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Abstract 

In this paper, we obtain an expression for unsteady energy equation for an 

incompressible viscous electrically conducting second grad fluid over a stretching sheet 

subject to a transverse magnetic field. Homotopy analysis method (HAM) is needed to 

solve the governing equations. Also we examines the effects of internal heat parameter, 

viscoelastic parameter, magnetic parameter, Prandtl number, Eckert number and time 

which they control the energy equation. 
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عهى نمائع من انرتبت انثانيت قابم نهتوصيم انكهربائً انطاقت انلامستقرة معادنت 

صفيحت مستعرضت مطاطيت فً حقم مغناطيسً 

عادل راشذ عبذ عهً 

قسى انزياضياث 

جايعت بغداد / ابن انهيثى/ كهيت انخزبيت نهعهىو انصزفت 

احمذ مونود عبذ انهادي 

قسى انزياضياث 

 جايعت بغداد / كهيت انعهىو
 

  انخلاصت

نًائع ين انزحبت انثانيت غيز قابم نلانضغاط ثابج انهزوجت قابم  يعادنت انطاقت  انلايسخقزةفي هذا انبحث نخناول دراست 

وحى انخعبيز عن انحم باسخعًال طزيقت . عهى يقطع عزضي نصفيحت يطاطيت ححج حأثيز يجال يغناطيسينهخىصيم انكهزبائي 

)، انحزارة انداخهيت ()كًا درسج حأثيز الإعداد انلابعديت انخي ححكى يعادنت انطاقت وهي انزين  (.HAM)هىيىحىبي انخحهيهيت 

) انهزوجت  ،(K) انحقم انًغناطيسي  ،(
nM) عدد بزاندل ،(Pr) وعدد إيكزث  ،(Ec .)

. عدد بزاندل،  عدد إيكزث, انًعايم انًغناطيسي, انهزوجت, انلايسخقز, (HAM) طزيقت انهىيىحىبي انخحهيهيت :كهماث مفتاحيت
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Introduction 

The study of flow and heat transfer is of considerable interest in many industrial 

applications such as processes involving continuous pulling of a sheet through a reaction 

zone, as in metallurgy, textile and paper industries, manufacture of polymeric sheets, 

sheet glass and crystalline materials. Since the pioneering work of Sakiadis [1, 2], various 

aspects of the problem have been investigated by many authors. Crane [3], Vleggaar [4] 

and Gupta and Gupta [5] have analyzed the stretching problem with constant surface 

temperature while Soundalgekar and Ramana Murty [6] investigated the constant surface 

velocity case with power-law temperature variation. This flow was examined by 

Siddappa and Khapate [7] for a special class of non-Newtonian fluids known as second-

order fluids which are viscoelastic in nature. 

Rajagopal et al. [8] independently examined the same flow as in [7] and obtained 

similarity solutions of the boundary layer equations numerically for the case of small 

viscoelastic parameter K . It is shown that skin-friction decreases with increase in K . 

Dandapat and Gupta [9] examined the same problem with heat transfer. In [9], an exact 

analytical solution of the non-linear equation governing this self-similar flow which is 

consistent with the numerical results in [8] is given and the solutions for the temperature 

for various values of K are presented . Later, Cortell [10] extended the work of Dandapat 

and Gupta [9] to study the heat transfer in an incompressible second order fluid caused by 

a stretching sheet with a view to examining the influence of the viscoelastic parameter on 

temperature distributions. It is found that temperature distribution depends on K , in 

accordance with the results in [9]. Numerical solutions for the flow of a fluid of grade 

three past an infinite porous flat plate subject to suction at the plate are to be  found in 

Rajagopal et al. [11] and in Cortell [12] . Hayat et al. [13] studied the flow of a third-

grade fluid over a wall with suction or blowing and Gupta et al. [14] investigated the 

steady flow of a power law fluid past an infinite porous flat plate subject to suction or 

blowing with heat transfer. Arbitrary injection/suction in a power -law fluid is analyzed in 

[15]. Flow and heat transfer characteristics were investigated in [16] for a viscoelastic 

fluid over a stretching sheet  with power-law surface temperature and in [17] with a non-

linearly stretching sheet. Very recently, Vajravelu and Rollings [18] assumed additional 

effects such as the flow in an electrically conducting fluid permeated by a trans verse 

uniform magnetic field with uniform suction at the surface, however, heat transfer in such 

flow was not studied. 

