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Abstract

In this paper, we obtain an expression for unsteady energy equation for an
incompressible viscous electrically conducting second grad fluid over a stretching sheet
subject to a transverse magnetic field. Homotopy analysis method (HAM) is needed to
solve the governing equations. Also we examines the effects of internal heat parameter,
viscoelastic parameter, magnetic parameter, Prandtl number, Eckert number and time
which they control the energy equation.
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Introduction

The study of flow and heat transfer is of considerable interest in many industrial
applications such as processes involving continuous pulling of a sheet through a reaction
zone, as in metallurgy, textile and paper industries, manufacture of polymeric sheets,
sheet glass and crystalline materials. Since the pioneering work of Sakiadis [1, 2], various
aspects of the problem have been investigated by many authors. Crane [3], Vleggaar [4]
and Gupta and Gupta [5] have analyzed the stretching problem with constant surface
temperature while Soundalgekar and Ramana Murty [6] investigated the constant surface
velocity case with power-law temperature variation. This flow was examined by
Siddappa and Khapate [7] for a special class of non-Newtonian fluids known as second-
order fluids which are viscoelastic in nature.

Rajagopal et al. [8] independently examined the same flow as in [7] and obtained
similarity solutions of the boundary layer equations numerically for the case of small
viscoelastic parameter K. It is shown that skin-friction decreases with increase inK.
Dandapat and Gupta [9] examined the same problem with heat transfer. In [9], an exact
analytical solution of the non-linear equation governing this self-similar flow which is
consistent with the numerical results in [8] is given and the solutions for the temperature
for various values of K are presented . Later, Cortell [10] extended the work of Dandapat
and Gupta [9] to study the heat transfer in an incompressible second order fluid caused by
a stretching sheet with a view to examining the influence of the viscoelastic parameter on
temperature distributions. It is found that temperature distribution depends on K, in
accordance with the results in [9]. Numerical solutions for the flow of a fluid of grade
three past an infinite porous flat plate subject to suction at the plate are to be found in
Rajagopal et al. [11] and in Cortell [12] . Hayat et al. [13] studied the flow of a third-
grade fluid over a wall with suction or blowing and Gupta et al. [14] investigated the
steady flow of a power law fluid past an infinite porous flat plate subject to suction or
blowing with heat transfer. Arbitrary injection/suction in a power -law fluid is analyzed in
[15]. Flow and heat transfer characteristics were investigated in [16] for a viscoelastic
fluid over a stretching sheet with power-law surface temperature and in [17] with a non-
linearly stretching sheet. Very recently, Vajravelu and Rollings [18] assumed additional
effects such as the flow in an electrically conducting fluid permeated by a trans verse
uniform magnetic field with uniform suction at the surface, however, heat transfer in such
flow was not studied.

Furthermore, they augmented the missing boundary condition and used a proper sign
for the normal stress modulus (i.e. «>0).

Flow analysis
An incompressible homogeneous second grade fluid has a constitutive equation given
by [19]:
T=—pl+ A, + A, + ,AZ (1)
Here T is the Cauchy stress tensor, p is the indeterminate pressure constrained by the
incompressibility, s is the coefficient viscosity, «,and «, are the moduli of the
viscoelastic fluid, and A, and A, are the first two Rivilin-Ericksen tensors defined as:

A =L+L"
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A, =%+A1L+ L'A,, (2)
Where d/dt is the material derivative and L=VV . If the fluid of second grade is to
satisfy the Clausius-Dehum inequality for all motions and the assumption that the specific
Helmholtz free energy of the fluid is a minimum when it is locally at rest, then the
requirements for the moduli of the second grad fluid are

u#20, ¢ >0,and o +a,=0 (3)
Though the sign of ¢, has been a subject of much controversy.

