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1. INTRODUCTION 

With the development of digital image processing software packages and other editing tools, image forgery has become 

simple and popular [1]. Image forgery can now imply many kinds of tampering and modifications to the visual contents 

of images in such a perfect way that they are unnoticeable to casual people. By altering the visual contents of an image, 

the new image is called a “forged” image [2]. In many instances, the purpose of this manipulation is to influence the 

attention and opinions of the recipient. As the world becomes more dependent on digital images for getting 

information, the need to verify the authenticity (i.e., originality) and dependability of these images’ increases. 

However, researchers and specialists are collaborating to develop computer-based systems to detect such forgeries 

automatically [3][1]. Using forged images for malicious purposes may have hazardous consequences in our society. 

These images are used in several application sectors, such as politics, investigations as forensic evidence, journalism, 

business, arts, and medical imaging. Generally, tampering images can be classified into two categories: tampering with 

innocent intent and tampering with noninnocent intent. The first category is employed to enhance the images and/or 

eliminate distortions while preserving the semantic content of the image. This category includes contrast enhancement, 

color enhancement, blurring, retouching, and red-eye correction. For example, the first category is widely used in 

fashion photographs, beauty care photos, truism, business, and marking. The second category involves malicious 

intentions and/or criminal activities. Generally, based on the type of content tampering, this type of manipulation has 

been classified into five categories: image splicing, copy–move forgery, geometric transformation forgery, text editing, 

and deep fake forgery [2]. Consequently, we have opted for the detection of manipulated images to provide efficient 

solutions employing various methods. To identify and detect an image forgery, the solutions can be broadly classified 

into two main categories: passive and active techniques. In active methods, some type of authentication data is 

embedded in the source image before distribution. The authentication data might be subsequently utilized to confirm 
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whether the image has been altered during a forensic examination. One potential constraint associated with this 

particular technique is its reliance on either specialized cameras or subsequent image processing procedures. Examples 

of active techniques commonly employed in the field of digital image security include digital image cryptography, 

digital signature implementation, and embedding a watermark into the original image prior to its utilization. Passive 

techniques are the most dominant methods in cases of forgery activities. These techniques are needed to determine 

whether an image has been tampered with, even in the absence of any pre-existing authentication data, such as a 

signature or watermark. Hence, passive forgery detection is regarded as a more appealing approach [4][5]. Copy–move 

is considered the most common method for image forgery. This technique involves replacing one or more image 

fragments with one or more image fragments from the same image to produce forged images. The main purpose of 

copy–move forgery is to either conceal object(s) or generate many duplicates of a certain object. Copy–move forgery 

detection (CMFD) is a challenging task. The technical complications with automatic CMFD can be related to the 

following issues [6]: 

● Presence or absence of structural components: Tampering can alter the image’s contents, causing some features 

to become partially or completely obscured.  

● Geometric transformations: Object appearance can be changed by geometric transformations, such as rotation, 

scaling, and translation.  

● Imaging retouching: When the image is captured, lighting and camera attributes can affect the visual 

representation of objects. Generally, image retouching may change the appearance of objects and consequently 

affect the feature-set extraction. This situation may lead to many false negative and/or false positive results. 

● Intensity and color adjustment: These processes also affect the output of the feature extraction step and 

consequently may cause many false negative and/or false positive results 

In this paper, a novel method for identifying and locating manipulated regions in digital images using machine 

learning-based semantic segmentation approach is presented. The proposed system is inspired by the ResNet50 model 

as an encoder and the U-Net architecture as decoder [7]. The encoder function implies applying convolution and 

normalizing for feature extraction. Conversely, the decoder function is locating the spatial features. The decoder in the 

U-Net network comprises multiple decoder blocks, which are connected to corresponding encoder blocks by 

employing concatenate layers. Then, a binary mask is generated to denote the manipulated regions in the image. Figure 

1 shows the general architecture of the proposed model for automatic forgery detection. 

