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Abstract 

One of the most important prognostic factors for all lung 

cancer patients is the accurate detection of metastases. 

Pathologists, as we all know, examine the body and its tissues. 

On the existing clinical method, they have a tedious and 

manual task. Recent analysis has been inspired by these 

aspects. Deep Learning (DL) algorithms have been used to 

identify lung cancer. The developed cutting-edge technologies 

beat pathologists in terms of cancer identification and 

localization inside pathology images. These technologies, 

though, are not medically feasible because they need a 

massive amount of time or computing capabilities to perceive 

high-resolution images. Image processing techniques are 

primarily employed for lung cancer prediction and early 

identification and therapy to avoid lung cancer. This research 

aimed to assess lung cancer diagnosis by employing DL 

algorithms and low-resolution images. The goal would be to 

see if Machine Learning (ML) models might be created that 

generate higher confidence conclusions while consuming 

fractional resources by comparing low and high-resolution 

images. A DL pipeline has been built to a small enough size 

from compressing high-resolution images to be fed into an or 

before CNN (Convolutional Neural Network) for binary 

classification i.e. cancer or normal. Numerous enhancements 

have been done to increase overall performance, providing 

data augmentations, including augmenting training data and 

implementing tissue detection. Finally, the created low-

resolution models are practically incapable of handling 

extremely low-resolution inputs i.e. 299 x 299 to 2048 x 2048 

pixels. Considering the lack of classification ability, a 

substantial reduction in models’ predictable times is only a 

marginal benefit. Due to an obvious drawback with the 

methodology, this is disheartening but predicted finding: very 

low resolutions, essentially expanding out on a slide, preserve 

only data about macro-cellular structures, which is usually 

insufficient to diagnose cancer by itself. 

Index items: Convolutional Neural Networks, Deep Learning, 

Image Processing, Lung Cancer Detection, Machine Learning, 

Medical Image Analysis 

 

I. INTRODUCTION 

The phase of cancer describes the strength of a patient's cancer 

diagnosis. Cancer staging is indicated by characteristics such 

as tumour size and location, as well as, more significantly, 

whether cancer has spread. When lung cancer starts to spread, 

the survival rate drops to 26.2% [1]. However, England's 

people suffering from lung cancer have a relatively good 

prognosis, with an approximate 5-year absolute survival rate 

of 85% that can save patients from needless, perhaps harmful 

therapies as lung cancer is a type of cancer that can enhance 

prognosis and chances of survival, especially when metastasis 

is present. It is believed, that in the histopathology images, 

ML options are equipped to accurately diagnose lung cancer. 

These systems can automate major sections of traditional 

diagnostic methods which are used to detect lung cancer, 

increase diagnostic assistance through digital second opinion, 

and decrease cognitive burden by transferring jobs away from 

medical staff. Yet, these existing systems are complex. They 

completely use high-resolution images with width and height 

dimensions in the hundreds and thousands of pixels. These 

images show pathology slides at extremely high 

magnification. Such technologies are often resource-heavy due 

to the increased resolution of the images, needing either 

substantial time or computation power, restricting their 

clinical practicality. The researchers looked toward automated 

lung cancer diagnosis using DL algorithms and low-resolution 

images. This study aims to determine if ML models which 

produce high certainty findings with a minimal number of 

resources can be constructed by comparing high and low-

resolution images. The problem objectives of the study are as 

follows: 

• For the localization and automated classification of 

lung cancer using high and low-resolution images, 

this study should conduct a literature study on 

cutting-edge ML algorithms. This research review 

will look at existing models for identifying 

metastases in the lung, as well as models created in 

the greater perspective of automated cancer detection. 

• Using methodologies (e.g., ResNet) guided by the 

literature analysis, this study should design and 

improve (e.g., via hyper-parameter tuning) an ML 

system for lung cancer classification in low-

resolution histology slides. 

• This study must compare the outcomes of the 

methodologies studied in the literature review with 

the model structure for low-resolution images. This 
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evaluation should analyse variations in detection 

confidence and resource needs across strategies that 

utilise higher vs lower resolution images, and connect 

this to the evaluation metrics of actual pathologists. 

• This study must enhance the methods which are used 

to create the low-resolution models. Perhaps the 

proposed procedures might be improved beyond that 

to achieve better results. Furthermore, this 

study compares a new approach (also inspired by the 

literature research) to the previously established low-

resolution image models. Perhaps the approach used 

influenced the ability to categorise at low image 

resolutions. 

• To discover probable image resolution 'boundaries' 

regarding performance, this study needs to explore a 

spectrum of image resolutions. But maybe some 

minimum whole-slide image resolution is necessary 

for adequate result confidence, whereas exceeding 

some higher resolution does not appreciably increase 

result confidence and hence wasted resources. 

This paper is as follows: the literature review will be seen in 

the next part from either a traditional or modern approach. 

Additionally, earlier research that was published using low-

resolution images is also discussed. Section 3 of the study 

presents an empirical investigation using a whole slide image 

classification design, dataset description, and processing. The 

outcomes of the suggested strategy are reported together with 

some comparisons in section 4. The paper is concluded with 

some findings and suggestions for future research in section 5. 

 

II. Literature Review 

This section establishes the medical background for the 

diagnosis of lung cancer in pathology slides. The history of 

lung cancer detection is examined, from human traditional 

diagnosis to automated state-of-the-art DL algorithms. Other 

low-resolution image analysis approaches from the larger 

world of clinical image processing are also addressed. As a 

result, this section summarises the study within the framework 

of medical image analysis and gives design recommendations 

for the proposed produced low-resolution image models. 

A) Traditional Approach 

Traditionally, the glass slides are examined under a 

microscope by a pathologist. A pathologist is a doctor who 

identifies and analyzes illness involving cells and tissue 

samples to assess if any metastases are visible or not [2]. The 

process is locating and identifying minor lesions over the 

whole slide space. A pathologist aims to discover three unique 

types of lung cancer lesions as shown in Table 1. 
Table 1. Types of metastases and their corresponding size information 

Metastases Type Size Information 

 

Macro-metastases More than 2 mm 

Micro-metastases Greater than 0.2mm in diameter 

and/or comprising over 200 cells, but 

just not exceeding 2mm in diameter. 

Individual Tumour Cells (ITCs) A single tumour cell or a group of 

tumour cells no larger than 0.2mm or 

containing no more than 200 cells. 

