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Abstract: 
In this paper, we introduce the conditional independence model that included three 

elements every element is called conditional independence statement, or some times 

called network, those networks are defined by discrete random variables, we prove the 

conditional entropy function of the every element from this model. We also prove the 

conditional mutual information for every network, through out mesure the distance 

between the joint conditional probability density function and conditional probability 

density functions for every element in this model.  
 

وسمً كم عىصز , عزفىا وموذد الاستقلال انشزطً انذي ٌحتوي عهى حلاث عىاصز, فً هذا انبحج:المستخلص

هذي .  مه عىاصز هذا انىموذد بعبارة الاستقلال انشزطً وفً بعض الاحٍان وسمً كم عىصز مه انىموذد بشبكت

كذنك . وحه بزهىا دانت انشك نكم عىصز مه عىاصز هذا انىموذد. انشبكاث عُزّفج بواسطت متغٍزاث عشوائٍت متقطعت

 بٍه دانت كخافت الاحتمال انشزطٍت انمشتزكت ودوال  انى كم شبكت مه خلال قٍاس انمسافتبزهىا انمعهوماث انتبادنٍت

 . كخافت الاحتمال انشزطٍت نكم عىصز فً انىموذد

Keywords:Entropy function, Mutual information, conditional independence.  

 
Introduction : 

Entropy in its basic form is a measure of uncertainty rather than a measure of 

information. Specifically, the entropy of a random variable a measure of the uncertainty 

associated with that r.v. when the entropy of a random v. is large this means that the 

uncertainty as to the value of random is large and vice versa. The relative entropy gives 

measure of some think like the distance between two different p.d.f. . The conditional 

independence model is finite set from the conditional independence statements, Every 

conditional independence statement, can be represented as directed graph or indirected 

graph. A. J. Khinchine is spoke the basic ideas about the entropy in probability theory 

[1]. R. Gray is discuss the entropy function, and mutual information in [6]. T.Cover and 

J. Thomas, are studied the element concepts about the information theory in [9]. D. 

Geiger and C. Meek, both studied graphical models that included finite of the conditional 

independence statements in [2]. F. Matus, is introduced the conditional independence 

statement defined by four random variable in [3]. In this paper, we introduce conditional 

independence model  x1  x2   x3 x4 , x1   {x2 , x3 /x4, x1  x2/{x3 , x4}} every element 

from this model is network, the vertices are the random variables. In second section, we 

prove the entropy of every element in the conditional independence model. In third 

section, we prove the mutual information for every  network , through out mesure 

destance  between joint conditional probability density function and conditional 

probability density functions for every network in this model. 
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Definition (1.1) [5]: 

 Let  x = (x1,  x2, … , xn)  be an m-dimensional random vector that takes its values in 

the  m =  mi
n
i=1  , then the joint probability distribution has density function f(x) =

f(x1,  x2 , … , xn) . 

Definition (1.2) [5]: 

 Let  A, B, C ⊆ [m]  be pairwise disjoint. The random vector xA  is conditional 

independence of  xB   given  xC   if and only if :  f(xA , xB xC) = f(xA xC) . f(xB xC) .  

Remark (1.3) [5]: 

 The notation xA  xB xC   is called conditional independence statement, and used to 

denoted the relationship that xA  is conditionally independentof xB   given  xC  . 

Definition (1.4): 

Let  x =  x1,  x2,  x3  , x4 = {xi ∶ i ∈  1,2,3,4  } be a random vector with joint probability 

density function f x1,  x2 ,  x3 , x4  with state space  m =  mi
4
i=1  , where mi  is state 

space of xi , then: 

i) Let  1 ,  2 ,  3 ,  4 ⊆ [m], be a pairwise disjoints, then x1 is conditional 

independent x2 and conditional independent x3 given x4 iff  

  p(x1,
x2 , x3

x4) = p 
x1

x4
   . p 

x2
x4

   . p(
x3 

x4 
 ) 

ii) Let  1 ,  2,3 ,  4 ⊆ [m]  , be a pairwise disjoints, then x1  is conditional 

independent {x2,  x3}  given  x4  iff:  p(x1,  x2, x3 x4) = p x1 x4   . p  x2, x3 x4   .  
iii) Let  1 ,  2 ,  3,4 ⊆ [m]  , be a pairwise disjoints, then x1  is conditional 

independent x2  given   x3, x4  iff:  p(x1, x2 x3 ,   x4) = p x1 x3,  x4   .  p x2 x3 ,  x4  .  
Definition (1.5): 

Let  x1  x2  x3 x4  ,   x1  {x2, x3}  x4    ,  and  x1  x2 {x3, x4}  are conditional 

independent statements, then the conditional independence model is 

M =  x1  x2  x3 x4  , x1   x2 , x3  x4 , x1  x2 ∕  x3 , x4   . 
 