Furthermore, they augmented the missing boundary condition and used a proper sign 

for the normal stress modulus (i.e. 0 ).  

 

Flow analysis 

An incompressible homogeneous second grade fluid has a constitutive equation given 

by [19]: 
2

12211  p     (1) 

Here   is the Cauchy stress tensor, p  is the indeterminate pressure constrained by the 

incompressibility,  is the coefficient viscosity, 1 and 2  are the moduli of the 

viscoelastic fluid, and 1  and 2 are the first two Rivilin-Ericksen tensors defined as: 
 LL1  
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 LL
dt

d
,     (2) 

Where dtd /  is the material derivative and VL  . If the fluid of second grade is to 

satisfy the Clausius-Dehum inequality for all motions and the assumption that the specific 

Helmholtz free energy of the fluid is a minimum when it is locally at rest, then the 

requirements for the moduli of the second grad fluid are 

0   and ,0  ,0 211       (3) 

Though the sign of 1  has been a subject of much controversy.  

If the second grade fluid is electrically conducting, the Lorentz force BJ   where 

J  is the electrical current and B is the magnetic field, must be included in the 

momentum equation when a transverse uniform magnetic field )0,,0( 0BB  is applied to 

the fluid layer. The terms due to Lorentz force can be simplified if the following 

assumption are made: (i) all physical quantities are constant; (ii) the magnetic field B  is 

perpendicular to the velocity V and the induced magnetic field is small compared with 

the applied magnetic  field; (iii) the electrical field is assumed to be zero. These 

assumptions are valid when the magnetic Reynolds number is small and there is no 

displacement current [20]. Thus, in the boundary layer approximation the Lorentz force is 

simply the term uB2

0  , where   is the electrical conductivity, 0 B is the uniform 

magnetic field in the y -direction , and u is the x -component of the velocity  V .  

The flow problem of non-Newtonian fluids, characterized by Bingham plastic and the 

power law models, in a magnetic field has been investigated by Sarpkaya [21]. Sarpkaya 

also pointed out that some non-Newtonian fluids such as nuclear fuel slurries, liquid 

metals, mercury amalgams, biological fluids, plastic extrusions, paper coating, lubrication 

oils and greases, have applications in many areas in the absence as well as in the presence 

of magnetic field. 

In this paper, using homotopy analysis method (HAM), one of the most effective 

methods [22, 23]. We present a general solution for unsteady energy equation of a 

laminar boundary layer flow of an electrically conducting second grad fluid subject to a 

transverse uniform magnetic field over a stretching sheet with prescribed power-law 

surface temperature and prescribed power-law surface heat flux, the viscoelastic modulus 

1   of the second grad fluid is taken to be positive to satisfy thermodynamic restriction 

Eq. (3).  

Consider the unsteady, two dimensional laminar flow of electrically conducting fluid 

caused by an impulsive stretching flat surface in two lateral direction in an otherwise 

quiescent fluid in the presence of transverse magnetic field. It is assumed that the 

contribution due to the normal stress is of the same order of magnetic as that due to shear 

stress [19].  

The basic boundary layer equations for the unsteady flow are: 
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where u  and   are velocity component in the x  and y  direction, T is the temperature, 

T is the temperature of the ambient fluid,   is the density, q  is the specific heat 

generation rate,  /  is kinematic viscosity, k  is the conductivity and pc  is the 

specific heat at constant pressure. In deriving (5) and (6) it is assumed that the 

contribution due to the normal stress is of the same order of magnitude as that due to the 

shear stress. The term u
B



 2

0  in (5) is the Lorentz Force and the last three terms in (6) are 

work done due to deformation, internal heat generation or absorption and the Joule 

heating. We assumed that the gravity force is neglected and the modified pressure 

gradient is absent since the flow is driven by the stretching sheet. 

The series solution for motion equation (5) can be found in Adel Rashed [24]. 

