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ABSTRACT
In this paper, a new hybrid conjugate gradient algorithm is proposed
for unconstrained optimization. This algorithm combines the desirable
computation aspects of Polak-Ribier steps and useful theoretical features of
Fletcher-Reeves CG-steps. Computational results for this agorithm are
given and compared with those of the Fletcher and Polak standard CG
methods showing a considerable improvement over the latter two methods.
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1. Introduction

The problem of interest can be stated as that of finding a loca
solution X' to the problem.
Minimizef(x) ; xeR"...... (1)

Usually x exists and is locally unique. There are two particular
types that must be made. One is that these methods do not guarantee to fined
a global solution of equation (1). Another type is that the objective function
f(x) must be sufficiently smooth in some cenes, for more detail see
(Fletcher, 1993). There are some basic theoretical results on the non-
guadratic models (see Al-Bayati, 1993).

Methods for unconstrained optimization differ according to how
much information the user is able to provide. The most desirable situation
from the point of view of providing useful information is that the user
provides subroutines from which f(x), g(x) (where g(x) = Nf(x)) and G(x),
(G(x) = N?(x)) can be evaluated for any x. These methods are generally
iterative methods in which the user typically provides an initial estimate x of
X and possibly some additional information. Such that at each step the
search for minimum is carried out aong the descent direction dx i.e
dkTgk <O0...... (2

A sequance of iterates {xy} isthen generated from
Xerr =X+ de oot (3)

If the line search is exact, the step size | « is defined by
[xk=agminf(x+I di) ...... (4)

|

In practice however an exact line search is not usually possible and
any vaue of | that satisfies certain standard conditions is accepted
Fletcher, (1980) suggests that |  is such that xi + 1 satisfies the condition

|ng+1dk| <-S8 ngdk ...... (5)
together with
f(xks) £FO) + 1 Tkgpde ... . (6)

Where r T (0, 1/2),s1 (0,1)andr <s

Conjugate gradient (CG) method is one of the few practical methods
for solving large dimensionality problems because it does not require matrix
storage and its iteration cost is very low. Normally the initial direction di is
given by
dl =-0 ...... (7)

The search direction for the next iteration has the following form
(see Al-Bayati and Al-Assady, 1994).
Oks1 = - Ok+1 T bede ...... (8)
Where by is a constant parameter defined either by
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b = gLTlgM ...... 9a)
9.9,
or
by = gk+1(ng+1- gk) ______ (9b)
9.9,

The definition by in (9a) is due to Fletcher and Reeves 1964 and by
in (9b) is due to Polak-Ribier 1969. Extensive numerica experience has
shown that the PR agorithm is more efficient than the origind FR
algorithm.

There is theoretica explanation which shows that PR-formula is
batter than FR formula. On general non-quadratic functions it can happen
(see Fletcher, 1987) that the search direction dx becomes amost orthogenal
to - g« and hence little progress can be made. In this event, Xc+1 = Xk and Gk+1
= ok so FR method then gives

Q1 @ Quer= Ok (10a)
While the PR method becomes
Okr1 @ Gest (10b)

So, in this circumstance the PR algorithm tends to restart
automatically to the steepest descent direction. Thus, it seems that this
formula should be used when solving large problems. Many extensions and
modifications have been proposed in this field (see Al-Bayati and Ahmed,
1996).

2. Theoretical resultson CG methods:

Various formulas for by hare given suggested in equation (8), but for
purpose of this paper, attention will be focused on the (9aand 9b).
We shall assume that the level set

{x:f(x) Ef(x2)} ... ... (12)

is bounded. This assumption will ensure that | « iswell defined for dl k. Its
clear that

d/gi=-9,0.<0

so the descent property in eg.(2) holds on the first iteration for any
conjugate gradient method. Moreover, if the line search is exact, then

gl de=0,k31...... (12)

therefore from equation (8) and (12) it follows that
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1.1 Ot = 91 (- Gt + bid) = = flgeall - - - - - . (13)

This shows that a descent property holds on al iterations for any
conjugate gradient method with exact line search, and in particular for both
FRCG and PRCG methods.

