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  الملخص
وارزمية هجينية للتدرج المترافق المعتمد على خطـوات        في هذا البحث تم استحداث خ     

PR   و FR               وفي الأمثلة اللاخطية تم عرض بعض النتائج النظرية في هذا المجال، وتم إجـراء 
  .PR وFRبعض التجارب العملية التي أثبتت كفاءة الخوارزمية المقترحة مقارنة بمثيلاتها من 

 
ABSTRACT 

 

In this paper, a new hybrid conjugate gradient algorithm is proposed 
for unconstrained optimization. This algorithm combines the desirable 
computation aspects of Polak-Ribier steps and useful theoretical features of 
Fletcher-Reeves CG-steps. Computational results for this algorithm are 
given and compared with those of the Fletcher and Polak standard CG 
methods showing a considerable improvement over the latter two methods. 
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1. Introduction 
 

The problem of interest can be stated as that of finding a local 
solution x* to the problem. 
Minimize f(x) ; x ε Rn . . . . . . (1) 

Usually x* exists and is locally unique. There are two particular 
types that must be made. One is that these methods do not guarantee to fined 
a global solution of equation (1). Another type is that the objective function 
f(x) must be sufficiently smooth in some cenes, for more detail see 
(Fletcher, 1993). There are some basic theoretical results on the non-
guadratic models (see Al-Bayati, 1993). 

Methods for unconstrained optimization differ according to how 
much information the user is able to provide. The most desirable situation 
from the point of view of providing useful information is that the user 
provides subroutines from which f(x), g(x) (where g(x) = ∇f(x)) and G(x), 
(G(x) = ∇2f(x)) can be evaluated for any x. These methods are generally 
iterative methods in which the user typically provides an initial estimate x of 
x* and possibly some additional information. Such that at each step the 
search for minimum is carried out along the descent direction dk i.e 
dk

Tgk < o . . . . . .      (2) 
A sequance of iterates {xk} is then generated from 

xk+1 = xk + λk dk  . . . . . .                 (3) 
If the line search is exact, the step size λk is defined by 

λk = 
λ

arg  min f(xk + λ dk)  . . . . . .         (4) 

In practice however an exact line search is not usually possible and 
any value of λk that satisfies certain standard conditions is accepted 
Fletcher, (1980) suggests that λk is such that xk + 1 satisfies the condition 
|gT

k+1dk| < - σ gT
kdk  . . . . . .     (5) 

together with  
f(xk+1) ≤ f(xk) + ρ λk gT

k dk  . . . . . .    (6) 
Where ρ ∈ (0, 1/2), σ∈ (0, 1) and ρ < σ 
Conjugate gradient (CG) method is one of the few practical methods 

for solving large dimensionality problems because it does not require matrix 
storage and its iteration cost is very low. Normally the initial direction dk is 
given by  
d1 = - g1  . . . . . .      (7) 

The search direction for the next iteration has the following form 
(see Al-Bayati and Al-Assady, 1994). 
dk+1 = - gk+1 + βk dk  . . . . . .     (8) 
Where βk is a constant parameter defined either by 
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The definition βk in (9a) is due to Fletcher and Reeves 1964 and βk 

in (9b) is due to Polak-Ribier 1969. Extensive numerical experience has 
shown that the PR algorithm is more efficient than the original FR 
algorithm. 

There is theoretical explanation which shows that PR-formula is 
batter than FR formula. On general non-quadratic functions it can happen 
(see Fletcher, 1987) that the search direction dk becomes almost orthogenal 
to - gk and hence little progress can be made. In this event, xk+1 = xk and gk+1 
= gk so FR method then gives 
dk+1 ≅ - gk+1= dk                            (10a) 
While the PR method becomes  
dk+1 ≅ - gk+1                                (10b) 
 

So, in this circumstance the PR algorithm tends to restart 
automatically to the steepest descent direction. Thus, it seems that this 
formula should be used when solving large problems. Many extensions and 
modifications have been proposed in this field (see Al-Bayati and Ahmed, 
1996). 
 
2. Theoretical results on CG methods: 
 

Various formulas for βk hare given suggested in equation (8), but for 
purpose of this paper, attention will be focused on the (9a and 9b). 

