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Abstract:

In this paper, we introduce the conditional independence model that included three
elements every element is called conditional independence statement, or some times
called network, those networks are defined by discrete random variables, we prove the
conditional entropy function of the every element from this model. We also prove the
conditional mutual information for every network, through out mesure the distance
between the joint conditional probability density function and conditional probability
density functions for every element in this model.
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Introduction :

Entropy in its basic form is a measure of uncertainty rather than a measure of
information. Specifically, the entropy of a random variable a measure of the uncertainty
associated with that r.v. when the entropy of a random v. is large this means that the
uncertainty as to the value of random is large and vice versa. The relative entropy gives
measure of some think like the distance between two different p.d.f. . The conditional
independence model is finite set from the conditional independence statements, Every
conditional independence statement, can be represented as directed graph or indirected
graph. A. J. Khinchine is spoke the basic ideas about the entropy in probability theory
[1]. R. Gray is discuss the entropy function, and mutual information in [6]. T.Cover and
J. Thomas, are studied the element concepts about the information theory in [9]. D.
Geiger and C. Meek, both studied graphical models that included finite of the conditional
independence statements in [2]. F. Matus, is introduced the conditional independence
statement defined by four random variable in [3]. In this paper, we introduce conditional
independence model {x; [1x, [1x3/x4, x4 LI {X2,X3}/%4, %1 L1 X2/{x3,%4}} every element
from this model is network, the vertices are the random variables. In second section, we
prove the entropy of every element in the conditional independence model. In third
section, we prove the mutual information for every network , through out mesure
destance  between joint conditional probability density function and conditional
probability density functions for every network in this model.
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Definition (1.1) [5]:

Let x = (x4, X3, ..., X,) be an m-dimensional random vector that takes its values in
the [m] = [[{L; m; , then the joint probability distribution has density function f(x) =
f(x1, X3, ), Xp) -

Definition (1.2) [5]:
Let A/B,C S [m] be pairwise disjoint. The random vector x, is conditional
independence of xg given x¢ ifand only if : f(x,, xg/xc) =f(Xa/Xc) - f(X5/Xc) .
Remark (1.3) [5]:
The notation x, [[xg/xc is called conditional independence statement, and used to
denoted the relationship that x, is conditionally independentof xz given x. .
Definition (1.4):
Let x = (xq, Xp, X3,X4) = {X; : i € {1,2,3,4} } be a random vector with joint probability
density function f(x;, x,, X3 ,x,) with state space [m] = [[{_; m; , where m; is state
space of x; , then:
i) Let {1}, {2}, {3}, {4} < [m], be a pairwise disjoints, then x; is conditional
independent x, and conditional independent x5 given x, iff

p(Xl,XZ 'XB/X4) = p(Xl/x4) -p(XZ/X4) -p(X3 /X4)
i) Let {1},{2,3},{4} < [m] , be a pairwise disjoints, then x; is conditional
independent {x,, x3} given x, iff: p(xq, X, X3/%X4) =p(x1/%X4) . p( X2, X3/X4) .
iii) Let {1},{2},{3,4} < [m] , be a pairwise disjoints, then x; is conditional
independent x, given {x3, x4} iff: p(xq1, X2/X3, X4) =p(X1/X3, X4) . p(X2/X3, X4) .
Definition (1.5):
Let Xq HXZ HXg/X4 , X1 ]_[{Xz,X3} /X4, ) and X1 HXZ/{X3,X4} are conditional
independent statements, then the conditional independence model is

M = {xq [Ixz [Ix3 /%4 , X1 [I{X2, X3 }/%4, %1 11Xz / {X3,%4} }.

Definition (1.6) [9]:
The entropy of discrete random variable x is defined by :

H(x) = ~E(logp()) = = ) p(x).logp(x)
XEA
where A is variable space of x.