 

Diagnostic accuracy in classical lung cancer diagnosis is based 

on a pathologist's expertise, which is accumulated through 

many years of observations of various patient tissue samples 

and verified diagnoses [3]. However, high diagnostic accuracy 

cannot be assured. Even the most skilled pathologists can 

detect metastases, especially micro-metastases and solitary 

cancer cells, which are hard to identify due to the huge amount 

of tissue inspected on each slide. Although if pathologists 

were 100% correct, the procedure is time intensive and labour 

expensive, demanding lengthy reading time through 

microscope examination [2]. Pathologists examine harmless 

tissue i.e. no metastases in the majority of cases; 60-70% of 

lungs have no metastases. As a consequence, a significant 

percentage of a pathologist's time is spent essentially 

confirming negative cases. Tissue samples are susceptible to 

misunderstanding and may need repeat examinations by 

several pathologists when metastases are discovered. A 

historical analysis found that reviewing slide diagnoses by 

pathology specialists modified the nodal position in 24% of 

cases [4]. 

 

B. Modern Approach 

A subfield of digital pathology using histopathology slides is 

called the study of illness in tissue specimens using virtual 

microscopy. ML approaches were used for modern cancer 

diagnosis as medical data and computational power became 

more available for study and research work [2]. Human 

engineers generally worked with pathologists to establish 

hand-crafted aspects of the issue domain (e.g., mitoses, 

consistency of cell size, uniformity of cell shape) [2]. 

Although the characteristics are chosen by hand, their 

relationship to the forecasts is learned automatically. This 

represented a transition in lung cancer detection from manual 

human-based diagnostic methods to automated systems 

educated by computers with human-driven hand-crafted 

characteristics [5]. Such technologies have the potential to 

reduce variability and subjectivity in pathology diagnosis [6]. 

The usage of hand-crafted elements provides predictability 

and is thus natural to a pathologist or physician. Since decision 

responsibility becomes essential, and it is important in 

diagnosis [5]. Deriving such hand-crafted qualities, however, 

is difficult since it requires a fundamental understanding of the 

nature of the illness and its presentation inside the tissue. This 

problem motivates research into ML and DL approaches 

including automated feature discovery investigated in the 

following subsection. 

1)  Machine Learning Approach 

Medicine and healthcare have made significant advances in 

the previous forty years. The true causes of several diseases 

were discovered, new remedies were invented and newer 

diagnostic procedures were devised during this time. Even 

with all of our successes, illnesses like cancer continue to stalk 
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us because we are still vulnerable to them. Cancer is the 

world's second greatest cause of mortality. Masud et al. [7] 

have developed an ML approach to lung and colon cancer 

diagnosis. ML-based lung cancer prognosis models have been 

developed to help doctors to manage incidental or screen-

detected indeterminate pulmonary nodules. Such methods may 

be able to minimise variability in nodule categorization, 

enhance decision-making, and, eventually, reduce the number 

of benign nodules that are followed or worked up ineffectively 

according to Kadir & Glees [8]. Since Cancer detection is 

difficult for medical personnel, lung cancer has the potential to 

be fatal. Cancer's real cause and complete therapy are still to 

be identified but it can be cured if detected early enough. 

Image processing procedures such as feature extraction, noise 

reduction, identifying damaged regions, and maybe a 

correlation with data on the medical history of lung cancer are 

utilised to discover cancer-affected areas of the lung. This 

study demonstrates accurate lung cancer categorization and 

prediction utilising technologies provided by ML using image 

processing. The geometric mean filter is utilised during image 

preprocessing with different patients and datasets. As a result, 

image quality improves. The images are then segmented using 

the K-means approach. This segmentation may be used to 

locate a portion of an image [9]. Mukherjee & Bohra [10] 

predicted that in the future, new imaging such as X-ray, 

Computed Tomography (CT), Magnetic Resonance Imaging 

(MRI), and Positron Emission Tomography (PET) would be 

examined, resulting in greater precision and allowing medical 

practitioners to provide fast prophylaxis at a cheap cost. 

Because this disease has a negative economic impact, more 

research can be conducted to uncover information gaps in 

disease control and detection methods, which can aid in the 

development of vaccines or other control strategies. 

2)  Deep Learning Approach 

Several DL papers have also been proposed such as Wang et 

al. [11] proposed DL with weak supervision for whole-slide 

lung cancer image analysis. Lung cancer is the main cause of 

cancer mortality in both men and women, as we all know. 

Appropriate therapy for lung cancer patients is mostly 

determined by the kind of cancer, including small cell lung 

cancer (15%) or nonsmall cell lung cancer (85%). His 

technique initially employs a patch-based Fully Convolutional 

Network (FCN) to recover discriminative blocks and then 

efficiently offers representative deep features. Murugesan et 

al. [12] has investigated that a hybrid DL model is used for 

successful lung nodule segmentation and classification from 

CT images. DL models are employed to determine lung 

nodule irregularities early in their development. The 

fundamental purpose of this paper is to correctly detect lung 

cancer, which is crucial in saving someone's life. For decades, 

people all across the world have been concerned about lung 

cancer. Several researchers presented multiple difficulties and 

ideas for varying phases of a computer-aided system for early-

stage lung cancer diagnosis, as well as lung cancer 

information. One of the fields of Artificial intelligence (AI) is 

computer vision, which is a better technique to identify and 

prevent lung cancer. This work focuses on the pre-processing, 

segmentation, and classification modelling steps involved in 

recognising lung tumour areas. In pre-processing, an adaptive 

median filter is used to identify the noise. The work's novelty 

aims to develop a simple yet effective model for the quick 

detection and segmentation of lung nodules using U-net 

architecture. This method focuses on recognising image 

normality and irregularities to identify and segment lung 

cancer. Tekade [13] has proposed DL for lung cancer 

classification and detection. They stated that with the help of 

image processing and DL approaches, early diagnosis of lung 

cancer has become highly crucial and also quite simple. This 

research presents a 3D multipath VGG-like network for 3D 

cubes derived from the Lung Image Database Consortium and 

the Image Database Resource Initiative (LIDC-IDRI). 

 

C. Low-Resolution Images in Medical Image Analysis 

Modern cancer detection methods have primarily relied on 

single-resolution models with high-resolution images [14]. 

There is one component that contributes to improved clinical 

viability is increasing efficiency by decreasing image input 

resolution, which is the subject of this study. Creating 

successful models that use low-resolution images has the 

potential to produce high-performance outcomes with minimal 

resource needs compared to high-resolution models. Low-

resolution image processing medical image analysis research 

falls into one of two areas. The initial step is to create single-

resolution models from low-resolution images. The second is 

the creation of multi-scale systems that mix low and high-

resolution analyses. The second type of research is more 

abundant than the former; few attempts have been made to 

explore in depth ability of models employing strictly low-

quality images for medical image processing tasks and we 

believe this study is among the first. There is an obvious 

reason for the disparity in research between the two 

categories: single-resolution models using low-resolution 

images forego the benefits of using high-resolution images i.e. 

detailed features based on greater spatial resolution, whereas 

multi-resolution schemes strike a balance between the two, 

prioritising both model performance and resource 

requirements. 