If the second grade fluid is electrically conducting, the Lorentz force JxB where
J is the electrical current and Bis the magnetic field, must be included in the
momentum equation when a transverse uniform magnetic field B = (0, B,,0) is applied to

the fluid layer. The terms due to Lorentz force can be simplified if the following
assumption are made: (i) all physical quantities are constant; (ii) the magnetic field B is
perpendicular to the velocity V and the induced magnetic field is small compared with
the applied magnetic field; (iii) the electrical field is assumed to be zero. These
assumptions are valid when the magnetic Reynolds number is small and there is no
displacement current [20]. Thus, in the boundary layer approximation the Lorentz force is

simply the term —oBu, where o is the electrical conductivity, B,is the uniform

magnetic field in the vy -direction,and Uisthe x-component of the velocity v .

The flow problem of non-Newtonian fluids, characterized by Bingham plastic and the
power law models, in a magnetic field has been investigated by Sarpkaya [21]. Sarpkaya
also pointed out that some non-Newtonian fluids such as nuclear fuel slurries, liquid
metals, mercury amalgams, biological fluids, plastic extrusions, paper coating, lubrication
oils and greases, have applications in many areas in the absence as well as in the presence
of magnetic field.

In this paper, using homotopy analysis method (HAM), one of the most effective
methods [22, 23]. We present a general solution for unsteady energy equation of a
laminar boundary layer flow of an electrically conducting second grad fluid subject to a
transverse uniform magnetic field over a stretching sheet with prescribed power-law
surface temperature and prescribed power-law surface heat flux, the viscoelastic modulus

a, of the second grad fluid is taken to be positive to satisfy thermodynamic restriction
Eq. (3).

Consider the unsteady, two dimensional laminar flow of electrically conducting fluid
caused by an impulsive stretching flat surface in two lateral direction in an otherwise
quiescent fluid in the presence of transverse magnetic field. It is assumed that the
contribution due to the normal stress is of the same order of magnetic as that due to shear
stress [19].

The basic boundary layer equations for the unsteady flow are:

XL g (4)
ox oy
oau  ou  ou ou oB
—tU—+U—=V———2u

a x oy p
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a a[ aqu éu % a%}
+—=| U= [+ ———tv—= (5)
PLX oy") oyoy oy

o oT orT) . oT (euY
PCy| —+tU—+v— |=K—+u —

ot OX oy oy oy
ou a[ ou auj
o——|U—+v—
oyoy\ ox oy
+q(T -T,) +oBu? (6)

where u and v are velocity component in the X and y direction, T is the temperature,
T is the temperature of the ambient fluid, p is the density, q is the specific heat
generation rate, v =u/p is kinematic viscosity, k is the conductivity and c, is the

specific heat at constant pressure. In deriving (5) and (6) it is assumed that the
contribution due to the normal stress is of the same order of magnitude as that due to the
shear stress. The term ﬂu in (5) is the Lorentz Force and the last three terms in (6) are

P
work done due to deformation, internal heat generation or absorption and the Joule

heating. We assumed that the gravity force is neglected and the modified pressure
gradient is absent since the flow is driven by the stretching sheet.
The series solution for motion equation (5) can be found in Adel Rashed [24].
The boundary conditions for energy equation (6) are
T=T, aty=0

T>T, asy—>wx

Non-Dimensional form of energy Equation
We can write down the Velocity Equation in non-dimensional form through using the
transformations:

(7)

u=Bxf'(n), v=—(Bv)"* f ()&
n= _(B/V)l/z yé—l/Z =Bt
F=l-e" (8)
substitution these quantities into energy equation (6), the Dimensionless form of energy
equation is

0"+ RASO + 2 Ral-£)0' P (L-E22

o0&
—PEQRf —a)0+ PE|(fF + M &(F')
+KF"(ff"— ff")]=0 9)

Where a prime denotes the differentiation with respect ton, f = 1f(n,%), 8=0(n,<&),
K=a,B/u is the viscoelastic parameter, P, =uc /k is the Prandtl number,
a=q/Bpc, is the internal heat parameter, E, = BZXZ/ATCp is the Eckert number and

M, is the magnetic parameter.