The boundary conditions for energy equation (6) are 





   as    

0at    

yTT

yTT w
     (7) 

Non-Dimensional form of energy Equation 

We can write down the Velocity Equation in non-dimensional form through using the 

transformations: 
2/12/1 )()(  , )(  fBfBxu   

BtyB     , )/( 2/12/1  
  e1         (8) 

substitution these quantities into energy equation (6), the  Dimensionless form of energy 

equation is 








 )1()1(

2

1
rrr PPfP  

    22
)2( fMfEPfP ncrr

   

+   0 fffffK       (9) 

Where a prime denotes the differentiation with respect to , ),( ff  , ),(   , 

 /1BK   is the viscoelastic parameter, kcP pr /  is the Prandtl number, 

pcBq  /    is the internal heat parameter, pc TcxBE  /22
 is the Eckert number and  

nM  is the magnetic parameter. 

The corresponding boundary conditions (7) became: 

,0at    1    
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   as  0          (10) 

Basic ideas of HAM 

Let us consider the following differential equation 

0)]([ uN        (11) 

where N is a nonlinear operator,  denotes independent variable, )(u is an unknown 

function. For simplicity, we ignore all boundary or initial conditions, which can be 

treated in the similar way. By means of generalizing the traditional homotopy method, 

Liao [25] constructs the so-called zero-order deformation equation 

)],([)(

)](),([)1( 0

pNphH

upLp



 
     (12) 

where ]1,0[p is the embedding parameter, 0h  is a non-zero auxiliary parameter, 

0)( H  is an auxiliary function, L  is an auxiliary linear operator, )(0 u  is an initial 

guess of )(u , ),( p  is unknown function, respectively. It is important, that one has 

great freedom to choose auxiliary things in HAM. Obviously, when 0p and 1p , it 

holds )()0,( 0  u  and )()1,(  u respectively. Thus, as p increases from 0 to 1, the 

solution ),( p  varies from the initial guess )(0 u  to the solution )(u . Expanding 

),( p  in Taylor series with respect to p, we have 
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If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the 

auxiliary function are so properly chosen, the series (13) converges at 1p , then we 

have 







1

0 )()()(
m

muuu      (15) 

which must be one of solutions of original nonlinear equation, as proved by Liao [25]. 

As 1h  and 1)( H , Eq. (12) becomes 

0)],([

)](),([)1( 0





ppN

upLp




    (16) 

Which is used mostly in the homotopy perturbation method, where as the solution 

obtained directly, without using Taylor series [26, 27]. 

According to the definition (14), the governing equation can be deduced from the 

zero-order deformation equation (12). Define the vector 

)}(,),(),({ 10  nn uuuu   

Differentiating equation (12) m times with respect to the embedding parameter p and 

then setting 0p  and finally dividing them by m!, we have the so-called mth-order 

deformation equation 

)()()]()([ 11   mmmmm uRhHuuL     (17) 
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And 
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1   ,0

m
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It should be emphasized that )(mu  for 1m  is governed by the linear equation (17) 

with the linear boundary conditions that come from original problem, which can be easily 

solved by symbolic computation software such as Maple and Mathematica. 

Homotopy Analysis Solution  

In order to solve dimensionless equation we select 
  e),(0        (20) 

as initial approximation of  , Besides to choose 





 






2

2

)],,([ qL      (21) 

as the auxiliary linear operator with the property 

0])exp(C)exp(-[ 21  CL      (22) 

),(0   Satisfy the linear operator and the corresponding boundary conditions.  

Zero-order deformation equation 

Based on dimensionless equation we are define the nonlinear operator  

    rPpp
2

)],,(),,,([ 



 )2(- )1()1(

2

1





 rrr PPP

 )()( 2   KEP cr  

2)(  nM       (23) 

Let h  denote the non-zero auxiliary parameter. We construct the zero-order deformation 

equation  

 )],(),,([ )1( 0  pLp )],,([ ),(  ptrHhp      (24) 

Subject to the boundary conditions  

0),(     ,1),( 
0


 

     (25) 

Where ),,( p  is the solution which depends not only upon ),( ,),,(0  HL  and h  

but on the embedding parameter  1,0p . When 0p  and 1p  the zero-order 

deformation equation have the solutions ),()0,,( 0    and ),()1,,(    

respectively. Thus p  increases from 0 to 1, ),,( p  vary from the initial guesses 

),(0   to the solution ),(   of the considered unsteady problem. So expanding 

),,( p  in Taylor's series with respect to the embedding parameter p , we have 
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Assuming that h  properly chosen so that the solution sequence of (24) convergent at 

1p , we have, using the boundary conditions (25), the solution series  
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High-order deformation equation 

For simplicity, we define the vector  

 mm  ,...,,, 210       (28) 

Differentiating the zero-order deformation equation m  times with respect to p , then 

setting 0p , and finally divided it by !m , we obtain the m-th order deformation equation 

)( )],(),([ 11   mmmmm hRL      (29) 

Subject to the boundary conditions  

0),(  ),(
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In this way, it is easy to solve the linear equation (29) one after the other in the order  

1,2,3,...m   by means of the symbolic computation software such as Mathematica, and 

Maple.  