Definition (1.6) [9]: 

The entropy of discrete random variable x is defined by : 

H x = −E(logp x ) = − p x 

x∈A

. log p(x) 

where A is variable space of  x . 

Definition (1.7) [9]: 

The joint entropy  H(x, y)  of pair of discrete random variables, with a joint distribution 

p(x, y)is defined as: 

H x, y = −E(logp x
y  ) = −  p x, y 

y∈β

. log p(x, y)

x∈A

 

where A is variable space of  x and  β is variable space of  y . 

Definition (1.8) [9]: 

 The conditional entropy  H(x y )  is defined as: 

H x y  = −E(logp x y  ) = −  p x, y 

y∈β

. log p x y  

x∈A

. 

Definition (1.9) [9]: 

 The relative entropy between two probability density function  p x  , q(x) is defined as: 

D(p x \\q x ) =  p x 

x∈A

. log
p x 

q x 
= E( log

p x 

q x 
) 

where A is variable space. 
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Definition (1.10) [9]: 

  Let x , y be r.v.s with joint probability density function, and marginal distributions p(x)  

and p(y) . The mutual information I(x, y)  is the relative entropy between the joint 

distribution and product distribution: 

I x, y = D p x, y \\p x . p y  =   p x, y 

y∈β

. log
p x, y 

p x . p y 
x∈A

. 

2. Conditional Entropy 
 In this section, we prove entropy function for every network in the conditional 

independence model. We called conditional entropy, because, we prove entropy function 

for conditional independence statement.  

Theorem (2.1): 

  Let x =  x1,  x2,  x3 , x4  be a random vector, with joint probability density function 

p x1,  x2 ,  x3 , x4  and marginal probability density function of   x4 ;p( x4) , the entropy of 

conditional independence statement (CI.)    x1  x2  x3 x4  is  

H x1, x2, x3 x4  = H x1 x4  + H x2 x4  + H(x3 x4 ) . 

Proof: 

H x1,
x2 , x3

x4
  = −    p(x1

x4x3x2x1

, x2 , x3, x4)logp(x1, x2 ,
x3

x4
 ) 

Since:  p(x1, x2 , x3 x4) = p x1 x4   . p x2 x4  ⋅ p(x3 x4 ) 

= −    p(x1

x4x3x2x1

, x2, x3, x4) ⋅ logp(
x1

x4
 ) ⋅ p(

x2
x4

 ) ⋅ p(
x3

x4
 ) 

= −    p(x1

x4x3x2x1

, x2, x3, x4) ⋅ logp 
x1

x4
  −     p(x1, x2

x4x3x2x1

, x3 , x4)

⋅ logp 
x2

x4
  −     p(x1, x2

x4x3x2x1

, x3 , x4) ⋅ logp(
x3

x4
 ) 

 

Since:   p x1,  x2 ,  x3 , x4 = p x1 , x2 , x3 x4   . p x4 = p x1 x4   . p x2 x4  . p x3 ∕ x4 ⋅
p(x4) 
Then 

= −    p(
x1

x4
 ) ⋅ p(

x2
x4

 ) ⋅ p(
x3

x4
 )

x4x3

⋅ p(x4). log p 
x1

x3
  −

x2x1

 

          p(
x1

x4
 )

x4

. p 
x2

x4
  ∙ p 

x3
x4

  ⋅ p x4 

x3

. log  p 
x2

x3
  −

x2x1

 

     p(x1

x4x3x2x1

∕ x4) ⋅ p(x2 ∕ x4) ⋅ p(x3 ∕ x4) ⋅ p(x4) ⋅ logp(x3 ∕ x4) 