The corresponding boundary conditions (7) became:
=1 atn=0,
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0—>0asn—w (10)
Basic ideas of HAM
Let us consider the following differential equation
N[u(z)]=0 (11)
where N is a nonlinear operator, 7 denotes independent variable, u(z)is an unknown

function. For simplicity, we ignore all boundary or initial conditions, which can be
treated in the similar way. By means of generalizing the traditional homotopy method,
Liao [25] constructs the so-called zero-order deformation equation

(- p)LLe(z, p) — Uy ()] =
phH (7)N[o(z, p)]
where p €[0,1]is the embedding parameter, h =0 is a non-zero auxiliary parameter,
H(z) =0 is an auxiliary function, L is an auxiliary linear operator, u,(z) is an initial
guess of u(z), ¢(z, p) is unknown function, respectively. It is important, that one has
great freedom to choose auxiliary things in HAM. Obviously, when p=0and p=1, it
holds ¢(z,0) =u,(z) and ¢(r,1) =u(z) respectively. Thus, as p increases from 0 to 1, the
solution ¢(z, p) varies from the initial guess u,(z) to the solution u(z). Expanding
¢(z, p) in Taylor series with respect to p, we have

(12)

P D) =U(@+ XU OP" (13)
where

()= CAEP) 19
m! Op 0=

If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the
auxiliary function are so properly chosen, the series (13) converges at p =1, then we

have
U(E) = Uy(2) + U, (7) (15)

which must be one of solutions of original nonlinear equation, as proved by Liao [25].
As h=-1 and H(z) =1, Eq. (12) becomes
(A= p)LLe(7, p) —u, (7)]+

PN[o(z, p)]=0
Which is used mostly in the homotopy perturbation method, where as the solution
obtained directly, without using Taylor series [26, 27].
According to the definition (14), the governing equation can be deduced from the
zero-order deformation equation (12). Define the vector

u, ={U, (), u,(7),- -, u, (7)}
Differentiating equation (12) m times with respect to the embedding parameter p and
then setting p=0 and finally dividing them by m!, we have the so-called mth-order
deformation equation

(16)

L[u, (7) ~ ZuUns(D)]=hH (@R, (U, ) (A7)
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where
m-1
R, (Uy ) = (mi o ‘ ggﬁf(f O (1
And
0, m<il
An = {1, m>1 (19)
It should be emphasized that u_(z) for m>1 is governed by the linear equation (17)

with the linear boundary conditions that come from original problem, which can be easily
solved by symbolic computation software such as Maple and Mathematica.
Homotopy Analysis Solution

In order to solve dimensionless equation we select

&(n,5)=e" (20)
as initial approximation of 4, Besides to choose

aZ
Lp(E e =2 - (21)
n
as the auxiliary linear operator with the property
LIC, exp(-77) + C,exp(17)] =0 (22)
6,(n,¢&) Satisfy the linear operator and the corresponding boundary conditions.

Zero-order deformation equation
Based on dimensionless equation we are define the nonlinear operator

NIGOn.&. P& D= (" + Répg + 2 PEW- )~ PEW- ) L -P 2 -

of
+PE|(¢") + Ko (99" — 00"

+M,£(¢) (23)

Let h denote the non-zero auxiliary parameter. We construct the zero-order deformation
equation

- p) LIg(m.&. p) — 6 (7. £)]= ph H(r,t) N[¢(17.S, p)] (24)

Subject to the boundary conditions

¢n.8), =1 ¢m.¢) _, —0 (25)

Where ¢(r,&, p) is the solution which depends not only upon 6,(r,£), L, H(#,£) and h
but on the embedding parameter p<[01]. When p=0 and p=1 the zero-order
deformation equation have the solutions ¢(n,£,0)=6,(7,¢) and ¢(n,£1) =6(n,<E)
respectively. Thus p increases from 0 to 1, ¢(n,&, p) vary from the initial guesses
6,(n,&) to the solution 6(n,&) of the considered unsteady problem. So expanding
#(n,&, p) in Taylor's series with respect to the embedding parameter p, we have

#.£.7) = ¢(n,§,0>+i%{2p‘f

Assuming that h properly chosen so that the solution sequence of (24) convergent at
p =1, we have, using the boundary conditions (25), the solution series

|p:0

]pm ¢(n.¢, p)=9o+i¢9m(n,§) p" (26)
p=0 m=1
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001.8) = 0(1.E) + > 00(11.) (27)