The subsequent sections of this research study are structured as follows: In Section II, a brief overview of the recent 

related works is provided. Subsequently, the preprocessing and feature extraction procedures are delineated. In Section 

III, the machine learning techniques employed for predicting forged regions is discussed. In Section IV, the results are 

discussed. 

2. RELATED WORKS 

Generally, CMFD techniques can be classified into three primary categories: block-based, key point-based, and 

machine learning-based [8]. The block-based technique entails initially dividing the input image into overlapping or 

nonoverlapping blocks. Then, feature-sets are extracted for each block. The matching phase is employed to determine 

similar blocks based on their feature-sets [6]. The key point-based approach involves extracting local features from 

the whole image and representing them as a set of descriptors. Finally, the descriptors are compared to identify forged 

regions [9]. Deep learning algorithms depend on the creation of convolutional neural network (CNN) models, which 

possess high capacity for extracting meaningful information from the input images and other digital data [8]. Parveen 

et al. utilized a block-based method for CMFD [10]. The suggested approach encompasses a series of steps: converting 

the color image to grayscale and dividing the grayscale image into [8×8] overlapping blocks. DCT is for locating 

features, and finally the feature matching is conducted via the radix sort method. Yang et al. introduced a key point-

based approach using the SIFT technique [11]. A formulation of a distribution strategy was devised to ensure the fair 

placement of key-points within an image. The enhanced SIFT descriptor was developed to depict key-points precisely 

within the context of the CMFD scenario, and the key-points were matched using the agglomerative hierarchical 

clustering (AHC) algorithm. Elaskily proposed an innovative model for CMFD based on deep learning [8]. 

Specifically, a CNN model was proposed to generate a representation of categorized descriptors. Following the training 

phase of the CNN, the system could classify images to identify instances of copy–move forgeries. 

https://doi.org/10.25195/ijci.v49i2.417
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Fig. 1. General Architecture of The Proposed Model For Automatic Forgery Detection 

Yao et al. presented a model based on deep learning for forgery detection in videos [12]. The proposed model utilizes CNNs for the 

extraction of features. To reduce temporal redundancy between video frames, the video frames undergo preprocessing in three 

stages. These stages include the implementation of a frame absolute difference layer. Additionally, data augmentation techniques 

are applied to prepare image patches for the training phase. Wu et al. presented an innovative deep learning model called BusterNet, 

for the purpose of CMFD [13]. BusterNet comprises two CNN architectures, followed by a fusion model. This remarkable model 

can accurately identify potential manipulated regions through the utilization of feature similarities. According to the author’s 

statement, BusterNet surpasses existing cutting-edge models in terms of performance. Liu employed multiscale convolution for 

producing forgery probability maps and combined it with segmentation to obtain the final tampered maps [14]. Bi et al. introduced 

the ringed residual U-Net (RRU-Net) for splicing forgery detection [15]. The RRU-Net demonstrated enhanced utilization of 

contextual spatial details and effectively resolved the issue of gradient degradation in the detection of splicing forgery. Zhu et al. 

proposed an end-to-end neural network called AR-Net [16]. The network is based on adaptive attention and residual refinement, 

which it aims to enhance the representation of features by fusing position and channel attention features. Additionally, deep 

matching is employed to calculate the self-correlation between feature maps, and the atrous spatial pyramid pooling (ASPP) 

technique combines the scaled correlation maps to produce the mask. Finally, the mask is refined through the residual refinement 

module, which preserves the boundary structure of objects. Kumar et al. employed unsupervised domain adaptation to learn the 

https://doi.org/10.25195/ijci.v49i2.417
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discriminative features from a large dataset and classify the forged images in new domains by feature space mapping [17]. Ahmed 

et al. introduced a novel deep learning technique for the identification of image forgeries, which remains effective even after post 

processing [18]. The suggested model is founded upon an encoder–decoder framework specifically devised to acquire discriminative 

attributes spanning the forged areas. Huang et al. [19] a dual-stream UNet named DS-UNet for CMFD and localization. The DS-

UNet extracts the high-/low-level manipulated traces. The lightweight hierarchical fusion method enables the DS-UNet to perceive 

tampered objects at different scales because tampered objects always vary in shape and size. Weng et al. proposed a novel model 

named UCM-Net, which incorporates multilayer asymmetric connections between the feature extraction module (FEM) and the 

tampered region localization module (TRLM [20]. The FEM selectively processes large- or small-tampered regions by leveraging 

deep underlying networks. To eliminate irrelevant semantic information effectively while preserving multiscale tampered features, 

multiple cross-layer connections are established between two auto correlation and ASPP computation modules. Furthermore, TRLM 
employs multiple U-shaped residual block units to capture global and local information. 