Definition (1.7) [9]:
The joint entropy H(x,y) of pair of discrete random variables, with a joint distribution
p(x,y)is defined as:

HGxy) = ~E(logp(¥/y)) = = Y > p(xy).logp(x,y)
xEA yeB
where A is variable space of x and f is variable space of y .
Definition (1.8) [9]:
The conditional entropy H(x/y) is defined as:

H(x/y) = ~E(log(x/y)) = = > > p(x,) logp(x/y).
xEA yeB
Definition (1.9) [9]:
The relative entropy between two probability density function p(x), q(x) is defined as:

B p(x) p(x)
D(PGI\\qX)) = ZA PO log 5 = E(log )

where A is variable space.
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Definition (1.10) [9]:

Let x , y be r.v.s with joint probability density function, and marginal distributions p(x)
and p(y). The mutual information I(x,y) is the relative entropy between the joint
distribution and product distribution:

1(x,y) = D(pCx Y\\PCI-p®)) = ) D p(y) log—r s

XEA yepB

p(x,y)
p(X).p(y)

2. Conditional Entropy

In this section, we prove entropy function for every network in the conditional
independence model. We called conditional entropy, because, we prove entropy function
for conditional independence statement.
Theorem (2.1):

Let x = (x4, X,, X3,%X4) be a random vector, with joint probability density function
p(x1, X, X3,%4) and marginal probability density function of x, ;p(x4) , the entropy of
conditional independence statement (Cl.) xq [[x; [[x3/%4 iS

H(x1,X3,X3/x4) = H(X1/x4) + H(X2/x4) + H(X3/%4) .
Proof:

H(xy, ™2 ,XB/X4) =- Z Z Z Z p(xq ,Xz:X3'X4)logp(X1,X2,X3/X4)

X1 X2 X3 X4

Since: p(x1,X2,X3/X4) =p(X1/X4) . P(X2/X4) - P(X3/X4)

- Z Z Z Z P(X1,X2,X3,Xy) * logp(xl/x4) ) p(XZ/X4) ) p(Xg/X4)

X1 X2 X3 X4

— z Z Z z p(X1,X2,X3,X4) * logp(Xl/X4) - Z z Z z P(X1,X2,X3,X4)

X1 X2 X3 X4 X1 X2 X3 X4

) logp(xz/x4) - z Z z Z p(X1,X2,X3,X4) * logp(x3/x4)

X1 X2 X3 X4

Since:  p(xy, Xz, X3,X4) = p(X1,X2,X3/X4) . p(Xa) = p(X1/X4) . p(X2/X4).P(X3 / X4) -
p(x4)
Then

=3 D ) 0%, - pC ) - pCa) logp ()

X1 X2 X3 X4

Z Z Z Z p(Xl/X4) 'p(XZ/X4) ) p(xg/x4) -p(x4).log p(XZ/X3) —

X1 X2 X3 X4

D) B /xa) pCa / %4+ PO /%4) - Pxa) - logD (K3 / X4)

X1 X2 X3 X4

=Y (/5 )10gp( M) D p(%,) D p0 /x4 D pCa) -
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Z p(*?/x,)-logp(**/x,) z p(*/x,) Z p(x3 /Xq) - Z p(x4)

X2

= > b /%) 1ogpC%x,) - ) pCxa /x4 ) plia /%)

Since:

> (%) = Y 0G5 /%) = ) i) = Y plei /xa) = 1

We get:

=— Z p(*'/x,)-logp(*/x,) — Z p(*?/x,) -log p(**/x,) — Z P(x3 / X4)

« ) 10§p(X3 / X4) «
= H( 1/X4) + H( 2/X4) + H( 3/X4)'

Theorem (2.2):
Let x = (X4, X, X3, X4,) be a random vector, with joint probability density
functionp(xl, Xy, X3, x4), and marginal probability density function of x4 ; p(x4),

the entropy of Cl. X1 [{x2, %3} /X4 IS
H(xq, X2, x3/%4) = H(x1/x4) + H(X2, X3/%4) .
Proof:

H(Xl’XZ’ X3/X4) - _z Z 2 z p(Xlx X2, X3'X4) 10g p(XerZ’X3/X4)