High-order deformation equation
For simplicity, we define the vector

O =105.6,.6,....6,} (28)
Differentiating the zero-order deformation equation m times with respect to p, then
setting p=0, and finally divided it by m!, we obtain the m-th order deformation equation

LLO, (17,€) = ZOn 2 (1. )] = PR, (Oma)  (29)
Subject to the boundary conditions

0,(1.8), o = 0n(1.8) (30)

7]—)00
where

Ro(On1) =0 1+ RnL- )0,
—M§KEHW%ﬁﬂ%mM

_2P§f| m-1-i +PE f”frr,: it Kfn’: 1- |Zfizj fj'_Kfm—l—iZfigj f
20 =0

+Mn§f fmll] (31)
0, m=1

And = 32

X {1’ sl (32)

In this way, it is easy to solve the linear equation (29) one after the other in the order
m=1,2,3,... by means of the symbolic computation software such as Mathematica, and

Maple.
General solution

The first step in the HAM is to find a set of base functions to express the sought
solution of the problem under investigation. As mentioned by Liao[9a, 12a], a solution
may be expressed with different base functions, among which some converge to the exact
solution of the problem faster than others. Here, due to many boundary-layer flows decay
exponentially at infinity, we assume that 8(n,&) can be expressed by a set of functions

{em) exp(—knlr 20,120, j20)} in the form

m+12m-1

¢m(77'§ :Zzlym,r,k n §r+1—m eXp(—kﬂ)

k=0 r=0
m>1 (33)
where
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Y, ,=dr ,, m=1 k=0

m,r,0?
Yook =0po Mm=1 k=1, r=0
W00=0n00 M21, k=r=0 (34)

2m

le,r,k(n) = Z drin,r,k 77i

i=0
m>1 1<k<m+1, 1<r<2m-1
And from the initial guess ,(r7,&) we have

dg,o,o =0, dg,0,1 =1 (39)

For simplicity we will define A', ., as the following
2m . . .

\Pm,r,k(n): Z AIm,r,k drln,r,k 77' (36)
i=0

where

0, if m=k=r=0, i>0

0, if m>0, k=0, i>1

0, if m>0 k>1Lr=0, i>1
0, if m>0 k=r=0, i>1
0
0
0

Rk =0 it ksmet (37)
, if i>2m
, if r>2m-1
1, otherwies
From equation (36) and (37) we can get
2m
\Pr;,r,k(n)zz iAim,r,k drin,r,k 77i_1

i=1
This can be written (using definition of A‘m]r,k) as:

m+l2m-12m . .
1.6)=2 23 Who' £ ep(-kr) (38)
k=0 r=0 i=0

H0 =2 X3 G’ & ep(—kn) (39)

k=0 r=0 i=0
6¢m,1 o i i gr-mil (40)
o kz (r=m+2)¥ & exp(—kn)
=0 r=0

where
Wrin,r,k = (I +1 /\I;lrkdrlnﬁ:;k - k/\im,r,kdrin,r,k (41)
grin,r,k = (i +1)(i + 2)Air;,2r,kdrin+,r2,k

- 2k(l +l)/\lr;1rkdrlTT$k + I(2/\im,r,kdrin,r,k (42)
Now
G, =hR, (43)
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4 1 !
= h‘: -1t E Prn(l_ §)¢m—l

a¢m 1

m-1
-P (1 §)§ é: + aPr§¢m—l + Z[Pré:fsﬁ:w—l—s - 2F)rfl:s' ¢m—1 st R Ec fs” 1:r'r'1’ 1-s
s=0