We shall assume that the level set 
 

{x: f(x) ≤ f(x1)} . . . . . .      (11) 
 

is bounded. This assumption  will ensure that λk is well defined for all k. Its 
clear that  
d T

1 g1 = - g T
1 g1 < 0  

so the descent property in eq.(2) holds on the first iteration for any 
conjugate gradient method. Moreover, if the line search is exact, then  
 

g T
11+  dk = 0 , k ≥ 1  . . . . . .      (12) 

therefore from equation (8) and (12) it follows that  
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g T
11+ dk+1 = g T

11+ (- gk+1 + βkdk) = - ||gk+1||2 . . . . . .  (13) 
 

This shows that a descent property holds on all iterations for any 
conjugate gradient method with exact line search, and in particular for both 
FRCG and PRCG methods. 

Powell, (1983) shows that if the level set eq. (11) is bounded, if λk is 
defined so that eq.(12) holds for all k and if f(X) is twice continuously 
differentiable then FRCG method achieves the limit: 

 

  lim
∞→k

inf ||gk|| = 0  . . . . . .      (14) 
 

Furthermore Al-Baali (1984) extends this result to show that even 
for an inexact line search satisfying (5) and (6), the descent property holds 
for all k and global convergence is achieved for the Fletcher-Reeves 
method. 

Although in numerical computations (9b) is generally far more 
successful than formula (9a) (see Powell, 1977, 1985, for a theoretical 
explanation). It has not been possible to establish these global convergence 
results for the Polak-Ribier method unless the additional condition is 
imposed that the step lengths ||xk+1 – xk|| tend to zero (see Powell, 1977). In 
fact, Powell, (1983) shows that if βk is chosen to satisfy (9b) rather than 
(9a), then even with exact line search and exact arithmetic there exist twice 
continuously differentiable functions with bounded level set eq. (11) for 
which the gradient norms ||gk||, k = 1,2,. . . are bounded away from zero. 
This has consequently led to thoughts on how to combine the desirable 
computational aspects of formula (9b) and the useful theoretical features of 
formula (9a). 

 
3. New hybrid CG algorithm: 
 

In this new hybrid algorithm we assume that an inexact line search is 
used for non-quadratic objective function. 
It can be shown that if at every iteration of the Polak-Ribier algorithm (see 
Story and Touti, 1990) we have  
 

g T
11+  gk ≤ ||gk+1||2  . . . . . .      (15) 

 

Then the convergence proofs given by Powell (1983) and Al-Baali 
(1985) for Fletcher-Reeves method apply to Polak-Ribier method also-
equation (15) which is an equivalent form at the equation given below is 
unfortunately not always satisfied 
0 ≤ βPR ≤ βFR 
Consider the formula (9b) 
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Where θ is the angle between gk+1 and gk without loss of generality 
suppose θ∈(0, π/2)  
and hence 
βPR = βFR - βFR  cos θ ≤ βFR - βFR  
i.e if 
0 < βPR ≤ βFR - )( FR

2/1β   . . . . . .    (17) 
Consequently we considered the use of hybrid conjugate gradient 

using formula (9b) whenever condition in eq. (17) is satisfied and formula 
(9a) otherwise, a descent property holds for all k and global convergence is 
achieved for this new hybrid algorithm when either an exact or an inexact 
line search is used. This algorithm was tested on several test functions and 
the results obtained show, in many cases, a significant improvement on the 
Fletcher-Reeves and Polak-Ribier methods. There were also cases, however, 
where the Polak algorithm performed better than this new hybrid algorithm. 
 
4. Algorithm (New hybrid CG): 
 

Step1: Let x1 be an initial estimate at the minimizer x* of f 
Step2: set k = 1 and set dk = - gk 
Step3: do a line search : set xk+1 = xk + λkdk 
Step4: if ||gk+1|| < ∈, where ∈ = 5 x 10-5 , take x* as xk+1 and stop otherwise 
go to step 5 
Step5: if k + 1 > n > 2 then go to step 11; otherwise, go to step 6 
Step6: set the vector 

                      g
g
dd 1k

1k1

k1
k
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+
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+−=
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g
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                    Γ = min (1, dd k
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 the machine accuracy (say, ζ = 1 x 10-16), we assume that  
      )dX(gg k1kk Γ−= +  and find  
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kk
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)(
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Step8: if 0 < βPR ≤ βFR - βFR  set βk = βPR 
          and go to step 9 otherwise βk = βFR go to step 9 
Step9: set the search direction at the iteration (k + 1) 
          dk+1 = - gk+1 + βk dk  
Step10: set k = k + 1 and go to step 3 
Step11: set xk+1 = x1 and go to step 2 
 