General solution  

The first step in the HAM is to find a set of base functions to express the sought 

solution of the problem under investigation. As mentioned by Liao[9a, 12a], a solution 

may be expressed with different base functions, among which some converge to the exact 

solution of the problem faster than others. Here, due to many boundary-layer flows decay 

exponentially at infinity, we assume that ),(   can be expressed by a set of functions 

 )0,0,0)exp( 1  jnrkjmr   in the form 

      kmr
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And from the initial guess ),(0   we have 
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For simplicity we will define 
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From equation (36) and (37) we can get 

  1
2

1

,,,,,,  



  i
m

i

i

krm

i

krmkrm di   

This can be written (using definition of
i

krm ,, ) as:  

    kw mri
m

k

m

r

i

krm

m

i

m  






 

 exp, 1
1

0

12

0

,,

2

0

    (38) 

    kg mri
m

k

m

r

i

krm

m

i

m  






 

 exp, 1
1

0

12

0

,,

2

0

  (39) 

)exp()2( 1

0

32

0

,,1
1 




kmr mri

m

k

m

r

i

krm
m 


 








   (40) 
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Now  

mm hRG         (43) 
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where f can be calculated from Adel Rashed [24], we assume that ),( f  can be 

expressed by a set of functions  )0,0,0)exp(  jnknjk   in the form 
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which can be rewrite as 
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By the similar way, we can have 
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Substitution equations (48-49) and (53-57) into (44), we obtain  
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In order to obtain the general solution of equation (59), we will start with an ordinary 

differential equation look like the mth order equation 
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Applying the solution (73) on the differential equation (59), we obtain the following 

general solution  
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Convergence of the solution 

From the homotopy analysis method, as long as the series solution is convergent, it 

should converge to one of the solutions of original equation. The convergence and rate of 

the approximation for the HAM strongly depend upon the value of the auxiliary 

parameter h, as pointed out by Liao [25, 28]. So we have a family of solution expressions 

in the auxiliary parameter h, and the physical quantities also depend upon h. So, 

regarding h as an independent variable, it is easy to plot curves of these kinds of 

quantities versus h by means of the so-called h-curve. If the solution is unique, all of 

them converge to the same value and therefore there exists a horizontal line segment in 

the h-curve, and if we set h any value in the horizontal line segment we quite sure that the 

corresponding solution series converge. 

Fig (1) portrays the h-curve of ),0(  . The range for admissible value of h is 

0.12.1  h  we see that series converges in the whole region of   when 3.0h , this 

value of h  lie in the admissible range of h. 

 

 
 

Fig. (1) The h-curves of  ),0(   obtained by the 6th-order approximation of the HAM, 

when 3 ξ   

(a) 0.01Ec 1,Pr ,0   ,0Mn  K   

(b) 0.2Ec 1,Pr ,0   ,1Mn  K   
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(c) 0.2Ec 10,Pr ,1.0   ,0Mn  K  

 

Result and conclusion 

We have studied the effects of different dimensionless numbers that governing the energy 

equation.  

Figures (2-7), illustrate the effect of time  , internal heat parameter  , Eckert number 

cE , Prandtl number rP , viscoelastic parameter K  and magnetic parameter 
nM  

respectively. 

All the results are made using Wolfram Mathematica 8 package. 

Effects of time : 

To study the effects of time   on the energy equation, we keep magnetic parameter 

nM , viscoelastic parameter K ,internal heat parameter , Prandtl number rP  and Eckert 

number 
cE  fixed at 1, 1, 0, 1, 0.01 respectively, and we give time   for values 1, 1.25, 

1.5, 2, 2.5, 3, 3.5 the following result is made: 

As time   increases, there is small decreasing in the temperature. See Fig. (2). 