 

3. PROPOSED SYSTEM 

Generally, CNNs are a sophisticated form of artificial neural networks that utilize convolutional kernels for successful 

pattern recognition and image processing tasks. In this paper, the proposed model is inspired by the ResNet50 model 

as an encoder within the U-Net architecture. The encoder function implies applying a set of operations, such as 

convolution and normalizing to extract features. Conversely, the decoder function is locating the spatial features by 

combining two inputs (one stemming from the preceding layer of the decoder and the other originating from the 

symmetrical residual stage output of the encoder).  

The proposed model includes three basic stages: 

A. Preprocessing  

Enhancing the quality of the dataset and the corresponding ground truth masks is highly important for the purpose of 

training. This stage implies the following steps: 

● Splitting, resizing, and labeling: The images are divided into three distinct sections, namely, 80% for training, 

10% for validation, and 10% for testing. Subsequently, the images and ground truth masks are resized to 

standardize all inputs for the model, ensuring uniform dimensions. This standardization results in a reduction 

of the images to dimensions of 256 × 256. The manipulated images are similarly organized alongside the 

corresponding mask through the arrangement of the name syllable for each individual image. 

● Normalization: Normalizing pixel values in the “image” and “mask” arrays. Normalization is a widely 

accepted practice in the fields of image processing and deep learning. This normalization aims to scale the pixel 

values to a range that typically falls between 0 and 1. Typically, pixel values in most images are initially 

represented within the range of 0 to 255 for each channel, assuming an 8-bit representation. By dividing these 

values by 255, normalization is achieved. 

B. Architecture of the Innovated U-Net 

The proposed model is partitioned into two distinct components: the encoder and the decoder: 

● Encoder 

Due to the inherent advantages possessed by ResNet [7], the utilization of ResNet50 as an encoder is deemed 

appropriate. First, ResNet50 enhances extracting features. Second, reducing the number of parameters makes the 

system more effective. Third, it offers the skip connections concept, which allows the model to preserve information 

from the earlier layer. Fourth, combining ResNet50 with other models shows excellent results, in which one model 

can overcome the weakness of the other. The proposed model accepts an image with dimensions of 256 × 256 × 3 as 

input. To commence, the initial block of the encoder executes convolutional operations utilizing a kernel size of 7 × 7 

and a stride of 2. Following this, Max-Pooling is employed with a stride size of 2. Subsequently, four consecutive 

residual stages, namely, Res1, Res2, Res3, and Res4, are employed sequentially. Figure 2 shows the general 

architecture of ResNet50. 

 

https://doi.org/10.25195/ijci.v49i2.417
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Fig. 2. Resnets50: (A) Architecture of Resnets50, (B) Design of the Identity Block, and (C) Design of The Convolutional 

Block 

● Decoder 

Generally, classic CNNs make no assumptions about the spatial correlations between the extracted features or spatial 

relations among pixels. In this work, the U-Net network architecture is used as a decoder, which comprises multiple 

decoder blocks. The U-Net is a powerful CNN model that can capture detailed features and spatial coherence with 

their neighbor’s, which makes it highly suitable for image segmentation applications [19]. The main idea here is to 

take the whole image as an input and produce a full binary image as an output. In this work, the decoder in the U-Net 

network comprises multiple decoder blocks, which are connected to corresponding encoder blocks by employing 

concatenate layers. The decoder block engages in an upsampling procedure for the feature maps that are conveyed to 

it by the preceding block. This particular upsampling entails a convolutional operation using a kernel size of 3 × 3, 

which is subsequently followed by batch normalization. This upsampling procedure is reiterated four times. In the 

decoder section, four upSample blocks are respectively aligned with Res4, Res3, Res2, and Res1 of the encoder. Each 

upSample block is composed of feature maps with dimensions of (16×16×256), (32×32×128), (64×64×64), and 