Powell, (1983) shows that if the level set eq. (11) isbounded, if | ¢ is
defined so that eg.(12) holds for al k and if f(X) is twice continuously
differentiable then FRCG method achieves the limit:

lim infllokl=0 ...... (14)
k® ¥

Furthermore Al-Badi (1984) extends this result to show that even
for an inexact line search satisfying (5) and (6), the descent property holds
for dl k and global convergence is achieved for the Fletcher-Reeves
method.

Although in numerical computations (9b) is generaly far more
successful than formula (9a) (see Powell, 1977, 1985, for a theoretical
explanation). It has not been possible to establish these global convergence
results for the Polak-Ribier method unless the additional condition is
imposed that the step lengths |[xx+1 — X|| tend to zero (see Powell, 1977). In
fact, Powell, (1983) shows that if by is chosen to satisfy (9b) rather than
(9a), then even with exact line search and exact arithmetic there exist twice
continuously differentiable functions with bounded level set eq. (11) for
which the gradient norms |[g«]l, k = 1,2,. . . are bounded away from zero.
This has consequently led to thoughts on how to combine the desirable
computational aspects of formula (9b) and the useful theoretical features of
formula (9a).

3. New hybrid CG algorithm:

In this new hybrid algorithm we assume that an inexact line search is
used for non-quadratic objective function.
It can be shown that if at every iteration of the Polak-Ribier algorithm (see
Story and Touti, 1990) we have

Ot Ok £ llgeetll -+ - - (15)

Then the convergence proofs given by Powell (1983) and Al-Baali
(1985) for Fletcher-Reeves method apply to Polak-Ribier method also-
equation (15) which is an equivalent form at the equation given below is
unfortunately not always satisfied
0 £ bpr £ ber
Consider the formula (9b)

30



New Hybrid CG Algorithm...

T T
bpr = Oes1(Gks1” G) = Gkt Okt JkrtOic)
Ok Ok Ok %

T
= O+1%+1 - nggk
T
9k Y O¢ Ok

||9k+1J|2 _ lowsd o] cosa
2
Jowl? o]
=brr- b, COSQ (16)

Where q is the angle between g«+1 and g« without loss of generality
suppose gl (0, p/2)

and hence

ber = brr - oz COST £ brr- Jbo

i.eif

0<bpr £ brr- ()2 ... ... (17)

Consequently we considered the use of hybrid conjugate gradient
using formula (9b) whenever condition in eq. (17) is satisfied and formula
(9a) otherwise, a descent property holds for all k and global convergence is
achieved for this new hybrid algorithm when either an exact or an inexact
line search is used. This algorithm was tested on severd test functions and
the results obtained show, in many cases, a significant improvement on the
Fletcher-Reeves and Polak-Ribier methods. There were aso cases, however,
where the Polak algorithm performed better than this new hybrid algorithm.

4. Algorithm (New hybrid CG):

Stepl: Let x; be aninitial estimate at the minimizer X of f

Step2: set k=1 and set dy = - gk

Step3: do aline search : set X1 = Xk + | (i

Step4: if |lgall <1, wherel =5x 107, take X as X1 and stop otherwise
gotostep 5

Step5: if k + 1> n> 2 then go to step 11; otherwise, go to step 6

Step6: set the vector

ak :dk - ( ngﬂdk )gk+l

Step7: with
G=min (1, Jz I /CTICTk)’WhereZ
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the machine accuracy (say, z= 1 x 10'16), we assume that
Ok = 9(Xk+1- Gdy) and find

bFR = M 1 bPR = g:ﬂ(gkﬂ_ gk)
gk gk gl— gk
Step8: if 0 <bpr £ brr - ',bFR st by = bpr

and go to step 9 otherwise by = ber go to step 9
Step9: set the search direction at the iteration (k + 1)

i+t = - Qer + bic di
Step10: set k =k + 1 and go to step 3
Stepll: set Xy+1 = X3 and go to step 2