X1 X2 X3 X4

Since: p(x1,X2,X3/X4) = p(X1/X4) . p(X2,X3/X4)
Then

- _zzzzp(xl' X2, X3.X4)-103p(X1/X4)'p(X2’ XB/X4)

X1 X2 X3 X4

Since: p(xy, X2, X3,X4) = p(Xq, Xz, X3/X4) .P(Xs) = p(X1/X4) . p(X2,X3/X4). p(X4)
We get:

== > >3 > p(/x) -pC2 9 x,) pGxa) logp(x, ) (2 5 ,)

X1 X2 X3 X4

ST b)) o ()

X1 X2 X3 X4

DO Y (k) w2 k) pCx) ogp (X x,)

X1 X2 X3 X4

= —Zp(xl/x4).logp(xl/x4) .ZZD(XZ'X3/X4) -Zp(x4) -

X1 X2 X3 X4
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ZZ (*2%3/x,)-logp(*> *3/x,) . zp(xl/x4) Zp(x4)

X2 X3

Since:

ZZ p(***3/x,) = z p(x,) = Z p(M/x,) =1

X2 X3

We get:

Zp( Y )1ogp(i/x,) = > > oy, ). logp(* X3 x,)

X2 X3
x Xy, X
= H(™/x,) + H(? /x,).
Theorem (2.3):
Let x = (X4, X2, X3, X4) be a random vector, with joint probability density
function p(xy, X3, X3, X4), and marginal probability density function of x3, x4 ;

p(X3, X4),
the entropy of Cl. x; [[x,/{x3, X4} IS

H(xq, X2/%3, X4) = H(x1 /X3, %x4) + H(x2/%3,%4) .

Proof:

H(Xl’ XZ/X3, X4) = _ZZZZP(XL X2, X3,%4) .logp(x1, XZ/X3, X4)

X1 X2 X3 X4

Since: p(xy, X2/X3, X4) = p(x1/X3,X4) . p(X2/X3,X4)
Then

- p(x1, Xz, x3,x4).logp( 1/x3,X4)-p( 2/X3'X4)
X X

X1 X2 X3 X4
Since:
p(X1, X2, X3,X4) = p(Xq, X2/X3, X4) .p(X3,%X4) =

p(x1/x3,X4) . P(X2/X3,X4). P(X3,X4)
We get:

- 2 Z 2 2 p(XL Xz/x3, x4) .p(x3,%4).10g p(Xl/x3 :X4)- p(Xz/x3 1 X4)

X1 X2 X3 X4

- Z Z Z Z p(Xl/Xg »X4) -p(xz/x3 »X4)- p(x3,x4).l0g p(Xl/X?, ,X4)- p(Xz/X3 1 Xg)

X1 X2 X3 X4

- Z Z Z Z p(X1/X3 ,X4) -p(XZ/X3 ,X4). P(X3,%4). log p(X1/X3 X4) =

X1 X2 X3 X4

z Z z z p(Xl/X3 'X4) . p(XZ/X3 'X4)- p(X3'X4)- IOg p(XZ/X3 'X4)

X1 X2 X3 X4
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Zp( Yy %) 10gp( iy x4) Y plxa, %3) Zp( 2y %) =

Zp( *fxy %) 10gp(*Y/x;  x4). Zp( Yiarxa) D> b3 %)
Slnce o

Zp( 2/x5,%4) = Zp( Yss Xa) = Zzp(xs'xzﬂ—l

Weget o

Zp( Yy %) 10gp(%y %) = Zp(XZ/Xs,xmogp( g %)

= H(Xl/X3 X4) + H( /X3 'X4)

3 Conditional Mutual Information
In this section, we prove mutual information for every network in model through
out mesure destance between joint conditional probability density function and
conditional probability density functions for every network in the conditional
independence model.We called conditional mutual information, because, we prove
mutual information between the conditional probability density function.
Theorem (3.1):
Letx = (X1, X2, X3,X4) be a random vector with joint probability density
functionp(x4, x5, X3,X%4), and marginal probability density function of x, ; p(x4) , the
mutual information between p(xy, X,%x3/%4) and p(x1/x4) - p(X2/X4) - p(X3/X4) , IS
I(x1, X2,%3/%4) = H(Xq/%4) + H(X2/x4) + H(X3/%4) — H(X1, X2,X3/X4) .