(128×128×32). To predict the manipulated regions, the decoder network concludes with the utilization of the sigmoid 

pixel-wise classification function. The term P(TC) represents the likelihood of the two classes, namely, 0: forged and 

1: original. This likelihood is determined through the utilization of the sigmoid function. Ultimately, binary masks are 

generated to denote the manipulated regions in the image.  

4. PROBLEM OF IMBALANCED CLASSES 

After Generally, researchers in machine learning have to deal with the imbalanced data sets. This problem arises when 

the number of samples in one class (i.e., pixels in the genuine regions) greatly exceeds those in other classes (i.e., 

pixels in the forged regions), resulting in inadequate to classify pixels [21]. Practically, traditional classifiers are likely 

to bias into the large class samples and ignore the class with small samples [21][22]. To tackle this issue, the probability 

of the forged and genuine regions is calculated by employing the statistical information obtained from ground truth 

samples. The weights exhibit a reciprocal correlation with the frequency at which each class occurs. Higher frequencies 

of appearance lead to lower weights. The class weights, denoted as class weights, are computed by employing the 

inverse ratio of the occurrence frequency of each class. The next is the all-encompassing expression used to determine 

the class weights. The class weight for each class is determined by the following [23]: 

https://doi.org/10.25195/ijci.v49i2.417
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𝑤𝑐 =
𝑆

𝐶⋅𝑁𝑠
,     (1) 

where 𝑆 represents the entirety of the samples, 𝐶 is the number of classes, 𝑁𝑠 is the number of samples for a specific 

class, and 𝑊𝑐 is the allocation of weight for class 𝐶. The strategy is to utilize the class weights parameter during the 

training procedure and the optimization by modifying the effect of each class on the overall loss. This approach enables 

the model to assign greater significance to classes that are under-represented, thus effectively tackling the problem of 

imbalanced classes. 

5. DATA COLLECTION 

To evaluate the proposed model, two datasets are used: CASIA [24] and COMOFOD [25]. The dataset is subdivided 

into three randomly chosen subsets: training (80%), validation (10%), and tests (10%). 

Each image in the CoMoFoD dataset is coupled with its corresponding ground-truth mask that accurately outlines the 

forged regions. Five different categories of tampering are applied to the images: translation, rotation, scaling, 

combination, and distortion. Many post processing methods are used to modify the forged and original images, such 

as JPEG compression, blurring, noise addition, and color reduction. For the CASIA dataset, each image is coupled 

with its corresponding ground-truth mask. 

TABLE I.  DATASETS USED IN THIS PAPER 

COMOFOD 

No. of 

Image

s 

Image 

size 

Sub 

datasets 

Image 

percenta

ge 

No. of 

Image

s 

Grou

nd-

Truth 

4800 512×512 

Training 80% 3840 YES 

Validation 10% 480 YES 

Testing 10% 480 YES 

CASIA 

1309 384×256 

Training 80% 1047 YES 

Validation 10% 131 YES 

Testing 10% 131 YES 

6. PERFORMANCE MEASURES 

Many parameters are utilized for evaluating the performance of the proposed model and may include the sensitivity, 

receiver operator characteristic (ROC), area Under the ROC curve (AUC), F1-score, the Matthews correlation 

coefficient (MCC), and the Jaccard similarity index or intersection over union (IoU) [26][27]: 

● Sensitivity is the ratio of correct predictions, specifically true positives, to the total number of true positives 

and false negatives. Sensitivity is calculated as follows [26]: 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑟 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)  (2) 

● ROC curve is another metric to assess the performance of several different models. A curve that approximates 

the 45° diagonal of the ROC space suggests less precise examinations. In general, the closer the curve aligns 

with the top-left corner, the greater the precision of the examination [26]. 