A) Single-Scale Techniques 

The following recent techniques are noteworthy in terms of 

single-resolution models employing low-resolution images: 

Patil et al. [15] introduced a CNN-based architecture for 

invasive breast cancer segmentation. The method employs 

very low-resolution images i.e. 320 x 320 pixels. The model is 

stated to have done well when the malignant patches occupied 

a considerable fraction of the extremely low-resolution 

images, but much poorer when the cancerous regions were 

smaller. It suggests that a created low-resolution paradigm 

may work well on macro-metastases, which can be rather big 

about total tissue but perform poorly on micro-metastases. 

Zormpas-Petridis et al. [16] established a computationally 

efficient methodology i.e 'SuperHistopath' for mapping global 

context characteristics by classifying and segmenting such in 

images, therefore representing the rich tumour morphological 

variability. The method includes segmenting low-resolution 
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images at 5x magnification into super-pixels, which are then 

classified using a CNN ('Xception' and a bespoke CNN). It 

was demonstrated that 'SuperHistopath' is efficient for training 

and inference (classifying images in 5 minutes and network 

training in as little as 30 minutes). 'SuperHistopath' classified 

lung cancer images into six predetermined tissue 

classifications of involvement i.e. stroma, tumour, necrosis, 

cluster of lymphocytes, fat, and lumen/ space with an overall 

accuracy of 93.1%, an average precision of 93.9%, and an 

average recall of 93.6% using 'Xception' and 91.7%, 92.5%, 

and 91.8% respectively using the custom CNN over 10,349 

super-pixels in a test set. Lastly, super-resolution images from 

low-resolution images using a Generative Adversarial 

Network (GAN) have been developed by Shahidi [17]; a 

revolutionary technique. Because images have high hardware 

and storage requirements, this paper is motivated by the idea 

of being able to store images at low resolution to use super-

resolution approaches to ensure classification results on the 

super-resolution images are comparable to the performance 

using the original high-resolution versions. Despite this, the 

major point of interest from this work is the performance 

comparison of controlled models i.e. ResNeXt-101 for tumour 

classification utilising low (64 x 64 pixel patches) and high-

resolution (256 x 256-pixel patches) images. High-resolution 

images performed better (99.49% accuracy score), but not 

significantly better than low-resolution images (95.82% 

accuracy score). 

 

B)  Multi-Scale Techniques 

In the literature, two types of multi-scale approaches have 

been observed. The first method is to employ CNN ensembles, 

in which images are analysed at numerous resolutions by 

various models and the results are combined. This method 

tries to improve model performance over single-resolution 

models by combining contextual data collected at lower 

resolutions (e.g., inter-tissue structures) with detailed 

characteristics gained at higher resolutions (e.g., cell 

morphology and intra-tissue structures) because inference uses 

several models incorporating higher quality images and 

efficiency increase is not an incentive for this technique. 

Tokunaga et al. [18], for example, have provided a 

segmentation approach that can adaptively employ image 

attributes from different resolutions to separate several cancer 

sub-type areas in an input image. By adaptively altering the 

weight of each expert based on the input images (through a 

'weighting CNN'), the approach combines much segmentation 

CNN i.e. an ensemble that has been trained using different 

image magnifications (5x, 10x, and 20x magnification). The 

approach makes use of characteristics obtained from both 

broad and narrow field-of-view images, which may be 

valuable for identifying sub-types. As contrasted to state-of-

the-art connections (UNet, SegNet, DeepLabV3+) taught at 

each of the magnification levels studied, the technique 

performed better for various segmentation tasks such as binary 

segmentation of malignant tissue and multi-class segmentation 

of tissue sub-types. The second type of multi-scale technique 

involves the employment of a mechanism that prioritises low-

resolution image processing while allowing for additional 

high-resolution processing with low confidence outcomes. In 

obscure and challenging instances, this emulates pathologist 

methods by first analysing tissue at low magnification before 

zooming in on regions of interest. Traditional patch-based 

processing approaches do not represent the relatively efficient 

way pathologists explore slides in clinical microscopy. This 

sort of multi-scale strategy aims to achieve equivalent 

performance to ensemble or single-resolution systems 

employing high-resolution images while lowering average 

inference time. Maksoud et al. [19] provided a method for 

selectively using high-resolution processing at low resolutions 

based on prediction confidence. A decision process is used in 

their system to identify whether a low-resolution or high-

resolution network should be used. When they used their 

technique to 'liver-kidney-stomach' images, they were able to 

enhance multi-class classification accuracy while lowering 

inference time by a factor of 7.74 (when compared to existing 

multi-scale systems). This technique is reported to be based on 

past work done by Dong et al. [20]. In this case, lung cancer 

segmentation is performed by images utilising low or high-

resolution images as decided by a trained policy network 

through reinforcement learning, which determines if zooming 

in on regions of interest is necessary or not. Hering and Kybic 

[21] describe a novel multi-scale technique for detecting 

malignant tissue in histology images. In their technique, many 

tiny sections of interest, dubbed "glimpses", are analysed 

rather than the whole high-resolution images. The glances 

create a tree structure; low-resolution glimpses dictate the 

position of multiple higher-resolution glimpses, and so on 

until the highest resolution is attained. A whole-slide 

classification score is computed after classifying glances at the 

greatest resolution (the highest prediction score awarded to 

high-resolution glances). They reported a mean Area Under 

Curve  (AUC) score ranging from 0.92 to 0.95 (based on 

model parameters), which is similar to the best AUC score. 

This proved that high confidence classification can be 

performed using only a tiny section of the high-resolution 

image, resulting in a significant speedup with only a minor 

performance degradation. 

 

III  Empirical Study 

Single-resolution models based on low-resolution images have 

experienced some success in medical image processing tasks 

in summary. This does not, however, imply that the low-

resolution model built in this effort will likewise provide high-

confidence predictions; variances in medical activities 

performed are a major component. A low-resolution model, 

for example, will be better at segmenting huge tissue subtypes 

than smaller homogenous lesions. Meanwhile, research is 

centred on multi-scale techniques that, by default, employ 

low-resolution images but can switch to high-resolution 

processing when necessary. Because such techniques are 

intended to minimise inference time on average while 

preserving high network capabilities. The requirement for 

absolutely low-resolution image models may be questioned. 
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However, for many medical activities, purely low-resolution 

models may be acceptable, reducing the hardware and storage 

needs involved with maintaining high-resolution images. Even 

though the performance of a low-resolution model is lower 

than that of a multi-scale method, the low-resolution model 

may be exceptional for a certain class, justifying its adoption. 