5. Numerical Results:

All the three a gorithms described in this paper, namely;

(i): The standard FRCG method

(iii): Polak-Ribier CG method

(iii): New proposed hybrid CG method

are coded in double precison Fortran 90. The numerical results are obtained
on the persond Pentium Il computer. The complete set of results are given
intables (1, 2, 3, 1a, 2a and 3a). In comparison of agorithns the number of
function evaluations (NOF) is normally assumed to be the most costly factor
in an iteration. The total number of iterations (NOI) required to achieve
convergence is aso vauable in comparing similar algorithms and is also
presented here. The actual convergence criterion employed was

91401 < 1% 10°

for dl the three algorithms. Well-known test functions with different
dimensions are employed in this comparison. Tables (1a), (2a) and (3a) give
the percentage of improvements of the new proposed agorithm against FR
and PR.
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Table 1: Comparison results for FR, PR and the new proposed algorithm

2ENE 60
N FR PR New HPF

Testfun. NOl | NOF | NOI [NOF| NOI | NOF
Cubic | 2| 19 56 19 | 52 | 18 | 52
Rosn | 2| 38 99 33 | 85 | 23 | 78
Powdl (4) | 4 | 44 155 | 24 | 72 | 14 | 40
Mide | 4| 39 131 | 69 | 237 | 27 | 9%
Dixon 10| 21 45 20 | 43 | 20 | 43
Cubic 20| 42 110 | 64 | 156 | 34 | 88
Wood |40| 85 217 | 68 | 144 | 48 | 121
Bea |40| 42 87 0 | 26 | 30 | 68
Shallow | 60| 47 97 53 | 107 | 26 | 57
Rosen | 60| 122 271 | 92 | 231 | 63 | 145
Tota 499 | 1268 | 442 |1193| 303 | 988

Table 2: Comparison results for FR, PR and the new proposed algorithm

80 £ n £ 200
N FR PR New HPF
Testfun. NOl | NOF | NOI | NOF | NOI | NOF
Rocen | 80 | 102 245 98 | 230 | 82 | 186
Shallow | 80 | 53 107 47 | 97 | 26 | 57
Powell | 100 | 199 408 | 129 | 270 | 162 | 332
Wood | 100 | 276 828 | 103 | 213 | 57 | 138
Bea | 120 | 47 95 12 | 28 | 30 | 59
Shallow | 120 | 49 101 53 | 100 | 20 | 63
Mide | 140 | 189 431 | 175 | 397 | 154 | 351
Powell | 140 | 185 381 | 201 | 460 | 164 | 340
Rosen | 200 | 223 495 | 218 | 473 | 9% | 213
Bea | 200| 47 96 6 | 38 | 53 | 107
Tota 1370 | 3187 | 1152 | 2315 | 853 | 1846
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Table 3: Comparison results for FR, PR and the new proposed algorithm

240 £ n £ 600
FR PR New HPF
Testfun | N 08 T NOF | NOI | NOF | NOI | NOF
Bedl | 240 | 49 9 6 | 34 | 32 | 65
Shallow | 240 | 50 | 101 | 54 | 113 | 29 | 63
Mide | 300 | 302 | 733 | 313 | 656 | 208 | 505
Rosen | 300 | 223 | 495 | 139 | 306 | 96 | 213
Shallow | 360 | 49 | 101 | 54 | 111 | 29 | 63
Wood | 360 | 307 | 742 | 106 | 219 | 57 | 138
Cubic | 400 | 212 | 447 | 314 | 659 | 200 | 434
Powel | 400 | 346 | 708 | 413 | 877 | 405 | 825
Rocen | 600 | 332 | 720 | 282 | 591 | 96 | 213
Wood | 600 | 307 | 740 | 108 | 273 | 62 | 148
Tota 2175 | 4866 | 1799 | 3839 | 1223 | 2667