● F1-score is an embodiment of the weighted average of recall and precision. As a result, the utilization of this 

specific metric involves the inclusion of false negatives and false positives. The F1-score possesses a higher 

degree of importance and usefulness compared with accuracy, especially when dealing with imbalanced classes, 

equation [26]: 

F1 =
2TP

2TP+FN+FP 
     (3) 

7. RESULTS 

S The experimental results reveal the excellent performance of the proposed U-Net model in determining and locating 

copy–move forged regions in images. The performance metrics of the proposed model trained on the CoMoFoD and 

CASIA2 datasets, as summarized in Tables 2 and 3, respectively. 

 

https://doi.org/10.25195/ijci.v49i2.417
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TABLE II.   RESULTS OF THE COMOFOD DATASET 

Phase 
Acc. 

% 

Prec. 

% 

Recall 

% 

F1 

% 

AUC 

% 

MCC 

% 

IoU 

% 

Training 97.83 80.45 100 89.17 99.32 89.05 65.66 

Validati

on 
98.05 77.12 99.8 87.01 98.97 86.84 67.67 

Testing 91.83 73.34 99.71 84.52 99.19 84.87 60.10 

TABLE III.  RESULTS OF THE CASIA2 DATASET 

Phase 
Acc. 

% 

Prec. 

% 

Recall 

% 

F1 

% 

AUC 

% 

MCC 

% 

IoU 

% 

Traini

ng 
93.72 71.01 97.07 82.02 95.70 80.41 61.84 

Valid

ation 
93.32 54.49 90.99 67.85 90.99 66.48 57.05 

Testi

ng 
92.74 54.94 93.41 69.36 93.41 68.83 54.39 

 

The proposed innovative U-Net model exhibited promising efficacy in detecting and locating of copy–move forgery 

within digital images. This model achieved notable levels of accuracy during the training and testing phases on the 

CoMoFoD and CASIA2 datasets. Specifically, on the CoMoFoD dataset, the model attained an accuracy of 

approximately 97.83% during the training phase and maintained similar levels of accuracy during the validation stage, 

up to 98.05% for validation, which correspondingly decreased during testing up to 91.83% for testing. On the CASIA2 

dataset, the model achieved a slightly lower accuracy of around 93.72% during training, which correspondingly 

decreased during validation and testing up to 93.32% and 92.74% respectively. 

The loss percentages indicate the disparity between the predicted values and the actual ground truth values. Lower loss 

percentages signify a greater agreement between the predicted and ground truth values, thus suggesting that the model 

effectively learned the underlying patterns within the training data. Figures 3 and 4 show the accuracy and loss function 

respectively. 

F1-scores for the CoMoFoD and CASIA2 datasets indicate the overall accuracy of the U-Net model in correctly 

identifying forged regions in the images. MCC values reflect the overall performance of the U-Net model in accurately 

classifying forged regions, which is better across the CoMoFoD dataset than CASIA2. 

AUC values are reported for both datasets during the testing phase, providing insights into the discriminatory power 

of the U-Net model in identifying forged regions, which is better across the CoMoFoD dataset than CASIA2. The 

ROC-AUC curve that reflects the model’s performance is shown in Figure 5. 

  

(a) (b) 

Fig. 3. Accuracy of the Proposed Model: (a) Comofod Dataset and (b) CASIA2 Dataset 
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(a) (b) 

Fig. 4.  Loss Function of The Proposed Model: (a) Comofod Dataset and (b) CASIA2 Dataset 

The visual representation of the model’s output is highly important for qualitative evaluation, as shown in Figures 6 

and 7. Columns (a), (b), and (c) show the input image, the ground truth mask, and (c) the model results, respectively. 

The examples of CMFD predicated output mask are highly similar to those of the ground truth mask. This finding 

implies that the proposed U-Net model exhibits robust performance in detecting and localizing manipulated regions in 

images.  