A low-resolution model that consistently diagnoses benign 

tissue, for example, can filter the majority of negative 

instances, allowing pathologists to focus their efforts on 

difficult cases that require attention. 

High-level design decisions are described and justified in this 

section, with a focus on the DL pipelines established for 

whole-slide classification and cancer localization. The study 

conducted in the literature review strongly influenced these 

conclusions. Where necessary, implementation details that are 

unusual given the design requirements are detailed. A 

Graphics Processing Unit (GPU) was used to give additional 

computing capacity because of the large amount of memory 

required by the datasets used, as well as the intricacy of the 

deep CNN models generated. To capitalise on the GPU's 

processing power, a DL framework with Compute Unified 

Device Architecture (CUDA) support (for GPU acceleration) 

and CNN-based implementations was chosen [22]. PyTorch 

was chosen above similar options, including the more 

prominent TensorFlow with Keras framework, due to the 

parties participating in this studies expertise with PyTorch. 

TorchVision/SKImage for image processing, RayTune for 

automatic hyper-parameter optimisation, and 

ASAP/OpenSlide for manipulating high-resolution images 

have been included in this framework. 

 

A.  Whole Slide Classification Design Pipeline 

Image analysis in histopathology is the gold standard for 

cancer diagnosis. Whole slide image classification is a 

difficult task. In histopathology, it is becoming a regular 

clinical practice due to the fast advancement of medical 

imaging technologies. The extraordinarily high spatial 

resolution of whole slide images makes DL for digital 

pathology difficult. Numerous DL algorithms for the diagnosis 

of lung cancer have indeed been suggested in order to aid 

pathologists and researchers in their job. This section of the 

whole slide classification design describes the DL pipeline 

architecture for the whole-slide classification. Pipelines, as we 

all know, are a method of simplifying the ML workflow by 

allowing data to be converted and correlated into a model, 

which can then be examined to provide outputs. For whole-

slide classification, the DL pipeline is easily defined by 

reducing the high-resolution data set images to a sufficiently 

tiny size that they can be given as input into a pre-trained 

CNN for binary classification i.e. cancerous or normal. 

However, additional strategies were used to improve the 

overall performance of this simple strategy. Model training, 

pre-processing, hyper-parameter optimization, and result 

reporting are the four stages of the pipeline as shown in Figure 

1. 

 
Note: Dashed lines indicate pipeline steps added to create additional pipeline 

versions to improve general performance. Some pre-processing steps are 
executed once, and their results are used in the pipeline as opposed to running 

the steps every time a model is trained, which prevents wasted computation 

time. 

 

Figure 1: Whole slide classification overview 

B. Dataset and Dataset Split 

In this study, we used the lung cancer dataset from The Cancer 

Genome Atlas (TCGA) [23]. Two subtypes of lung cancer, 

lung adenocarcinoma and lung squamous cell carcinoma, are 

represented in the WSIs, which can be obtained from the 

National Cancer Institute DataPortal in the form of 1054 

diagnostic digital slides. The dataset is divided into subsets for 

training and testing. There are 216 images in the training 

subsets and 129 in the testing subsets as shown in Table 1. 

Utilizing stratified random sampling, the training data was 

further divided into training and validation partitions while 

maintaining the proportion of output classes. In automated 

lung cancer detection using machine learning, a split of 80% 

training to 20% validation was used. It was made sure that the 

stratified random sample kept both the intra-class proportion 

for the positive cancer class as well as the proportion of the 

binary output classes (i.e., cancer and normal). Without 

assuring the intra-class percentage, the validation set might 

have had an excessive amount of macro-metastases, which are 

probably simpler to detect given their size, leading the model 

to report doing better on the validation set than would be seen 

generally.  
Table 1. A summary of the dataset's data distribution 

 Train Validate Test Total 

Normal 127 32 80 239 

Cancer  89 22 49 160 

Total 216 54 129 399 

 

A)  Output Class Balance 

A study of the output class distribution was critical in deciding 

if re-balancing was needed to avoid model bias towards one of 

the output classes since the model performs binary 

classification as shown in Figure 2. The training data contains 

a positive i.e. cancer class proportion of 38%, which 

corresponds to the real-world statistic that 60-70% of retrieved 

images do not feature metastases. While the observed output 

class imbalance is not significant, re-balancing prevents any 
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modest class bias. Several solutions are being examined to 

rebalance the data. Under the sampling scheme, normal slides 

would be dropped to match the number of cancer slides, but 

this would reduce the restricted amount of majority class data, 

making it feasible to eliminate important characteristics. 

Oversampling the minority class, for example, with the 

Synthetic Minority Oversampling Technique (SMOTE) [24], 

will indeed balance the output classes and raise the quantity of 

information available to the model, but it is more 

computationally expensive than the simpler technique used: 

class weights. When constructing the loss function, class 

weighting prioritises the under-represented class and does not 

require any further modification of the training data. Given its 

capacity to substantially expand the size of the training 

dataset, the application of SMOTE for image data might be 

examined in future studies. The percentage of normal to 

cancer training samples is used to calculate the class weight 

assigned to the positive cancer class: 

 = =∼1.62 

As a result of this part, we know that the cancer class is 

weighted 62% greater in the loss function since there are 62% 

more normal samples than cancer samples. 

 

Figure 2: Pie chart displaying the output class distribution 

between the training data's positive cancer class and negative 

normal class 

B. Label Encoding 

The output class labels are given in categorical text format, 

however, they were transformed into a numerical format for 

model training and inference. Because the model performs 

binary classification, the target classes have been encoded in a 

simple binary format as shown in Table 2. 
Table 2. Table showing binary encoding of the output classes. 

Category Level Binary Encoding 

Normal 0 

Cancer 1 

 

C. Pre-Processing 

This section describes the design of the pre-processing 

performed on the images before feeding the images as input to 

the model as shown in Figure 3. 

 
Figure 3: Whole slide classification pre-processing overview 

 

A)  Dataset Conversion to Low-Resolution Images 

In this sub-section, we will see dataset conversion to low-

resolution images. The high-resolution (.TIF) images have 

been reduced to low resolution. As a one-time pre-processing 

step, (.PNG) images are used i.e. not always done out through 

inference and the model training. This resulted in speedier 

model training (the very high-resolution images only needed 

to be down-sampled once) and simpler model debugging (at 

low resolution, the input images are more controllable and 

inspectable.). The high-resolution images were initially 

compressed to assess or investigate multiple model versions 

utilizing 299 x 299-pixel images into resolution level 8. Each 

pixel in such images represents 62.2 m2. Because of 

dimension discrepancies between high-resolution images from 

various medical centres, not all images supported resolution 

level 8 image downsampling. In these circumstances, the level 

with the next lowest resolution was chosen. As a consequence, 

the low-resolution (.PNG) images can only be 1000 x 1000 

pixels in size. As a result, these (.PNG) images may be 

supplied as input to the deep CNN model in their entirety.  

