the 

single-crystal structure of the crystals. The formed magnetite nanocrystals have superparamagnetic behaviour, 

whereas the saturation magnetisation and the coercivity increment with the increment of the hydrothermal 

temperature. The increment of both the saturation magnetisation and the coercivity of the magnetite nanocrystals 

can be referred to as the spin canting influence and the reduced ratio of the surface-to-volume of the nanocrystals. 

Fig. 5 displays the hydrothermal synthesis of IONPs. 

 
Figure 4: TEM image of the Fe3O4 NPs at 120oC [28]. 
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Figure 5: Hydrothermal synthesis of IONPs [45]. 

4.2 Coprecipitation 

Coprecipitation is the most generally utilised method for producing Fe3O4 because of its advantages, including an 

inexpensive and simple synthetic procedure, a high-yield product with exceptional magnetic and crystal 

characteristics, and an inorganic reactant. This process involves mixing ferric and ferrous ions in fundamental 

solutions at elevated or room temperatures in a 2:1 molar ratio. The morphology and size of the Fe3O4 NPs rely 

on the type of salt utilised (e.g. nitrates, perchlorates, chlorides, sulfates, etc.), ionic strength of the media, the PH 

value, the growth temperature, the ferric and ferrous ions ratio, and the other factors (e.g. dropping speed of basic 

solution, stirring rate) [46-48]. Fig. 6 reveals a schematic representation of Fe3O4 NPs formation during chemical 

coprecipitation. S. ISLAM et al. [47] investigated the comparative formation of Fe3O4 NPs by coprecipitation and 

hydrothermal methods. The results reveal that the coprecipitation method is better in terms of particle size, 

saturation values of magnetisation, and heat dissipation capability. In contrast, the hydrothermal method is better 

regarding absorbance (reflectance) and particle shape.  

 

Figure 6: Schematic representation of SPIONs formation during chemical coprecipitation [49]. 

M. Tajabadi and M. E. Khosroshahi [50] reported the influence of alkaline medium temperature and concentration 

on significant properties of Fe3O4 NPs. Ferrous chloride hexahydrate and ferric sulfate heptahydrate are used as 

iron sources. At two different temperatures, i.e. 25 and 70°C, NH4OH with (0.9-2.1) M concentration was utilised 

as an alkaline precursor. These results display that the particles prepared at higher temperature (70°C) and 

minimum alkaline concentration (0.9 M) possess the largest saturation magnetisation, at 70°C around 68 emu/gr, 

in comparison with the smallest particle size at 25°C about 63 emu/gr. R. Rahmawati et al. [51] studied the 

influence of the frequency of ultrasonic waves and the stirring rate on the particle size of magnetite NPs prepared 

via coprecipitation protocol. Until 700 rpm, the average crystallite size of Fe3O4 NPs reduced from 24.0 to 22.3 

nm, then incremented to 25 nm up to 900 rpm. TQ. Bui et al. [52] prepared monodisperse magnetite nanoparticles 
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by an ultrasonically enhanced coprecipitation process. The TEM images revealed that the magnetite had 

homogeneously spherical nanoparticles in the form of nanoparticle agglomerates with an average diameter of 10 

nm, as revealed in Fig. 7. Their research indicated that the magnetic responsiveness of Fe3O4 NPs generated by 

coprecipitation is dependent on the particle sizes and that the magnetic responsiveness increment as the particle 

size decreases. 

 
Figure 7: TEM image of Fe3O4 NPs [52]. 

4.3 Sol-gel  

The sol-gel technique is popular because of its inexpensive cost, low sintering temperature, and capability to 

modify the particle size with homogeneous components [53-58]. The Sol-gel process starts with hydrolysis and 

poly-condensation to make a gel. Fig. 8 shows a schematic diagram of the sol-gel process for producing 

nanopowders. This process is an appropriate wet chemical technique for producing metal oxide nanoscale with 

particular characteristics [27, 30, 59]. One of the most significant disadvantages of this approach is accumulation 

during the washing operation, which makes it incapable of producing monodispersed nanoparticles [60]. Many 

researchers successfully prepared monodispersed and non-agglomerated nanoparticles utilising this strategy to 

overcome this drawback [27, 61-68]. Hydrolysis and condensation rates are important parameters that influence 

the characteristics of final particles. Slower and more controlled hydrolysis generates smaller particle sizes and 

more distinct characteristics. The solvent should be removed after the solution has condensed into a gel. Higher 

calcination temperatures are typically required to decompose the organic precursor. The size of the sol particles is 

determined by the composition of the solution, pH, and temperature [30, 54]. P. Hu et al. [63] synthesised 

monodisperse Fe3O4 NPs with 3-20 nm size via an explosion-assisted sol-gel method. According to the XRD and 

XPS, the products were well-crystallised, highly pure Fe3O4 NPs. The influence of various temperatures of (5, 

128, and 300) K on how magnetic behaves was thoroughly investigated. Their finding displayed weakened 

hysteresis behaviour at the temperature increment. At (the Verwey transition) temperature TV, saturation 

magnetisation (Ms) of 86.2emu/g is the highest. Coercivity (Hc) decreases with temperature, while Initial 

susceptibility (ca) increases. O.M. Lemine et al. [64] synthesised Fe3O4 particles with an average size of 8 nm and 

well crystallinity, which have been prepared via an adjusted sol-gel method under supercritical conditions of ethyl 

alcohol (EtOH). XRD and Mössbauer analysis indicate that the NPs are single phases. The presence of spherical 