For quantitative comparison with other works, Tables 4 and 5 provide a comprehensive overview of key performance 

metrics when applied on CoMoFoD and CASIA2, respectively. Moreover, the model achieves an impressive recall 

rate of 99.71%, implying that it successfully captures nearly all of the actual forged regions found within the dataset.  

This high recall rate ensures that the model effectively detects the majority of forged regions, thereby minimizing the 

occurrence of false negatives. 

The visual representation of the model’s output is highly important for qualitative evaluation, as shown in Figures 6 

and 7. Columns (a), (b), and (c) show the input image, the ground truth mask, and (c) the model results, respectively. 

The examples of CMFD predicated output mask are highly similar to those of the ground truth mask. This finding 

implies that the proposed U-Net model exhibits robust performance in detecting and localizing manipulated regions in 

images.  

For quantitative comparison with other works, Tables 4 and 5 provide a comprehensive overview of key performance 

metrics when applied on CoMoFoD and CASIA2, respectively. Moreover, the model achieves an impressive recall 

rate of 99.71%, implying that it successfully captures nearly all of the actual forged regions found within the dataset. 

This high recall rate ensures that the model effectively detects the majority of forged regions, thereby minimizing the 

occurrence of false negatives.  

 

  

(a) (b) 

Fig. 5. ROC-AUC Curve for the Proposed Model: (a) Comofod Dataset and (b) CASIA2 Dataset 

https://doi.org/10.25195/ijci.v49i2.417
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a                              b                           c 

Fig. 6.  Examples of CMFD Results using the Proposed Model Applied on Comofod Dataset: (a) Input Image, (b) Ground 

Truth Mask, and (c) Model Results 

https://doi.org/10.25195/ijci.v49i2.417
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(a) (b) (c) 

Fig. 7.  Results Of the U-Net Model Applied on CASIA2 Dataset: 

(a) Input Image, (b) Ground Truth Mask, and (c) CMFD Mask 

https://doi.org/10.25195/ijci.v49i2.417
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TABLE IV.  COMPARISON OF OUR U-NET WITH OTHER MODELS IN THE LITERATURE ON COMOFOD DATASET 

Model Dataset 
Precision 

% 

Recall 

% 

Zernike Moments [28] Only 12 images 83.59 76.63 

Busternet [13] CoMoFoD 57.34 49.39 

Base [16] CoMoFoD 47.68 38.11 

Base-Ada-Atten [16] CoMoFoD 46.61 40.75 

AR-Net [16] CoMoFoD 54.21 46.55 

False-Unet [26] CoMoFoD NA NA 

Our Innovative Unet 
CoMoFoD 

(480 images) 
73.34 99.71 

 

TABLE V.  COMPARISON OF OUR U-NET WITH OTHER MODELS IN THE LITERATURE CASIA2 DATASET 

Model Acc. % 
F1-Score 

% 

AUC 

% 

MCC 

% 

IoU 

% 

ManTra-Net 

[29] 
NF NF 81.7 NF NF 

Busternet [13] 76.84% 45.56% 93 NF NF 

FCN [30] NF 67.58 NF NF NF 

False-Unet [26] NF 69.53 83.25 62.38 91.33 

Our model 92.74 69.36 93.41 68.38 54.39 

 

8. CONCLUSIONS 

In this paper, an innovated machine learning-based model is proposed for the automatic detection of image forgery. 

The qualitative performance of this model is highly excellent in locating forged regions. Furthermore, the predicted 

mask shows that the predicted forged regions closely resemble the ground truth mask. For the quantitative evaluation, 

many metrics are used, such as accuracy, F1-scores, AUC values, MCC scores, and IoU metrics. The accuracy and 

effectiveness in identifying forged areas emphasize the potential of deep learning approaches to improve forgery 

detection methods and to eliminate human intervention completely. The proposed model is tested and evaluated on 

two different datasets, CoMoFoD and CASIA2 datasets, which offers various copy–move scenarios. The experimental 

results reveal that the model can detect forged images with high accuracy, reaching up to 92.74%. 
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