+Kf SZ fl5 1= Kfm-l-si £l 17

j=0 j=0
+M, & f ] (44)

where f can be calculated from Adel Rashed [24], we assume that f(7,&) can be
expressed by a set of functions {gkn" exp(—nyn)\k >0,n>0,j> 0)} in the form

m+l m

k=0 r=0
m>1
where
‘//m,ro_bnowro’ m>1 k=0
meoyk =br?1,0,k’ le, kZl, I’=0

‘//m,oo_br?moo' m>1 k=r=0 (46)
k+r
'//m,rk Z m.r kD r,|<77i
m>1, 1£k£m+1, 1<r<m
where
0, if m=k=r=0, 1>0
0, if m>0 k=0, i>1
0, if m>0,k>1Lr=0, i>1
. 0, if m>0,k=r=0, i>1
Aok =3 (47)
S0, if k>m+1
0, if r>m
0, if i>2m-(r+k)
1, otherwies
And
mel m2m-(k+r)
AIED MRS
m+l m 2m—(k+r
B33 S £ eplk) (49
where o

mrk (I+l)ﬂ'lnﬁ‘ kbrlnfk (k7/) m,r,k mrk (50)
ch o = (I +2)i+2)472 bi?

m,rk™~m,r k
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_2(k7/)(| +1)ﬂ’lr;1r kark +(k7/) ﬂmrkbrln r,k (51)

Now
s+l s 2s(kl+r1)
fs fn: s-1 |:ZZ i srlklnll§ rl ( kl’??’)}
k1=0r1=0 i1=0
m—s m—s-12(m-s-1)-(k2+r2)
X|:z z iam s-1,r2, k277 5 eXp(kzm/)} (52)
k2=0r2=0 i2=0

which can be rewrite as

:{j S exp(— (kL+k2) 777)}

k1=0k2=0

m-s-1 (r1412) 2s+(k1+rl) 2(m-s-1)—(k2+r2)
ri+r il i2 i1+i2
Z Zé Z Zas ri, klam s-1,r2, k277

r1=0 r2=0 i1=0 i2=0

m+1 min{m+1,k} m-1 min{m,r}
| Sencim " Hzgf ]

kl=max{0,k—m+s} r=0 rl=max{0,r—-m+s+1}

I —il
n A5 r1 k18m-s1 r-rLk—k1

2(m-1)+2k1-k+2rl-r min{2s+k1+rli} =
X
i=0 il=max{0,i-2(m-s—1)+(k—k1+r-r1)}

This finally gives

m+1

ffn s Zexp( kW)Zf" (53)

2(m-1)+2k1- k+_2r1 ro
X 277' ern,r,k
i=0
By the similar way, we can have

m+1 min{2s-k-r,w}

oy = Zﬂ Zexp( nym)

i=max{0,w-2(m-s-1 +k1+r1}

min{s+1,n} s m-s-1

x> 22 (54)

k=max{0,n-m+s}r=0 r1=0

S+2 2s—(k+k1+r+rl) min{s-j+1,n}
" ’ w
fr 6/ =>ep(nm Dn
n=0 w=0 kl=max{0,n-j-1}

min{2 j—k1-r1,w} s-j

X z ZZCS j.r, kaj rl, klé:irirl (55)

il=max{0,w—2s+2 j+k+r}r=0r1=0
S m+2

m s—lz fs”] fj, z ZeXp(_ nl}/?])

j=0 n1=0
2(m-1-k—r)—(k1+rl)

x Z UWZHIm r.k (56)
w2=0
S m+2
fm—l sz fS”j fj’ Z ZeXp(—nzﬂ”?)
j=0 j=0 n2=0
2m—2—(k+kl+k 2+r+ri+r2)
X Z UWZEIm r.k (57)
w2=0

Substitution equations (48-49) and (53-57) into (44), we obtain
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m_ 2m-3 2m-2 .
6 N3 3 Sl e (k)
k=0 r=0 i=0
m 2m-3 2m-2

+5 P77(1 Y 2 D g€ exp(=ki)

k=0 r=0 =0

m-12m-52m-4
- Prg(l_é:) Aim— r drln— r 77i S i i i gr-m+
; ; ; ark ark +0{Pré:2 Z ZAm—l,r,kdm—l,r,k'] é: 2 exp (_kﬂ)
r-m+2 k=0 r=0 i=0
x(r—-m+3)¢ exp(—kn)
m-s 2m-3-2s
m-1 m-s 2m-2s-32(m-1-s) ) _2Pf§fs oy —
+Z|:Pr§fs Z sz -1 srk77 gr e exp( k’]) 2(m-1-s) - "~
s=0 k=0 r=0 i=0

x ZAIm -1 sdm -1 srkn ér mest2 eXp(-k?])