= − p 
x1

x4
  . log p 

x1
x4

   .  p 
x2

x4
  

 x2

 .  p x3 ∕ x4 

x3

 ⋅  p(x4

x4

) − 

x1
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       p 
x2

x4
  . log p 

x2
x4

   .  p 
x1

x4
  

 x1

 .  p x3 ∕ x4 

x3x2

⋅  p(x4

x4

)

−  p(x3 ∕ x4

x3

) ⋅ logp(
x3

x4
 ) ⋅  p(x1

x1

∕ x4) ⋅  p(x2

x2

∕ x4) 

Since: 

 p 
x2

x4
  

 x2

=  p x3 ∕ x4 

x3

=  p x4 

 x4

=  p(x1 ∕ x4

x1

) = 1 

We get: 

= − p 
x1

x4
  . log p 

x1
x4

  −  p 
x2

x4
  

 x2

 . log  p 
x2

x4
  −  p(x3

x3x1

∕ x4)

⋅ logp(x3 ∕ x4) 

= H 
x1

x4
  + H 

x2
x4

  + H 
x3

x4
  . 

 

 

Theorem (2.2): 

  Let x =  x1,  x2,  x3 ,  x4  be a random vector, with joint probability density 

functionp x1,  x2 ,  x3,,  x4 , and marginal probability density function of   x4 ;  p( x4) , 

the entropy of CI.  x1  {x2, x3}  x4  is :  

H x1, x2,  x3 x4  = H x1 x4  + H x2,  x3 x4   . 
Proof: 

H x1, x2,
 x3

x4
  = −    p x1,  x2 ,  x3 , x4 

x4x3

. log p(x1,
x2 , x3

x4
 )

x2x1

 

Since:  p x1, x2 , x3 x4  = p x1 x4   . p x2, x3 x4   

Then  

= −    p x1,  x2 ,  x3, x4 

x4x3

. log p 
x1

x4
  . p(

x2,  x3
x4

 )  

x2x1

 

Since:  p x1,  x2 ,  x3 , x4 = p x1, x2,  x3 x4   . p x4 = p x1 x4   . p x2, x3 x4  . p x4  

We get: 

= −    p 
x1

x4
   . p 

x2, x3
x4

  . p x4 

x4x3

. log p 
x1

x4
   . p 

x2, x3
x4

  

x2x1

 

= −    p 
x1

x4
   . p 

x2, x3
x4

  . p x4 

x4x3

. log p 
x1

x4
  −  

x2x1

 

    p 
x1

x4
   . p 

x2, x3
x4

  . p x4 

x4x3

. log p 
x2, x3

x4
  

x2x1

 

= − p 
x1

x4
  . log p 

x1
x4

   .   p 
x2, x3

x4
  

x3 x2

 .  p x4 

x4

− 

x1
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  p 
x2, x3

x4
  .

x3 x2

log p 
x2, x3

x4
   .  p 

x1
x4

  

x1

 .  p x4 

x4

 

Since: 

  p 
x2, x3

x4
  

x3 x2

=  p x4 

x4

=  p 
x1

x4
  

 x1

= 1 

We get: 

 

= − p 
x1

x4
  . log p 

x1
x4

  −   p 
x2, x3

x4
  .

x3 x2

log p 
x2, x3

x4
  

x1

 

= H 
x1

x4
  + H 

x2,  x3
x4

  . 

Theorem (2.3): 

  Let x =  x1,  x2,  x3 ,  x4  be a random vector, with joint probability density 

function p x1,  x2 ,  x3,,  x4 , and marginal probability density function of   x3 ,  x4  ;  

p( x3, x4) , 

 the entropy of CI.  x1  x2 {x3 , x4}   is :  

H x1,  x2 x3 ,   x4  = H x1 x3 ,   x4  + H  x2 x3 , x4  . 
 