Proof:

1(x4, XZ'X3/X4) = D[ p(xy, XZ'X3/X4)\\ p( Xl/x4)-p(xz/x4) . p(X3/X4)]
_ 1 p(Xl' XZ’Xg/X4)
= Z ZZ Z p(X1,X2,X3,Xy). ogp(xl/x4) ] p(xz/x4) ] p(Xg/X4)

X1 X2 X3 X4
Since: p(x1, Xz, X3,X4) = p(X1, X2,X3/X4) . p(X4)
Then

B Z ZZ Z P(X1,X2,X3 / X4) . P(X4).log p(Xl’ XZ'Xg/X4)
p(X1/X4) : p(Xz/x4) : p(X3/X4)

X1 X2 X3 X4

_ Ezzp(xl X, x3/ ).log p(xl, Xz,X3/X4) Z (%)
) (k) (s /xa)

X1 X2 X3
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= Z Z Z P(X1,X2,X3 / X4).log p(xy, XZ'Xg/x4)

=0 > b6k, ) Jogp(¥1/x,)-p(%/x,) - PO )

X1 X2 X3

Since p(x1,X2,X3/%4) = p(X1/X4) - P(X2/X4) - P(X3 / X4)
Then:

ZZZP(XDXZ' 3/x,) - log p(x4, XZ'Xz/X4) Ep(xl/x4 logp( 1/X4)

> 00 ) D o /%) -

zpuz/xu logp(x/x4) - Zp(xl/xn Ep(x3/x4>—

Zp(x3/x4) logp(xs /%) - Zp(xl/xu Zp(xZ/x4)

me /%) = Zp(XZ /%) = Zp<x3 /x) =1
Then:

= H( Xl/X4) + H( XZ/X4) + H(X3/X4) - H(Xl' XZ‘X3/X4) .

Theorem (3.2):

Letx = (x4, X,, X3, X4) be a random vector with joint probability density
functionp(x4, x5, X3, X4), and marginal probability density function of x, ; p(x4) , the
mutual information between p(xy, X2, X3/X4) and p(Xq/X4).p( X2, X3/%4) is:

1(x1, X2, X3/%4) = H(x1/%4) + H(X3, X3/%4) — H(X1, X2, X3/X4) .

Since:

Proof:

1(xy, X2, X3/x ) = D[ p(xy, X2 X3/x4)//p( Xl/x4)-p(xz'x3/x4)]

XZ’X3/X4)
( ) ) ) ) l
Tl

X1 X2 X3 X4

X2, X3 2
ZZZEP(M) p(x1, /X4) log (Xl/ ) (XZ'X3/X4)

X1 X2 X3 X4

, p(X1» 3/ )
= ZZZP(XL X2 X3/X4),logp(xl/x4). X2,X3/ ) Z p(X4)

X1 X2 X3

Since:

2 p(xy) =1
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_ X,, X plxy, 7 X3/X4)
=222 ™ Sk g Sy S

X1 X2 X3

=D > > p0a, K2 5 logp(, K2 K ) -

X1 X2 X3

Z z Z p(x1, 2 3/x,) Jog p(*1/x,)- (% 3 /x,)

X1 X2 X3

= Z Z Z p(x1, "2 3/x,) Jogp(xy, *¥ M3/x,) —

X1 X2 X3

Z Z Z p(x1, "2 3/x,).log p(*/x,) —

X1 X2 X3

D D0 0 2 B ) logp(FY o )

X1 X2 X3

Since: p(x1, Xz, X3/X4) = p(X1/X4)-p( Xz, X3/X4)