+PEf/f"  +K fng'slzf;']f;

j=0

Kfm—s—lz fs” j fj’ + Mn‘):fs’ 1:m—s—l (58)
j=0

which can be rewritten as:

2m-2
G, Zexp( kﬂ)ZnAm
2m-2
+Ze><p( kn) Zn'”Béwk
2m-4 2m-2

+Zexp( kn)ZnD K +Zexp( k77)277 ek

m-1 s+1m-s 2m-2-k1-rl

DIPWILICICRTED Wt
+zzz o (n(Kly +K)) zf}“ﬂ'

m-1 2m-2—(k+k1+r+rl) m+1

+2 > WZ exp(—nym)Th, .

s=0 w=0
m-— S m+2

+ hKZ > exp (- nlyn)
s=0 j=0 nl1=0

2(m-1-k—-r)—(k1+r1)
> Z 77W21—I|

m,r,k
w2=0
m-1 S m+2
hK> > exp(-n2ym)
s=0 j=0 n2=0

2m—2—(k+kl+k 2+r+rl+r2)
% w2E|
n m,r.k
w2=0
m+1

+Zh|\/| Zexp( k777)2§
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2(m-1)+2k1-k+2r1-r

x o >nQ (59)

n m,r .k
where
. 2m-3 )
i i r-m
An,r,k = h Zcm—l,r,ké " (60)
2m-3 )
i r-m+
erk P(l 5) ZW —1rk§ (61)
2m-5
Dp i = ~hREQ=8) 2y (= m+ 35" (62)
2m-3 3
r-m+
mrk _h(ZP Zd lr,ké: (63)
m|n{2(m—l—s),w} s
k= hI:)r
i=max{0,w—2s+k1+r1} r1=0
2(m-s)-3
i i1 r—rl-m-s+3
X Zw:n—l—s,r,kbrlnl,rl,klg . (64)
min{m-1-s,w} S
le r k - 2h|:’r
i=max{0,w—-2s+k1+r1} r1=0
2m-3-2s . ) 3
i i r—rl-m-s+
X Zas rl, klAm—l—s,r,kdm—l—s,r,kg (65)
min{2s-k-r,w}
I« =hPE,

i=max{0,w-2(m-s-1)+k1+rl}

min{s+1,n} s m-s-1

XD 2 2 Th (67)

k=max{0,n-m+s}r=0 r1=0

min{2s—(k+k1+r+rl,w2) min{s+2,n1} min{s-j+1,n} min{2 j —kl-ri,w} S
| x 2.
1_Im r k Z Z Z . .
w=max{0,w2-2(m-s-1)+(k+r)} n=max{0,n2-m+s}tkl=max{0,n-j-1} il=max{0,w—2s+2 j+k+r}r=0 rl=0
m-s-1
—r—rl-r2
x Z Cs jr, ka s-1,r2 kZaj rl, kl(: (68)
r2=0
. min{s+2,n2} m-1-s min{2s—(k-+k1+r+rl),w2}
I
Em r, k=
n=max{0,n2-m+s} r2=0 w=max{0,w2-2(m-1-s)+(k2+r2)}
i2
(ﬂmlerkzb 1sr2k2§ )
min{s-j+1,n} min{2 j—k1-r1,w} s-j
i i1 —r—rl 69
zcs—j,r,kaj,rl,k1§ ( )
kl=max{0,n-j-1} il=max{0,w—-2s+2 j+k+r}r=0 r1=0

min{m+1,k} min{m,r}

ern,r,k =

k1=max{0,k—m+s} rl=max{0,r—m+s+1}
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min{2s+k1+rl,i}

il i-il
Z a‘s,rl,klam—s—l,r—rl,k—kl (70)
il=max{0,i-2(m-s-1)+(k—k1+r-r1)}

In order to obtain the general solution of equation (59), we will start with an ordinary
differential equation look like the mth order equation

y"'(7) = y(17) =" exp(—kn) (71)
To find the particular solution of this equation we use the formula