NPs with homogeneous size distribution is revealed by TEM analysis, as displayed in Fig. 9. At room temperature, 

SQUID measurements confirm the nanoparticles' ferromagnetic behaviour, with a saturated magnetisation of 47 

emu/g. S. Shaker et al. [54] studied the influence of different annealing temperatures of 200, 300, and 400oC on 

the particle size. These results reveal that the size of magnetite NPs can change by varying the annealing 

temperature. 
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Figure 8: Schematic diagram of sol gel process for production nanopowders [65]. 

 
Figure 9: TEM images of the NPs [64]. 

4.4 Thermal Decomposition 

Therm decomposition is one of the most widely utilised methods for producing monodisperse and highly 

crystalline IONPs [27]. Thermolysis, or thermal decomposition, is the process of treating a substance with heat. 

The thermal decomposition temperature is the temperature at which the chemical decomposes. This is an 

endothermic reaction because heat breaks the chemical bonds [66]. Fig. 10 displays a schematic diagram of 

magnetite nanoparticle synthesis by thermal decomposition. With the technique, iron oxide NPs have been 

prepared to utilise the decomposition of organometallic precursors, i.e. Fe(cup)3 (cup = N-nitroso 

phenylhydroxylamine), Fe(acac)3 (acac = acetylacetonate), or Fe(CO)5 (co= carbonyls), after that, oxidation can 

result in monodispersed aloft -quality iron oxide NPs. However, this necessitates typically higher temperatures 

and a more complicated procedure [7, 67]. D. Maity et al. [68] reported the fabrication of water-dissoluble Fe3O4 

NPs via the thermal decomposition of iron (III) acetylacetonate, Fe(acac)3 in tri(ethylene glycol). TEM points out 

that Fe3O4 NPs are relatively monodispersing with an average crystallite of 10.7 nm, as revealed in Fig. 11. The   

Size and the composition of the product particles are relayed on factors such as the temperature, the surfactant 

molecule length, and the reaction time [69]. N. J. Orsini et al. [70] have reported succeeding in preparing Fe3O4 

NPs with diameters d, 7nm≤d≤12nm, by thermal decomposition of Fe(acac)3. The structural and magnetic 

characteristics of nanocrystals were studied concerning different reaction conditions. The heating rate is the most 

essential parameter controlling the final particle size prepared by thermal decomposition. Table 2 displayed 

different methods and morphology of magnetite of Fe3O4 nanoparticles. 
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Figure 10: Synthesis of MNPs by thermal decomposition [71]. 

 

Figure 11: TEM image of the Fe3O4 NPs. Inset is the HRTEM image of individual Fe3O4 nanocrystals [68]. 

Table 2: Different methods and morphology of magnetite of Fe3O4 nanoparticles. 

Method of Synthesis Precursor Morphology Ref. 

Hydrothermal 
Fe3O(OCOCH3)6NO3, 

FeCl2⋅4H2O. 

Spherical NPs, with an average diameter of 10 

nm, were prepared at 180oC for 20 h, and the pH 

value is 8.6. 

[72] 

Hydrothermal 
Fe3O(OCOCH3)6NO3, 

FeCl2⋅4H2O. 

Nanorods have an average width of about 25nm 

and a length of about 200nm. 
[72] 

Coprecipitation 
FeCl3⋅6H2O 

FeCl2⋅4H2O 

Nanoparticles were nearly spherical and non-

aggregated, with a mean size of 10 nm. 
[73] 

thermal decomposition 

Iron acetylacetonate 

(acac) iron oleate 

complexes 

Uniform nanoparticles comprise triangular, cubic, 

and diamond-shaped particles with an average 

particle size of 11 nm. 

[74] 

thermal decomposition Fe (NO3)3·9H2O 

Ultrafine particles, which are closely packed form 

nano-aggregates (≤ 100 nm). There is a powerful 

aggregation of NPs with a size of 10 nm. 

[75] 

sol–gel Fe (NO3)3·9H2O 
Nanoparticles had been agglomerated, particles of 

grain dimensions ranging from 15–30 nm. 
[76] 

Solvothermal FeCl3 ⋅ 6H2O 

A spherical shape of Fe3O4 particles has uniform 

sizes and good dispersibility with a mean 

diameter of 326 nm. 

[77] 
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5. Conclusions 

Nowadays, magnetic NPs have piqued researchers' attention due to their intriguing properties and diverse 

applications. Many chemical synthesis routes, including sol-gel, thermal decomposition, hydrothermal, and 

coprecipitation, have revealed some benefits and disadvantages for the preparation of nanoparticles. Magnetite 

nanoparticles' (sizes and geometries) and magnetic properties are two important properties that can be obtained 

using suitable synthetic approaches. As a result, the sizes and shapes of magnetic Fe3O4 NPs are critical structural 

factors that influence many NPs' characteristics and capabilities in various applications. 
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