5. Numerical Results: 
 

All the three algorithms described in this paper, namely; 
(i): The standard FRCG method 
(iii): Polak-Ribier CG method 
(iii): New proposed hybrid CG method 
 

are coded in double precision Fortran 90. The numerical results are obtained 
on the personal Pentium II computer. The complete set of results are given 
in tables (1, 2, 3, 1a, 2a and 3a). In comparison of algorithns the number of 
function evaluations (NOF) is normally assumed to be the most costly factor 
in an iteration. The total number of iterations (NOI) required to  achieve 
convergence is also valuable in comparing similar algorithms and is also 
presented here. The actual convergence criterion employed was  
g T

11+ gk+1 < 1 * 10-5 
 
for all the three algorithms. Well-known test functions with different 
dimensions are employed in this comparison. Tables (1a), (2a) and (3a) give 
the percentage of improvements of the new proposed algorithm against FR 
and PR. 
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Table 1: Comparison results for FR, PR and the new proposed algorithm  
602 ≤≤ n  

FR PR New HPF Test fun. N 
NOI NOF NOI NOF NOI NOF 

Cubic 2 19 56 19 52 18 52 
Rosen 2 38 99 33 85 23 78 

Powell (4) 4 44 155 24 72 14 40 
Miele 4 39 131 69 237 27 96 
Dixon 10 21 45 20 43 20 43 
Cubic 20 42 110 64 156 34 88 
Wood 40 85 217 68 144 48 121 
Beal 40 42 87 10 26 30 68 

Shallow 60 47 97 53 107 26 57 
Rosen 60 122 271 92 231 63 145 
Total  499 1268 442 1193 303 988 

 
 
 

Table 2: Comparison results for FR, PR and the new proposed algorithm 
20080 ≤≤ n  

FR PR New HPF Test fun. N 
NOI NOF NOI NOF NOI NOF 

Rocen 80 102 245 98 230 82 186 
Shallow 80 53 107 47 97 26 57 
Powell 100 199 408 129 270 162 332 
Wood 100 276 828 103 213 57 138 
Beal 120 47 95 12 28 30 59 

Shallow 120 49 101 53 109 29 63 
Miele 140 189 431 175 397 154 351 
Powell 140 185 381 201 460 164 340 
Rosen 200 223 495 218 473 96 213 
Beal 200 47 96 16 38 53 107 
Total  1370 3187 1152 2315 853 1846 
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Table 3: Comparison results for FR, PR and the new proposed algorithm 
600240 ≤≤ n  

FR PR New HPF Test fun. N 
NOI NOF NOI NOF NOI NOF 

Beal 240 49 99 16 34 32 65 
Shallow 240 50 101 54 113 29 63 
Miele 300 302 733 313 656 208 505 
Rosen 300 223 495 139 306 96 213 

Shallow 360 49 101 54 111 29 63 
Wood 360 307 742 106 219 57 138 
Cubic 400 212 447 314 659 209 434 
Powell 400 346 708 413 877 405 825 
Rocen 600 332 720 282 591 96 213 
Wood 600 307 740 108 273 62 148 
Total  2175 4866 1799 3839 1223 2667 

 
Table (1a) Performance of the new algorithm compared with PR and FR for  

602 ≤≤ n  
 NOI NOF 

New 100% 100% 
FR 154 128 
PR 145 120 

Table (2a) Performance of the new algorithm compared with PR and FR for  
20080 ≤≤ n  

 NOI NOF 
New 100% 100% 
FR 150 158 
PR 135 125 

 
 
Table (3a) Performance of the new algorithm compared with PR and FR for  

600240 ≤≤ n  
 NOI NOF 

New 100% 100% 
FR 167 162 
PR 147 143 
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6. Conclusions: 
 

 A new proposed hybird algorithm which combines PR and FR steps 
is investigated both theoretically and experimentally with obtaining a roubst 
numerical results. 
 
8. Appendix: 
 

 1.Generalized Sum of Quadratics Function: 
   
    f(x)= 4n

1i
i )i(x∑ −

=
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6.Generalized Cubic Function: 
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7.Generalized Miele Function: 
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8.Generalized Dixon Function: 
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9.Generalized Penalty (1) Function: 
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10.Generalized Penalty (2) Function: 
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11.Generalized Powell Function: 
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12.Generalized Powell 3 Function: 
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13.Generalized Rosenbrock Function: 
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14.Generalized Beale Function: 
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16.Non-Diagonal Variant of Rosenborck Function: 
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