Jitemi-kman = -emCknd S L (72

The particular solution of (71) is

a .
y, =exp(—km)E Yl 7] (73)
j=0
where
o i 1 ) (74)

/uk,j 2 J' (k 1)q ]+1 (k 1)q j+1
Applying the solution (73) on the differential equation (59), we obtain the following
general solution

¢ _)(m¢m e

2m-2 i

Zexp( k) D> i (A e

i=0 j=0
2m-2 i+1

+Ze><|0( ki) D" D " By
i=0 j=0
2m-4 i

+Zexp( kU)ZZU :ukj mrk

i=0 j=0
2m-2 i

+Zexp( kn)ZZn i i
+ 35 Sep(-noki+k)

=0 k1=0k=0
2m-2-k1-r1 w

X Z Z/u;khk JUJA‘

w=0 j=0

+ > exp(~77(kly +K))

w
X Z 77 /uk17+k JQIm r.k

m-1 2m-2—(k+k1+r+rl) m+1

5 $ ep-nm)

w=0 n=0
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m-1 S m+2
+ > hKY. > exp(—nlyny)
S= j=0 nl1=0

2(m-1-k—r)—(k1+r1) w2

x z Zozunjly,jnjnim,r,k
iz

w2=0
m-1 S m+2
-2 hKY > exp(-n2ym)

s=0 j=0 n2=0

2m-2—(K+K1+k 2+r+r1+r2) w2

w2 jpi
x Z Z,unZy,jn Em,r,k
w2=0 j=0

m-1 m+1 m-1
+2 hM > ep(—kny) D &

e 2(m-k1732k1—k+2r1-ri r:? o

x ; Zolull(y,jnJQllﬂ,r,k
i=( j=

+C'exp(77) + Crlexp(-77) (75)
Convergence of the solution
From the homotopy analysis method, as long as the series solution is convergent, it
should converge to one of the solutions of original equation. The convergence and rate of
the approximation for the HAM strongly depend upon the value of the auxiliary
parameter h, as pointed out by Liao [25, 28]. So we have a family of solution expressions
in the auxiliary parameter h, and the physical quantities also depend upon h. So,
regarding h as an independent variable, it is easy to plot curves of these kinds of
quantities versus h by means of the so-called h-curve. If the solution is unique, all of
them converge to the same value and therefore there exists a horizontal line segment in
the h-curve, and if we set h any value in the horizontal line segment we quite sure that the
corresponding solution series converge.
Fig (1) portrays the h-curve of &, (0,£). The range for admissible value of h is

—1.2<h<1.0 we see that series converges in the whole region of 7 when h=-0.3, this
value of h lie in the admissible range of h.

Fig. (1) The h-curves of &, (0,&) obtained by the 6th-order approximation of the HAM,
when ¢=3

(@) M, =K =0, =0, Pr=1, Ec =0.01

() M, =K =1, @=0,Pr=1,Ec=0.2
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(C) M, =K =0, @=0.1,Pr=10,Ec=0.2

Result and conclusion

We have studied the effects of different dimensionless numbers that governing the energy
equation.

Figures (2-7), illustrate the effect of time &, internal heat parameter « , Eckert number
E., Prandtl number P,, viscoelastic parameter K and magnetic parameter M
respectively.

All the results are made using Wolfram Mathematica 8 package.