 

Proof: 

H x1,
 x2

x3 ,   x4
  = −    p x1,  x2,  x3 , x4 

x4x3

. log p(x1,
 x2

x3,   x4
 )

x2x1

 

Since:    p x1,  x2 x3 ,   x4  = p x1 x3 , x4  .  p x2 x3 , x4  

Then 

= −    p x1,  x2 ,  x3, x4 

x4x3

. log p 
x1

x3
 , x4 . p(

x2
x3

 , x4)  

x2x1

 

Since:  

  p x1,  x2,  x3 , x4 = p x1,  x2 x3 ,   x4   . p x3, x4 =
p x1 x3 , x4  . p x2 x3 , x4 . p x3, x4  
We get: 

= −    p x1,
 x2

x3 ,   x4
   . p x3, x4 .

x4x3x2x1

log p 
x1

x3
 , x4 . p(

x2
x3

 , x4)   

= −    p 
x1

x3
 , x4  . p 

x2
x3

 , x4 . p x3, x4 .

x4x3x2x1

log p 
x1

x3
 , x4 . p(

x2
x3

 , x4)   

= −    p 
x1

x3
 , x4  . p 

x2
x3

 , x4 . p x3, x4 .

x4x3x2x1

log p 
x1

x3
 , x4 −   

    p 
x1

x3
 , x4  . p 

x2
x3

 , x4 . p x3, x4 .

x4x3x2x1

log p(
x2

x3
 , x4)   
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= − p 
x1

x3
 , x4 . log p 

x1
x3

 , x4  .   p  x2,  x3 

x3 x2

 .  p 
x2

x3
 , x4 

x4

− 

x1

 

 p 
x2

x3
 , x4 .

x2

log p 
x2

x3
 , x4  .  p 

x1
x3

 , x4 

x1

 .   p  x3 , x4 

x3x4

 

Since: 

 p 
x2

x3
 , x4 

x2

=  p 
x1

x3
 , x4 

x1

=   p  x3 , x4 

x4x3

= 1 

We get: 

= − p 
x1

x3
 , x4 . log p 

x2
x3

 , x4 −  p 
x2

x3
 , x4 

x2

log p 
x2

x3
 , x4 

x1

 

= H 
x1

x3 ,   x4
  + H 

 x2
x3

 , x4  . 

 

 

3 Conditional Mutual Information  
         In this section, we prove mutual information for every network in model through 

out mesure destance between joint conditional probability density function and 

conditional probability density functions for every network in the conditional 

independence model.We called conditional mutual information, because, we prove 

mutual information between the conditional probability density function. 

Theorem (3.1): 

 Letx =  x1,  x2,  x3 , x4  be a random vector with joint probability density 

functionp x1,  x2,  x3 , x4 , and marginal probability density function of x4 ; p  x4  , the 

mutual information between  p x1,  x2, x3 x4    and p  x1 x4  ⋅ p  x2 x4  ⋅ p(x3 x4 ) , is: 

I x1,  x2, x3 x4  = H  x1 x4  + H  x2 x4  + H(x3 x4 ) − H x1,  x2, x3 x4   . 
 

Proof: 

I x1 ,
 x2, x3

x4
  = D[ p x1,

 x2, x3
x4

  \\ p 
 x1

x4
  . p 

 x2
x4

  ⋅ p(
x3

x4
 ) ] 

=     p(x1

x4x3

, x2, x3 , x4). log
p x1,

 x2 , x3
x4

  

p 
x1

x4
   ⋅  p 

x2
x4

  ⋅ p(
x3

x4
 )

x2x1

 

Since:  p x1,  x2 ,  x3, x4 = p x1,  x2 , x3 x4   .  p  x4  

Then 

=     p(x1, x2

x4

, x3 ∕ x4) .  p  x4 

x3

. log
p x1,

 x2 , x3
x4

  

p 
x1

x4
  ⋅  p 

x2
x4

  ⋅ p(
x3

x4
 )

x2x1

 

=    p(x1, x2,
x3

x4
 )

x3

. log
p x1,

 x2 , x3
x4

  

p 
x1

x4
   .  p 

x2
x4

  ⋅ p(x3 ∕ x4)
x2x1

 ⋅   p  x4 

x4

 

 

Since :  

  p  x4 

x4

= 1 

Then 
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=    p(x1

x3

, x2 , x3 ∕ x4). log p x1,
 x2, x3

x4
  

x2x1

−    p(x1, x2 ,
x3

x4
 )

x3

. log p 
 x1

x4
  . p 

x2
x4

  

x2x1

⋅ p(
x3

x4
 ) 

Since p x1, x2, x3 x4  = p(x1 x4 ) ⋅ p(x2 x4 ) ⋅ p(x3 ∕ x4) 

Then: 