The high-resolution images have to be down-sampled to 6000 

pixels in width and height for subsequent tests of other input 

image dimensions up to 2048 x 2048 pixels i.e. resolution 

level 6. As a result, tissue detection would provide tissue 

images of about 2048 × 2048 pixels, as required. From such 

tissue images, input resolutions less than 2048 × 2048 pixels 

might be studied. Using the baseline dataset downsampled to 

resolution level 8 would have been pointless; the images 

would have been upsampled for all requested input resolutions 

greater than roughly 1000 x 1000 pixels, resulting in little 

information gain i.e. these images' upscaling is not the same as 

'zooming out' in magnification. 

B)  Data Augmentation 

To artificially increase the image collection, an elastic 

deformation data augmentation approach is presented. So, data 

augmentation approaches were iteratively incorporated based 

on intuition and literature survey research to develop several 
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model versions, each aiming to improve on the previous one. 

There are four different model variations as shown in Figure 3. 

Augmenting the training images acts as a type of 

regularisation, preventing over-fitting and hence improving 

overall model performance. 

• Version 0: There was no data augmentation used in 

Version 0. This model version serves as a baseline 

against which subsequent versions may be evaluated 

to confirm that the augmentation approaches enhance 

the model. 

• Version 1: This model version includes common 

image adjustments to improve overall model 

performance. Because the slides have no canonical 

orientation. The image output labels are orientation-

invariant, hence random vertical and horizontal 

flipping of the images is used. In addition, the image 

is rotated randomly at 90-degree intervals i.e. 0, 90, 

180, and 270. While image rotations may be done in 

a continuous range e.g. [0, 360], this resulted in low-

resolution images with either a considerable 

proportion of pixels cut out by the rotation, or low-

resolution images with a significant proportion of 

'empty' pixels. Both scenarios are extremely 

damaging to a low-resolution model with limited 

pixel content. 

• Version 2: To improve model input, this model 

version includes tissue detection but without the 

version 1 transformation mechanisms. Previous 

versions sent whole low-resolution slide images into 

the deep CNN. However, the majority of the pixels in 

these slide images are background; only a small 

fraction of the pixels belong to the significant tissue 

region that informs the outcome. As a result, tissue 

detection was employed to identify the tissue area 

inside low-resolution slide images, which was then 

removed and fed into the model. The RGB images 

are first transformed to the Hue-Saturation-Value 

(HSV) colour scheme. The H and S channels are then 

Otsu thresholded to automatically identify ideal 

foreground threshold values. The H and S channels 

are combined into a binary image using their best 

thresholds, yielding a mask of the identified tissue 

patches in the image. To remove spurious regions, 

median filtering is performed on the tissue mask; 

however, filtering is kept to a minimum to avoid 

over-filtering, which may remove tiny tissue regions, 

which might represent micro-metastases. Finally, the 

identified tissue's bounding box coordinates are 

derived from the mask and utilised to extract the 

relevant region from the original RGB images. Later, 

immediately before calculating bounding box 

coordinates, modest dilatation was introduced to the 

identified tissue in the tissue masks so that the 

resulting cropping did not confine the tissue region as 

firmly. This allowed the identified tissue's margins, 

which define the bounding box's boundaries, to be 

kept in cases where a little (but considerable at the 

cellular level) cropping out of tissue content was 

seen. Initially, an examination of the generated tissue 

images indicated that visual information, such as text 

and black crosses, resulted in undesired tissue 

segmentation. 

• Version 3: The tissue identification mechanism from 

version 2 is combined with the processing methods or 

transformation techniques from version 1. As a result, 

for the regularization of low-resolution tissue-

identified images, this model leverages data 

augmentation. 

C)  Data Preparation 

Data preparation is conducted as a pre-processing step on all 

images (train, validate, and test) immediately before feeding 

the images as model input. Image scaling and normalisation 

are two aspects of data preparation. Image scaling is the 

process of changing low-resolution (.PNG) images to the 

necessary low-resolution dimensions for study. Initially, 

image sizes of 299 × 299 pixels were used. This is the lowest 

input size that the selected InceptionV3 architecture allows. 

Investigating the input dimensions of 299 x 299 pixels will set 

a lower bound for model performance based on the premise 

that the model would likely perform worse when the image 

resolution is reduced. We have investigated following image 

dimensions: 512 x 512, 1024 x 1024, and 2048 x 2048 pixels. 

Investigating higher input resolutions (4096 x 4096 pixels, for 

example) is also acceptable because these resolutions are still 

low-resolution, being thousands of times smaller than the 

original dataset images. However, given the memory limits 

they impose, such resolutions are becoming increasingly 

infeasible for exploration, requiring extensive training time. 

An accumulated gradient technique was devised for usage 

with bigger image resolutions that would otherwise cause out-

of-memory concerns, to manage increased input image 

resolutions (above the initial 299 x 299 pixels) while retaining 

the same batch size (at 16). The cumulative gradient method 

simply sets the batch size to one, allowing individual images 

to be stored in memory. The network, however, is only 

updated when the required batch size number of images i.e. 16 

have had their losses computed. This is equivalent to just 

utilising the appropriate batch size, however, memory 

management is used for practical considerations. One 

noticeable issue with image scaling is that images are warped 

to a square (1:1) aspect ratio. As a result, the model versions 

strive to uncover generic traits to diagnose cancer in 'squashed' 

images. Tissue morphing has a detrimental impact on 

categorization abilities since any information on the 
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morphology of the cell and multicellular structures is lost. The 

problem is more prevalent in model versions 0 and 1 when the 

original rectangular low-resolution images are utilised, but it is 

alleviated in versions 2 and 3 because tissue-identified areas 

typically adhere to a roughly square area. However, the 

problem has not been entirely resolved and is an intrinsic flaw 

of the pipeline technique. 

However, in this case, the images themselves are utilised as 

input, and they do not all have identical dimensions (as needed 

by the CNN design), therefore scaling is required. The issue of 

slide content morphing can be lessened in versions 0 and 1 by 

utilising a rectangular aspect ratio that corresponds better to 

the low-resolution slides, although the issue will still be 

present in a lesser form. For versions 2 and 3, extraction of the 

tissue areas i.e. cropping of the slides can be done to ensure a 

square aspect ratio, but this involves the inclusion of 

additional background pixels to varying degrees, which 

negates the benefit of using tissue detection in the first place; 

tissue detection seeks to minimise the amount of background 

present that does not inform the output. 