Effects of time &

To study the effects of time & on the energy equation, we keep magnetic parameter
M, viscoelastic parameter K internal heat parameter « , Prandtl number P, and Eckert
number E, fixed at 1, 1, 0, 1, 0.01 respectively, and we give time ¢ for values 1, 1.25,

1.5, 2, 2.5, 3, 3.5 the following result is made:
As time & increases, there is small decreasing in the temperature. See Fig. (2).

n

1.0

increasing &

Fig.(2) The approximation solution of &(,&) obtained by the 6th-order of the HAM,
when m, =1, K=1, =0, Pr=1, Ec=001,and ¢=1,1.25 15, 2, 25, 3, 35
Effects of internal heat parameter «:

To study the effects of time o on the energy equation, we keep magnetic parameter
M, viscoelastic parameter K, time &, Prandtl number P, and Eckert number E_ fixed
at0,0, z/4, 1, 0.01 respectively, and we give internal heat parameter « for values -1, -
0.5,-0.1, 0, 0.1, 0.5, 1 the following result is made:

As internal heat parameter ¢ increases, there is small increasing in the temperature.
See Fig. (3).
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1.0

06 \\\\ increasing @
!
A\
‘Q

1 2 3 4 5 6
Fig.(3) The approximation solution of €(r,&) obtained by the 6th-order of the HAM,
when m, =0, K=0, ¢=7/4, Pr=1, Ec=0.01,and ¢=-1,-05,-0.1,0,0.1,0.5,1

Effects of parameter Ec:
To study the effects of Eckert number E, on the energy equation, we keep magnetic

parameter M, viscoelastic parameter K, time &, Prandtl number P. and internal heat
parameter « fixed at 1, 0, 1, 1, O respectively, and we give Eckert number E_ for values

-0.5,-0.2,-0.1, 0, 0.1, 0.2, 0.5, 1 the following result is made:
As Eckert number E_ increases, there is small increasing in the temperature. See Fig.

(4).

15| increasing Ec -

-10F

Fig.(4) The approximation solution of &(,&) obtained by the 6th-order of the HAM,
when m, =1, K=0, £=1, Pr=1, =0,and Ec=-05,-0.2,-0.1,0,0.1,0.2,0.5,1
Effects of parameter Pr:

To study the effects of Prandtl number P. on the energy equation, we keep magnetic

parameter M, viscoelastic parameter K, time &, Eckert number E, and internal heat
parameter o fixed at 10, 1, 1, 0.01, 0.1 respectively, and we give Prandtl number P. for

values 1, 2, 3, 4 the following result is made:
As Prandtl number P. increases, there is small change in the temperature. See Fig. (5).
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05 1.0 1.5 20 23130
Fig.(5) The approximation solution of &(,&) obtained by the 6th-order of the HAM,
when m, =10, K =1, £=1, Ec=0.01, ¢=0.1,and Pr=1,2,3,4
these values fit with many materials, such such as polymer solutions or melts, drilling
mud, certain oils and greases and many other emulsions.

Effects of viscoelastic parameter K :
To study the effects of viscoelastic parameter K on the energy equation, we keep

magnetic parameter M, time & , internal heat parameter ¢, Prandtl number P. and
Eckert number E, fixed at O, 1, 0, 1, 0.01 respectively, and we give viscoelastic

parameter K for values 0, 0.5, 1, 2, 3 the following result is made:
As viscoelastic parameter K increases, there is small decreasing in the temperature.
See Fig. (6).

08F

I [ R SN Mt
-1 1 2 3 4 5 6
Fig.(6) The approximation solution of &(,&) obtained by the 6th-order of the HAM,
when M=o, £=1, Pr=1, =0, E,=0.01and K=0, 05, 1, 2,3
Effects of magnetic parameter M :

To study the effects of magnetic parameter M on the energy equation, we keep
viscoelastic parameter K, time & , internal heat parameter ¢, Prandtl number P, and
Eckert number E_ fixed at 0, 1, 0, 1, 0.01 respectively, and we give magnetic parameter
M, forvalues 0, 0.5, 1, 2, 3, 4, 5 the following result is made:

As magnetic parameter M increases, there is small increasing in the temperature. See
Fig. (7).
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Fig.(7) The approximation solution of 0(77,25) obtained_by the 6th-order of the HAM,
when K =0, ¢=1, Pr=1, =0, E,=0.01 and m,_=0, 05, 1, 2, 3,4,5
Note: in fig. (6) and (7), when &=1 we recover the steady state as obtained by [19] fig.

(3a), (3b) p. 4433.
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