=    p(x1, x2,
x3

x4
 )

x3

. log p x1,
 x2, x3

x4
  

x2x1

−  p 
 x1

x4
  

x1

 ⋅ logp 
x1

x4
  

⋅  p(
x2

x4
 ) ⋅  p(x3 ∕ x4

x3x2

) − 

 

 p  x2 x4  

x2

. log p  x2 x4  ⋅  p(x1 ∕ x4

x1

) ⋅  p x3 x4  

x3

− 

 p  x3 x4  ⋅ logp x3 x4  

x3

⋅  p(x1

x1

∕ x4) ⋅  p x2 x4  

x2

 

Since: 

 p(x1

x1

∕ x4) =  p(x2

x2

∕ x4) =  p(x3

x3

∕ x4) = 1 

Then: 

= H 
 x1

x4
  + H 

 x2
x4

  + H(
x3

x4
 ) − H x1,

 x2 , x3
x4

   . 

 

Theorem (3.2): 

   Letx =  x1,  x2,  x3 ,  x4  be a random vector with joint probability density 

functionp x1,  x2,  x3 ,  x4 , and marginal probability density function of  x4 ; p  x4  , the 

mutual information between  p x1,  x2,  x3 x4    and p  x1 x4  . p  x2, x3 x4    is: 

I x1,  x2,  x3 x4  = H  x1 x4  + H  x2,  x3 x4  − H x1,  x2,  x3 x4   . 
 

 

Proof: 

I x1 ,
 x2,  x3

x4
  = D  p(x1,

 x2,  x3
x4

 )//p 
 x1

x4
  . p 

 x2, x3
x4

    

=     p x1,  x2,  x3,  x4 .

 x4x3

log
p(x1,

 x2 ,  x3
x4

 )

p 
x1

x4
   .  p 

 x2, x3
x4

  
x2x1

 

=     p  x4 . p(x1,
 x2 ,  x3

x4
 ).

 x4x3

log
p(x1,

 x2 ,  x3
x4

 )

p 
x1

x4
   .  p 

 x2, x3
x4

  
x2x1

 

=    p(x1,
 x2,  x3

x4
 )

x3

. log
p(x1,

 x2 ,  x3
x4

 )

p 
x1

x4
   .  p 

 x2, x3
x4

  
x2x1

  .   p  x4 

x4

 

Since: 

  p  x4 

x4

= 1 
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=    p(x1,
 x2,  x3

x4
 )

x3

. log
p(x1,

 x2 ,  x3
x4

 )

p 
x1

x4
   .  p 

 x2, x3
x4

  
x2x1

 

=    p(x1,
 x2,  x3

x4
 )

x3

. log p(x1,
 x2 ,  x3

x4
 )

x2x1

− 

   p(x1,
 x2 ,  x3

x4
 )

x3

. log p 
x1

x4
  . p(

 x2,  x3
x4

 )

x2x1

 

=    p(x1,
 x2,  x3

x4
 )

x3

. log p x1,
 x2,  x3

x4
  −

x2x1

 

   p(x1,
 x2 ,  x3

x4
 ). log p 

x1
x4

  

x3

−

x2x1

 

   p(x1,
 x2 ,  x3

x4
 ). log p(

 x2,  x3
x4

 )

x3x2x1

 

Since:  p x1,  x2 ,  x3 x4  = p x1 x4  . p( x2,  x3 x4 ) 

=    p(x1,
 x2,  x3

x4
 )

x3

. log p(x1,
 x2 ,  x3

x4
 ) −

x2x1

 

 p 
x1

x4
  

x1

. log p 
x1

x4
  .   p 

 x2,  x3
x4

  −

x3x2

 

  p 
 x2,  x3

x4
  

x3x2

.  log p 
 x2,  x3

x4
  .  p 

x1
x4

  

x1

 

Since: 

  p 
 x2,  x3

x4
  

x3x2

=  p 
x1

x4
  

x1

= 1 

Then 

=    p(x1,
 x2,  x3

x4
 )

x3

. log p(x1,
 x2 ,  x3

x4
 )

x2x1

− 

 p 
x1

x4
  . log p 

x1
x4

  

x1

−   p 
 x2,  x3

x4
  

x3x2

.  log p 
 x2,  x3

x4
   

= −H x1,
 x2 ,  x3

x4
  + H 

 x1
x4

  + H 
 x2,  x3

x4
   

=  H 
 x1

x4
  + H 

 x2,  x3
x4

  − H x1,
 x2,  x3

x4
  . 