 

 
Fig.(2) The approximation solution of ),(   obtained by the 6th-order of the HAM, 

when 1Mn  , 1K , 0  , 1Pr  , 0.01Ec  , and   3.5  3,  2.5,  2,  1.5,  1.25,  ,1 ξ   

Effects of internal heat parameter  : 

To study the effects of time   on the energy equation, we keep magnetic parameter 

nM , viscoelastic parameter K , time  , Prandtl number rP  and Eckert number 
cE  fixed 

at 0, 0, 4/ , 1, 0.01 respectively, and we give internal heat parameter   for values -1, -

0.5, -0.1, 0, 0.1, 0.5, 1 the following result is made: 

As internal heat parameter  increases, there is small increasing in the temperature. 

See Fig. (3). 
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Fig.(3) The approximation solution of ),(   obtained by the 6th-order of the HAM, 

when 0Mn  , 0K , 4/ ξ  , 1Pr  , 0.01Ec  , and   1 0.5, 0.1, 0, 0.1,- 0.5,- ,1   

Effects of  parameter Ec : 

To study the effects of Eckert number 
cE  on the energy equation, we keep magnetic 

parameter 
nM , viscoelastic parameter K , time  , Prandtl number rP  and internal heat 

parameter   fixed at 1, 0, 1, 1, 0 respectively, and we give Eckert number 
cE  for values 

-0.5, -0.2, -0.1, 0, 0.1, 0.2, 0.5, 1 the following result is made: 

As Eckert number 
cE  increases, there is small increasing in the temperature. See Fig. 

(4). 

 

 

 
Fig.(4) The approximation solution of ),(   obtained by the 6th-order of the HAM, 

 when 1Mn  , 0K , 1 ξ  , 1Pr  , 0   , and   1 , 0.5 , 0.2 , 0.1 , 0 0.1,- 0.2,- ,5.0Ec   

Effects of parameter Pr : 

To study the effects of Prandtl number rP  on the energy equation, we keep magnetic 

parameter 
nM , viscoelastic parameter K , time  , Eckert number 

cE  and internal heat 

parameter fixed at 10, 1, 1, 0.01, 0.1 respectively, and we give Prandtl number rP  for 

values 1, 2, 3, 4 the following result is made: 

As Prandtl number rP  increases, there is small change in the temperature. See Fig. (5). 
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Fig.(5) The approximation solution of ),(   obtained by the 6th-order of the HAM, 

when 10Mn  , 1K , 1 ξ  , 0.01Ec   , 0.1   , and   4 , 3 , 2 , 1Pr   

these values fit with many materials, such such as polymer solutions or melts, drilling 

mud, certain oils and greases and many other emulsions. 

Effects of viscoelastic parameter K : 

To study the effects of viscoelastic parameter K  on the energy equation, we keep 

magnetic parameter 
nM , time    , internal heat parameter , Prandtl number rP  and 

Eckert number 
cE  fixed at 0, 1, 0, 1, 0.01 respectively, and we give viscoelastic 

parameter K  for values 0, 0.5, 1, 2, 3 the following result is made: 

As viscoelastic parameter K  increases, there is small decreasing in the temperature. 

See Fig. (6). 

 

 
Fig.(6) The approximation solution of ),(   obtained by the 6th-order of the HAM, 

 when 0Mn  , 1 ξ  , 1Pr  , 0   , 01.0cE and   3  , 2  1,   0.5,  0,K   

Effects of magnetic parameter
nM : 

To study the effects of magnetic parameter 
nM on the energy equation, we keep 

viscoelastic parameter K , time    , internal heat parameter , Prandtl number rP  and 

Eckert number 
cE  fixed at 0, 1, 0, 1, 0.01 respectively, and we give magnetic parameter 

nM  for values 0, 0.5, 1, 2, 3, 4, 5 the following result is made: 

As magnetic parameter 
nM  increases, there is small increasing in the temperature. See 

Fig. (7). 
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Fig.(7) The approximation solution of ),(   obtained by the 6th-order of the HAM, 

 when 0K , 1 ξ  , 1Pr  , 0   , 01.0cE  and  5 , 4 , 3  , 2  1,   0.5,  0,Mn   

Note: in fig. (6) and (7), when 1 ξ   we recover the steady state as obtained by [19] fig. 

(3a), (3b) p. 4433. 
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