=D > > p0a, K2 5 logpC, K2 K3 ) -

X1 X2 X3

Z p(*/x,) -log p(*V/x,)- Z Z p(*? B/x,) -

2. 2.0 ) 10gp (7 ). Zp("l/xn
Slan}((;

D20 ) = 3 o) =1

Then’

=D > > p0a, K2 5 f) logpC, X2 K3 ) -

X1 X2 X3

Zp( Vi) logp(*/x) = D o X5/, log (X2 3/,

X2 X3

_ —H(x X2 X3/X4) + H( Xl/X4) +H(* X3/X4)
= H(Xl/X4) +H( 2 X3/X4) —H(xy, > X3/X4)'

Theorem (3.3):

Letx = (x4, X3, X3, X4) be a random vector with joint probability density
functionp(x4, X, X3, X4), and marginal probability density function of xs3,x, ; p(X3,X4)
. The mutual information between p(x;, X,/X3, X4) and p(x;1/X3, X4).p( X5 /X3, X4)
is:
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I(x1, X2/X3, X4) = H(x1/X3, X4) + H(X3/X3, X4) — H(Xq, X2/X3, X4) .

Proof:
I(Xl» XZ/X3, x4) = D[p(Xl» XZ/X3, X4)//p( Xl/Xg, X4)-p(X2/X3, X4)]

- ZZZZP(Xl Xy, X3, X4).log p(x1, XZ/X3’ %4)
p( Xl/X3’ X4) ' p(XZ/Xg, X4)

X1 X2 X3 X4

Since:

X
p(X1, X2, X3, X4) = p(XL 2/)(3, X4)-p(X3, X4) .
Then

= Zzzzp(x3 x).p(x1, X2/x. x,).log p(x1, XZ/XS' %)
v p(Xl/Xs, X4)' p(XZ/X3, x4)

X1 X2 X3 X4

X2
_ X2 1 PO, /s, x) . (X3,%4)
D U e DI

X1 X2 X3 X4
Since:
ZZ p(x3,x4) =1
X3 X4
Then

X2
X p(X1, /x , X )

= Z Z p(XI’ 2/X3, X4)'10g X1 ; X24

X1 X2 p( /X3) X4) ' p( /X3; X4.)

= z z p(Xll XZ/X3, X4)'logp(xl' XZ/X3, X4) -

X1 X2

zz p(x1, XZ/X3, X4)-10gp( Xl/x3, X4)- p(XZ/X3, X4)

X1 X2
= z z p(Xll XZ/X3, X4)'logp(xl' XZ/X3, X4) -
X1 X2
zz p(xq, XZ/X3, x,)-10g p( Xl/x3, X4) - Z Z p(x1, XZ/X3, x,)-108 p( XZ/X?’, X4)
X1 X2 X1 X2
Since:
p(Xl: XZ/Xg, X4) = p( Xl/Xg, X4)-p(xz/x3, X4)-
Then
= z z p(X1' XZ/X3, X4).10gp(X1, XZ/Xg, X4) -
X1 X2
zz p(Xl/Xg, X4)'p( XZ/X3, X4)'logp( Xl/X3, X4,) -
X1 X2
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Zzp(xl/xg, X4)-p( XZ/X3, X4)-108 p( XZ/Xg, X4)

X1 X2

- Z Z p(Xl' XZ/X3) X4—)' logp(xl' XZ/X31 X4—) -

X1 X2

Z p( X1/X3, X4).10g p(Xl/xg,, X4)Z p(XZ/Xg, X4) -

X1

Z p( XZ/X?” x4)- log p( Xz/x3, x4) Z p( Xl/Xg, X4)

X2

Since:
D (s, %) = D 0 %) = 1
'I)'(F]en B

= zzp(xlr X2 /X3, X4).10g (X1, X2/X3, X4)

X1 X2

- Z P(x1/X3, X4).logp(x1/X3, X4) —
X1

z p( Xz/x3, x4)- log p( XZ/X3, X4)

X2

= H(Xl/X3 ) X4) + H(XZ/Xg, X4,) - H(Xli XZ/X3, X4,) .
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