 

 

Theorem (3.3): 

  Letx =  x1,  x2,  x3 ,  x4  be a random vector with joint probability density 

functionp x1,  x2,  x3 ,  x4 , and marginal probability density function of  x3, x4 ; p  x3, x4  

. The mutual information between  p x1,  x2 x3,  x4    and p  x1 x3 ,  x4 . p  x2 x3,  x4    

is: 
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I x1,  x2 x3,  x4  = H  x1 x3 ,  x4 + H  x2 x3,  x4  − H x1,  x2 x3,  x4   . 
 

Proof: 

I x1 ,
 x2

x3 ,  x4
  = D  p(x1,

 x2
x3 ,  x4

 )//p 
 x1

x3,  x4
  . p 

 x2
x3,  x4

    

=     p x1,  x2,  x3,  x4 .

 x4x3

log
p(x1,

 x2
x3,  x4

 )

p 
 x1

x3,  x4
   .  p 

 x2
x3,  x4

  
x2x1

 

Since:  

 p x1,  x2,  x3 ,  x4 = p x1,
 x2

x3 ,  x4
  . p  x3,  x4  . 

Then 

=     p  x3,  x4 . p(x1,
 x2

x3 ,  x4
 ).

 x4x3

log
p(x1,

 x2
x3,  x4

 )

p 
 x1

x3 ,  x4
   .  p 

 x2
x3,  x4

  
x2x1

 

=   p(x1,
 x2

x3,  x4
 ). log

p(x1,
 x2

x3 ,  x4
 )

p 
 x1

x3,  x4
   .  p 

 x2
x3,  x4

  
x2x1

  .    p x3, x4 

x4x3

 

Since: 

   p x3, x4 

x4x3

= 1 

Then 

=   p(x1,
 x2

x3,  x4
 ). log

p(x1,
 x2

x3 ,  x4
 )

p 
 x1

x3,  x4
   .  p 

 x2
x3,  x4

  
x2x1

 

 

=   p(x1,
 x2

x3,  x4
 ). log p x1,

 x2
x3 ,  x4

  −

x2x1

 

  p(x1,
 x2

x3 ,  x4
 ). log p 

 x1
x3 ,  x4

   .  p 
 x2

x3,  x4
  

x2x1

 

=   p(x1,
 x2

x3,  x4
 ). log p x1,

 x2
x3 ,  x4

  −

x2x1

 

  p(x1,
 x2

x3 ,  x4
 ). log p 

 x1
x3 ,  x4

  −   p(x1,
 x2

x3,  x4
 ). log   p 

 x2
x3,  x4

  

x2x1x2x1

 

 

Since: 

p x1,
 x2

x3 ,  x4
  = p 

 x1
x3,  x4

  . p 
 x2

x3,  x4
   . 

Then 

=   p(x1,
 x2

x3,  x4
 ). log p x1,

 x2
x3 ,  x4

  −

x2x1

 

  p 
 x1

x3 ,  x4
  . p 

 x2
x3 ,  x4

  . log p 
 x1

x3,  x4
  −

x2x1
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  p 
 x1

x3 ,  x4
  . p 

 x2
x3 ,  x4

  . log   p 
 x2

x3,  x4
  

x2x1

 

=   p(x1,
 x2

x3,  x4
 ). log p x1,

 x2
x3 ,  x4

  −

x2x1

 

 p 
 x1

x3,  x4
  . log p 

 x1
x3 ,  x4

  

x1

 p 
 x2

x3 ,  x4
  

x2

− 

 p 
 x2

x3 ,  x4
  . log p 

 x2
x3,  x4

  

x2

 p 
 x1

x3,  x4
  

x1

 

Since: 

 p 
 x1

x3,  x4
  

x1

=  p 
 x2

x3,  x4
  

x2

= 1 . 

Then 

=   p x1,  x2 x3,  x4  . log p x1,  x2 x3,  x4  

x2x1

−  p  x1 x3,  x4  . log p  x1 x3,  x4  −

x1

 

 p 
 x2

x3 ,  x4
  . log p 

 x2
x3,  x4

  

x2

 

= H 
 x1

x3
 ,  x4 + H 

 x2
x3 ,  x4

  − H x1,
 x2

x3,  x4
   . 
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