Finally, the training images are normalised, which is a 

common pre-processing step to improve training by increasing 

model numerical stability and/or speeding up the training 

process. The model was initially trained without 

normalisation, then with the normalisation values 

recommended for the PyTorch pre-trained InceptionV3 model, 

and finally with normalisation values calculated for the low-

resolution training images. The normalisation parameters were 

chosen since they are more appropriate than the values 

supplied for the pre-trained InceptionV3 model. Because the 

images (which feature monotonous stained tissue) vary 

fundamentally from the 'ImageNet' images used to train 

InceptionV3 (1000 classes including goldfish, umbrella, and 

so on), finding the mean and standard deviation for the dataset 

is more suitable. Furthermore, because the input data to the 

model is drastically modified when utilising tissue detection 

i.e. versions 2 and 3 of the model, the mean and standard 

deviation derived for the tissue-detected image are utilised for 

normalisation instead. 

D.  Model Training 

This section describes the model training design that was 

carried out utilising pre-processed images as shown in Figure 

4. 

 
Figure 4: Model training overview 

1)  Deep-CNN Architecture 

This section will go over deep CNN architecture. The bulk of 

successful DL architectures, are typically GoogLeNet, 

AlexNet, or VGGNet. While each of these architectures is a 

feasible option for this study's low-resolution models. 

However, the InceptionV3 architecture was chosen 

specifically because it delivers multiple iterations of 

improvement over the initial GoogLeNet design. To identify 

which architecture is most suitable for lung cancer diagnosis 

using low-resolution images, the InceptionV3 architecture 

might have been substituted for the other feasible designs 

(e.g., AlexNet and VGGNet). Moreover, the predictions of 

these many models might have been pooled to form an 

ensemble, to assess whether the overall performance could be 

improved even further. Assuming that the ensemble models 

can infer in parallel and that there is no major variance in their 

inference durations, using an ensemble might increase 

prediction performance while reducing overall average 

inference time. 

2) Transfer Learning 

The InceptionV3 architecture, which was first trained on the 

1000-class 'ImageNet' dataset, was used [25]. This makes use 

of transfer learning, which allows the categorization of 

information from a broad area to be used. This is especially 

advantageous in this case because the short size of the training 

dataset restricts learning power; the limited training data is 

best utilised by fine-tuning the weights of an existing network 

rather than training a whole new one. A fully-connected layer 

with a single output neuron has been used at the end of the 

InceptionV3 architecture. Because the output neuron is 

activated by Sigmoid, the model delivers a single value 

between 0 and 1, representing the chance that the input images 

belong to the positive cancer class. Because the initial output 

classes for the pre-trained network i.e. 1000, 'ImageNet' 

outputs are considerably different from the output classes in 

this medical application. The fully connected layer described 

replaces the original pre-trained fully-connected layer (rather 

than merely adding to it). Pre-trained feature extraction layers 

are beneficial, while pre-trained classification layers are not. 

Overall, this switches the architecture for the whole-slide 

classification job from a 1000-class classification to a binary 

classifier. 

3) Loss Function 

Binary cross entropy loss is also known as log loss was chosen 

as the loss function, which is a common ML choice for binary 

classification problems [2]. Each anticipated output 

probability is compared to its matching actual output via 

binary cross entropy. An overall score is computed, which 

penalises estimated probabilities depending on their deviation 

from their expected output. Loss grows exponentially; the 

model is discouraged from forecasting low probability for 

positive class samples due to the high penalties. 

4) Optimiser 

Because of the complexities connected with the deep nature of 

the CNN model, it is critical to keep the number of hyper-

parameters to a minimum. When compared to traditional 

optimisation methods such as Stochastic Gradient Descent 

(SGD), adaptive learning rate optimisation techniques give 

out-of-the-box performance due to quick convergence and less 

parameter fine-tuning. Adaptive moment estimation (Adam), 

which combines momentum for greater steps in the direction 

of the sharpest gradient and root means square propagation, is 

the most often used adaptive optimiser (for higher acceleration 
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on steep slopes). Adam was chosen as a good optimiser for 

these attributes, even though many alternative optimisers and 

versions of Adam exist. An enhancement would be to do an 

empirical inquiry to determine which optimiser produces the 

best results for the dataset. This was not prioritised because of 

the complicated interaction of model variables, where a 

change to one variable may affect the optimum decision for all 

other variables, requiring significant work for what would 

amount to a marginal benefit in terms of study objectives. 

5) Early Stopping 

As previously stated, the original training data was divided 

into training and validation partitions with an 80/20 ratio. 

Model predictions on the validation set are done at the 

concerning epoch to produce an epoch validation loss. To 

avoid over-fitting on the training data, training is stopped if 

the validation loss has not dropped substantially after a certain 

number of epochs. The number of epochs allowed without 

improvement was set to 10% of the maximum number of 

epochs for training. This percentage strikes a compromise 

between the necessity to avoid over-fitting and the patience 

required to avoid prematurely discontinuing training owing to 

local minima. This design could be improved by using K-fold 

cross-validation, which allows for training using all of the 

available training data, avoidance of validation set over-fitting, 

and more accurate reporting of model performance on unseen 

data. K-fold cross-validation, on the other hand, splits the 

training data into K subsets and trains K separate models. Due 

to study time restrictions, the needed time to train a model (in 

the order of hours), and inexperience with its implementation 

in PyTorch, the usage of K-fold cross-validation was not 

prioritised, and a basic validation set was decided instead. 

 

6) Hyper-Parameter Optimization 

Tuning model hyper-parameters is a critical step in ensuring 

the DL pipeline's capabilities. Batch size, learning rate, and a 

maximum number of epochs are the hyper-parameters that are 

adjusted. An automated hyperparameter optimisation strategy 

was applied. First, a broad hyper-parameter space search is 

done on the basic model (i.e., version 0 with no data 

augmentation) to identify reasonable hyper-parameter values 

with which each of the model versions may be trained for 

version comparison. The best model version is then subjected 

to a search in a tighter hyper-parameter space to good the 

hyper-parameter values and optimize the whole-slide 

performance of the classifier. When employing 299 x 299-

pixel input images, none of the model variants showed much 

promise at first. Thus, optimisation was conducted on model 

version 3 because it is theoretically the best, however, this 

could not be practically guaranteed. By randomly selecting 

from the hyper-parameter search space, random search 

provides a good compromise between execution time and 

obtaining adequate hyper-parameter values. Grid search, as an 

alternative, ensures that the hyper-parameter values supplied 

are optimal by exhaustively traversing the search space, but it 

takes a long time, especially for larger search spaces. Despite 

this, the automatic hyper-parameter optimisation system 

allowed for both types of search to be employed; grid search 

could be used for hyper-parameters with few potential values 

(i.e., batch size), while random search could be used for 

remaining hyper-parameters with a wider range of values (i.e., 

learning rate and a maximum number of epochs). 