Table (18) Performance of the new algorithm compared with PR and FR for

Table (28) Performance of the

2£n£60

NOI NOF

New 100% 100%
FR 154 128
PR 145 120

new algorithm compared with PR and FR for
80 £ n £ 200

NOI NOF

New 100% 100%
FR 150 158
PR 135 125

Table (3a) Performance of the new algorithm compared with PR and FR for

240£ n £600
NOI NOF
New 100% 100%
FR 167 162
PR 147 143
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6. Conclusions

A new proposed hybird algorithm which combines PR and FR steps
is investigated both theoretically and experimentally with obtaining a roubst
numerical results.

8. Appendix:
1.Generalized Sum of Quadratics Function:

f0=4 (x, - i)* x0=(2;..)T.

2.Generalized Osp (Oren and Spedicato Function:

(n 2
f(x) = €3 ix2\Y , xo=(1;...)".
() &X' 0=(1;...)

3.Generalized Edger and Himmel Function:

100 =8 [0 - 20+ (x, - 22X5 + (6, +D)7], %67(10;.)",

4 Generalized Cantreal Function:

_ ”é“é(exp(xm»s) - X4i»2)4 +1OO(X4i»2 - X4i»1)6 'H:J
f0=4e 4 G

'ﬂ@rdan(xm»l - Xy )) +X43 u
x0=(1,2,2,2;..)".

5.Generalized Recip Function:

n/Sé 2. L‘l — .
f(X) — é- éxgi_l _ 5)2 + Xgi-l + #ZQ’ Xo—(2,5,1, )T
=g (X3.1- X3.2)°0

6.Generalized Cubic Function:

f(x) =& [100(x,, - X3 )" +(1- x,,)2)  X=(-12.L.)",
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7.Generalized Miele Function:

A 2 6
(x) = g@exp(xm.s - Xg.) " +100(X, 5 - X4iq) +H’ xo=(1,2,2,2; )T

e
FEtan(X,., - X)) X5t (X, -1 g

8.Generalized Dixon Function:

f(X) = én g(l' X1)2 + (1' Xn)2 + rgl(xiz - Xi+1)28 y Xo:(-l;...)T.
i=1 i=1

9.Generalized Penalty (1) Function:

1) =4 [(x, - ) + exp(x? - 0.25)?], Xo=(12,....n)".

10.Generalized Penalty (2) Function:

() = & [exp(x, - 1)? + (x? - 0.25)2], Xo=(12,....0)".

11.Generalized Powell Function:

X, . +10X, )% +5(X, , - X, )? +U
f()() =g4g 4i-3 4|-22 ( 4i-1 4 \ L:,I’ X0:(3,'1,O,3;...)T.
|:1dx4i_2 - 2X4i_1) +1O(x4i_3 - Xy g

12.Generalized Powell 3 Function:

6 ) X 5 X X, 0 X = :
f(X):rgiB- ? l ZE_ S'n(n X2|X3|)_ expg_ (Xl +X3| _ Z)ZL}ZI!XO (0!1!2!
= @l (X - X5) 0 e 2

13.Generalized Rosenbrock Function:

f(x) = %2[100()(2 - X5.0)° +(1- Xzi-lz]’ Xo=(-1.2.1;..)".
i=1

14.Generalized Beale Function:

36

).



New Hybrid CG Algorithm...

f(x)=a
':11+[2 625 X, (1- x2[ b

15.Generalized Shallow Function:

f(X) = gz[Xgi-l - Xy ]2 + (1' X2i-1)2’ XO:('Z’ -2, )T
i=1

16.Non-Diagonal Variant of Rosenborck Function:

i) =& [100(x, - x?)?+(1- )2} n>1, Xo=(-L; ..
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