 

IV. Result Analysis 

 

The metrics used to evaluate low-resolution models are 

established in this section, and the associated results for the 

whole-slide classification job are provided and analyzed. 

A) Evaluation Metric 

The key parameter used to evaluate the low-resolution models 

in this study allows for relevant performance comparisons 

[14]. A slide-based assessment for the entire-slide 

categorization problem has been identified. Additional metrics 

are utilised to compare resource requirements or to aid in 

further investigation of the produced models. Secondary 

metrics (precision, recall, etc.) are derived from the confusion 

matrices of the binary classifiers, for example, to analyse the 

limits of the whole-slide classification models when suitable. 

1) Slide-Based Evaluation 

The AUC- Receiver Operating Characteristic Curve (ROC) is 

the measure. This will be known as the AUC score. For all 

classification threshold values, the ROC curve is a plot of the 

true positive rate i.e. sensitivity vs the false positive rate. 

True Positive Rate = 

 

 

False Positive Rate = 

 

 

Furthermore, given the reported AUC scores, percentile 

bootstrapping was utilised to produce 95% confidence 

intervals. Providing such confidence intervals tries to evaluate 

variations in performance found while training and inferring 

models with different seeds (the established pipeline employs 

seeding to assure repeatability of findings, although seed 

selection has an impact on model performance). 

2) Average Inference Time 

This research places a premium on the average inference time 

of the created models. The goal is to increase the clinical 

feasibility of automated lung cancer detection systems. The 

time required to transform the original high-resolution images 

into low-resolution model inputs, as well as the time required 

for the model to use the input to create a prediction, is 

included in the average inference time for the developed low-

resolution models. Average inference times are recorded in all 

scenarios where an 'Nvidia GeForce GTX 1060 (6GB)' GPU 

was employed for execution. 

3) Model Version Comparison Results 

To produce a reasonable starting set of hyper-parameter 

values, hyper-parameter optimisation was done on model 

version 0. Then, using these values as a reference, the 
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following version models were trained. All hyper-parameter 

values were maintained constant, except for subsequent model 

versions that included data augmentations i.e. flipping, 

rotation, and colour jitter to allow for adequate utilisation of 

the enhanced images. When additional epochs are allowed, the 

implementation does not expand the dataset size, but rather 

performs the alterations at random, which is functionally 

similar. In all cases, the average (per image) inference time 

includes the average conversion time (360 milliseconds) from 

a high-resolution (.TIF) image to a low-resolution (.PNG) 

image with black image content filtering applied, as well as 

the average time required for the model to infer a low-

resolution image. When tissue detection is used, the average 

(per image) inference time includes the time it takes to 

transform a low-resolution (.PNG) image to a low-resolution 

tissue-detected image (190 milliseconds). The results for each 

model version while predicting the test dataset at the initial 

input resolution of 299 × 299 pixels are shown in Table 3. 

Table 3. AUC score and average inference time comparison 

between the various model iterations utilising 299 x 299 pixel 

input images. 
Model Version AUC Score (With 

95% Confidence 

Level) 

Average Per Image 

Inference Time 

(Seconds) 

0 - No Data 
Augmentation, Original 

Low-Res Images 

0.527 [0.429 - 0.638] 0.427 

1 - Data Augmentation, 
Original Low-Res 

Images 

0.363 [0.274 - 0.474] 0.427 

2 - No Data 

Augmentation, Tissue 

Detected Images 

0.427 [0.339 - 0.543] 0.637 

3 - Data Augmentation, 
Tissue Detected Images 

0.540 [0.500 - 0.500 0.637 

 

In the above table, the overall performance for the various 

model versions, and the reported AUC scores are confusing 

and deceptive. The AUC score should be between 0.5 and 1. 

Further investigation of the developed low-resolution models 

revealed that none of these models has any significant skill in 

determining whether metastases exist within the 299 x 299-

pixel images. The developed low-resolution models are 

incapable of distinguishing between metastatic and normal 

slides as shown in Figure 5 and Figure 6. There are various 

explanations for the models' low capabilities, the most 

common of which is a faulty training method or insufficient 

training data. However, given the high confidence in the 

pipeline implementation's correctness, and the fact that these 

models are observed to converge to a validation loss 

minimum, the following conclusion can be drawn: The built 

pipeline's very low input resolution of 299 x 299 pixels is just 

insufficient for effective categorization. 

 
Figure 5: Figures for model versions 0 and 1 that display the 

expected probabilities for the test data set images (at 299 by 

299 pixels) coloured by their actual output class 
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Figure 6: Figures for model versions 2 and 3 that display the 

expected probabilities for the test data set images (at 299 by 

299 pixels) coloured by their actual output class 

Figures 5 and 6 show that model versions 0 and 2 (the ones 

that do not employ the flips, rotation, and colour fluctuation 

augmentations) have a wider range of projected probabilities. 

The broader dispersion implies that these models are 

attempting to make educated selections rather than merely 

predicting one of the classes (yet, all models predict some 

likelihood). This might imply that the data augmentation 

technique is insufficient. However, the inverse might also be 

true. Model versions 1 and 3 may have learned orientation and 

colour-invariant characteristics by using data augmentations, 

increasing the confidence of predictions. Model version 3, 

which uses data augmentations to recognise tissue, predicts 

that both groups are about equally probable with low 

fluctuation as shown in Figure 6. This, on the other hand, 

suggests that the model for version 3 has either learned 

nothing from training or has learned that it cannot forecast 

with any accuracy given the low pixel information available in 

the 299 x 299 images. As an aside, several result analysis 

approaches were incorporated to enhance comprehension of 

the created models, most notably the development of 

confusion matrices with the class distribution of false negative 

data (i.e., macro-metastasis, micro-metastasis, and ITCs). 

These were meant to analyse the sorts of slides and cancer the 

models had poor classification ability. However, because the 

models do not separate the output classes, an appropriate 

threshold for generating the confusion matrices could not be 

chosen (so the analysis described could not be performed). 

 

D.  Image Resolution Comparison Results 

In the above subsection, it was discovered that the model 

versions generated in this study were practically incapable of 

identifying the presence of cancer in low-resolution images of 

299 x 299 pixels. This is most likely due to an intrinsic 

constraint of the methodology: there are too few training 

images to allow for adequate training, the images themselves 

lack sufficient information for classification, or both aspects 

are to blame. There is nothing that can be done to explore the 

former issue because more training samples are just 

unavailable for usage. As a result, this section examines model 

performance at various input resolutions, all of which are still 

deemed low-resolution when compared to the original high-

resolution (.TIF) images., Additional image dimensions 

studied include 512 x 512 pixels, 1024 x 1024 pixels, and 

2048 x 2048 pixels (299 x 299 pixels were initially used). 

Pipeline version 3 was chosen for use across all of these input 

image resolutions. Version 3 should theoretically deliver the 

best overall performance (however this could not be 

empirically shown in part 4.2.1) by utilizing regularisation 

through data augmentations and higher quality input images 

through tissue identification. Furthermore, the hyper-

parameter values utilised were the same as those used in 

version 3 with 299 x 299-pixel inputs to confirm that any 

improvement in model performance is due to the improved 

resolution of the input images. 

As predicted, bigger input resolutions need more time to infer 

the original high-resolution images. There will be a significant 

rise in average inference time between 299 x 299 pixels (0.627 

seconds) and 512 x 512 pixels (12.070 seconds), but only a 

little increase between 512 x 512 and 1024 x 1024 pixels 

(12.100 seconds). The original images are downsampled to 

resolution level 8 for the 299 x 299-pixel model. The dark 

content filtering and tissue detection processes are performed 

once on images of about 1000 × 1000 pixels, which are 

subsequently reduced to tissue images at the appropriate input 

resolution. The 512 x 512 and 1024 x 1024 models, on the 

other hand, obtain their inputs from tissue identification 

performed on the original images rather than being down-

sampled to about resolution level 6. As a result, the one-time 

pre-processing is performed on images of about 6000 × 6000 

pixels (which takes substantially longer) to obtain the requisite 

tissue images of the required input resolution. Given that 

image up-scaling does not equal an increase in magnification, 

it was vital to ensure that input images were produced via 

down-sampling and pre-processing from higher-than-required 

resolutions. Initial examination of the obtained AUC values in 

Table 4 leads to the conclusion that model performance 

increases with increasing input resolution; the AUC score has 
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grown marginally from 0.500 at 299 x 299 pixels to 0.540 at 

1024 x 1024 pixels. This lends credence to the idea that as 

input resolution grows, the model should become more 

capable of distinguishing malignant tissue due to the 

additional spatial. 

Table 4. For model version 3 across various input image 

resolutions, the AUC score and average inference time are 

shown. 
Image Resolutions 

(Pixels) 

AUC Score (With 

95% Confidence 

Level) 

Average Per Image 

Inference Time 

(Seconds) 

299 x 299 0.510 [0.500 - 0.500] 0.627 

512 x 512 0.520 [0.429 - 0.628] 12.070 

1024 x 1024 0.550[0.452 - 0.629] 12.100 

2048 x 2048 Timed Out1 Timed Out 

 

However, the increase in average inference time is only a 

surface improvement because additional analysis reveals that 

these models are equally incapable of differentiating the 

output classes in the test dataset as shown in Figure 7, as 

previously discovered when analysing the different model 

versions. As the AUC score increases, models with greater 

input resolutions can be considered to be somewhat less 

unable of differentiating the output classes. Regardless, these 

models are unsuitable for usage since they effectively forecast 

at random; the models predict scores near 0.5 at all input 

resolutions studied. As previously stated, this might indicate 

that the models had inadequate training and were unable to 

learn the broad characteristics necessary for confident 

classification i.e. not enough training samples. Alternatively, 

the models may have learned that no certainty can be 

predicted given the limited information within the input 

images; even though 1024 x 1024 inputs provide more than 

ten times the amount of pixel content as 299 x 299 inputs i.e. a 

magnified view of the slide, critical information that informs 

on cancer presence is still indiscernible. The number of cells 

in a specific location, for example, and the regularity of cell 

shapes are markers of cancer, particularly in terms of micro-

metastasis and individual cancer cells, but these characteristics 

are obscured by blurring. 

 
1 The model could not be evaluated since the training process utilising 2048 x 

2048 image inputs failed to attain convergence in the allocated 72 hours. This 
was mostly caused by the training of this model being noticeably slowed 

down when memory could only hold small batches of higher definition 

photos. 

 
Figure 7: Figures depicting the model version 3's predicted 

probabilities for the test data set images coloured according to 

their actual output class when utilising 512 x 512 and 1024 x 

1024 input images, respectively 

5. Conclusion 

The study's overarching outcome is that the established DL 

pipeline for binary cancer classification is virtually skillless at 

the explored low input resolutions, even when additional 

strategies to boost general capacity were included. The DL 

pipeline may gain competency at higher input resolutions than 

those explored, perhaps revealing an ideal resolution that 

captures adequate prediction performance and average 

inference time. However, this is implausible given the 

apparent trade-off between the two required features, 

necessitating an unpleasant decision to prioritise either model 

performance or inference speed to determine the input 

resolution to utilise. This is not the case with the multi-

resolution techniques presented. Currently, the models in this 

research suffer from the 'garbage-in, garbage-out problem 

associated with DL models' black box nature. Even at 1024 x 

1024 pixels, the low-resolution input images are greatly 

blurred at the cellular level, making the identification of 

critical markers for cancer detection (cell density, shape 

irregularity, discolouration, etc.) doubtful even by qualified 



 
  

 

13 

 

Iraqi Journal for Computers and Informatics 
 

Vol. [ 49 ], Issue [1], Year (2023 ) 

pathologists. It's also possible that the pipeline is intrinsically 

bottlenecked at all input resolutions because of the scarcity of 

training data. Simply put, there aren't enough labelled training 

data for the model to learn how to distinguish metastases 

inside homogenous-looking tissue, especially considering that 

the machine is seeking to combine numerous forms of cancer 

for classification (i.e., micro-metastases, macro-metastases, 

ITCs). This is an inherent problem with utilising images as 

inputs in their totality since the size of the training dataset 

becomes tied to the number of images that can be reliably 

annotated comprehensively by skilled medical staff. 

In this concluding section, we concluded that after considering 

and using the input resolutions to be evaluated, the proposed 

DL pipeline is inappropriate as a medically feasible cancer 

detection method. In a nutshell, our proposed DL pipeline is 

inadequate as a preliminary filter to swiftly and rapidly 

categorise simple pathology cases, validating the usage of 

slower, high-performance submission of data for tough but 

unusual or infrequent situations. However, this study did not 

scientifically examine any kind of ideal input resolutions 

which balance resource requirements and prediction 

performance. On the other hand, a therapeutically practical 

strategy would more properly combine the speed of low-

resolution slide processing with the assurance and certainty of 

high-resolution slide processing. Although the efficacy of such 

multi-resolution techniques has been proven in the research 

itself and they have yet to be used to the identification of 

metastasis in pathology slides. 
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