Husein Hadi Abbass

College of Education for girls Department of Mathematics <u>Msc_hussien@yahoo.com</u> **Hayder Abbas Dahham** College of Dentistry <u>Hay_ad24@yahoo.com</u> University of Kufa

Abstract

In this paper, we introduce the notions of a closed filter with respect to an element of a BH-algebra and a completely closed filter with respect to an element of a BHalgebra and study these notions on a BG-algebra. Also We stated and prove some theorems which determine the relationship between these notions and some types of ideals of a BH-algebra.

Keywords : CLOSED FILTER, COMPLETELY CLOSED FILTER, BH-ALGEBRA

حول المرشح المغلق و المغلق التام بالنسبة الى عنصر في جبر - BH

حسين هادي عباس كلية التربية للبنات / قسم الرياضيات **حيدر عباس دحام** جامعة الكوفة/كلية طب الاسنان

الملخص: قدمنا في هذا البحث مفهوم المرشح المغلق بالنسبة الى عنصر في جبر -BH و المرشح المغلق التام بالنسبة الى عنصر في جبر -BH, كما درسنا هذا المفهوم في جبر -BG . كما وضعنا وأثبتنا بعض المبر هنات ذات العلاقة بين هذا المفهوم و بعض انواع المثاليات في جبر BH و جبر BG.

INTRODUCTION

The notions of a BCK-algebra and a BCI-algebra was formulated first in 1966 by Y.Imai and K.Iseki [8]. In 1983,Q. P. Hu and X. Li introduced the notion of BCHalgebra which are a generalization of BCK/BCI-algebras [10]. In 1991, C. S. Hoo introduced the notions of a filter and closed filter of a BCI-algebra[2].In 1996, M. A. Chaudhry and H. F-Ud-Din studied the concepts of filter and closed filter of a BCHalgebra[9]. In the same year, J.Neggers introduced the notion of d-algebra[7]. In 1998, Y.B.Jun, E.H.Roh and H.S.Kim introduced a new notion, called a BHalgebra[12]. In 2002 ,J.Neggers and H.S.Kim introduced the notion of B-algebra, which is a generalization of a BCK-algebra [6]. In 2008, C.B.Kim and H.S.kim introdeced the notion of BG-algebras, which is a generalization of a B-algebras[1]. In 2011, H.H.Abass and H.M.A.Saeed introduced the notion of a closed ideal with respect to an element of a BCH-algebra[3]. In 2012, H.H.Abass and H.A.Dahham introduced the notions of a completely closed ideal and completely closed ideal with respect to an element of a BH-algebra[4].In the same year, H.H.Abass and H.A.Dahham introduced the notions of a completely closed filter of a BH-algebra[5]. In this paper, we introduce the notions as we mentioned in the abstract.

1.PRELIMINARIES

In this section, we give some basic concepts about a BG-algebra, a BH-algebra, ideal of a BH-algebra , closed ideal of a BH-algebra, a completely closed ideal of a BH-algebra , closed ideal with respect to an element of a BH-algebra, completely closed ideal with respect to an element of a BH-algebra, a normal set , filter, closed filter and completely closed filter with some theorems and propositions which we needed in our work.

Definition (1.1) [1]:

A BG-algebra is a non-empty set X with a constant 0 and a binary operation " * " satisfying the following axioms: 1) x * x = 0,

2) x * 0 = x, 3) (x * y) * (0 * y) = x, for all $x, y \in X$.

Definition (1.2) [12] :

A BH-algebra is a nonempty set X with a constant 0 and a binary operation * satisfying the following conditions:

1) $x * x = 0, \forall x \in X.$ 2) x * y = 0 and y * x = 0 imply $x = y, \forall x, y \in X.$ 3) $x * 0 = x, \forall x \in X.$

<u>Proposition (1.3) [1]:</u>

Every BG-algebra is a BH-algebra.

Definition (1.4) [11] :

A nonempty subset S of a BH-algebra X is called a BH-Subalgebra or Subalgebra of X if $x * y \in S$ for all $x, y \in S$.

Lemma (1.5)[1]:

Let (X, *, 0) be a BG-algebra. Then 1) the right cancellation law holds in X, i.e., $x^*y = z^*y$ implies x = z, 2) 0 * (0 * x) = x for all $x \in X$, 3) if x * y = 0, then x = y for all $x, y \in X$, 4) if 0 * x = 0 * y, then x = y for all $x, y \in X$, 5) (x * (0 * x)) * x = x for all $x \in X$.

Definition (1.6) [12]:

Let I be a nonempty subset of a BH-algebra X. Then I is called an ideal of X if it satisfies:

1) $0 \in I$. 2) $x^*y \in I$ and $y \in I$ imply $x \in I$

Definition (1.7) [3]:

An ideal I of a BH-algebra X is called a closed ideal of X if : for every $x \in I$, we have $0^*x \in I$.

Definition (1.8)[4]:

An ideal I of a BH-algebras is called a completely closed ideal if $x^*y \in I$, $\forall x, y \in I$.

<u>Definition (1.9)[3]:</u>

Let X be a BH-algebra and I be an ideal of X. Then I is called a Closed Ideal with respect to an element $b \in X$ (denoted b-closed ideal) if $b^*(0^*x) \in I$, for all $x \in I$.

Definition (1.10)[4]:

Let I be an ideal of a BH-algebras X and $b \in X$. Then I is called a completely closed ideal with respect to b(denoted by b-completely closed ideal) if $b^*(x^*y) \in I$, $\forall x, y \in I$.

Theorem (1.11)[4]:

Let X be a BG-algebra. Then every ideal in X is a completely closed ideal.

Definition (1.12)[5]:

A filter of a BH-algebra X is a non-empty subset F of X such that:

1) If $x \in F$ and $y \in F$, then $y^*(y^*x) \in F$ and $x^*(x^*y) \in F$.

2) If $x \in F$ and $x^*y=0$, then $y \in F$.

Further F is a closed filter if $0^*x \in F$ for all $x \in F$. In the sequel we shall denote $y^*(y^*x)$ by $x \wedge y$.

Definition (1.13)[5]:

Let X be a BH-algebra, and F be a filter. Then F is called a completely closed filter if $x^*y \in F \quad \forall x, y \in F$.

Remark(1.14)[5]:

Every completely closed filter is a closed filter.

Definition (1.15) [4] :

A non-empty subset N of a BH-algebra X is said to be normal of X if $(x * a) * (y * b) \in N$ for any x * y, $a * b \in N$.

<u>Theorem (1.16) [4]</u>.

Every normal subset N of a BH-algebra X is a subalgebra of X.

Theorem (1.17)[5]:

Let X be a BG-algebra and N be a normal subalgebra .Then N is a completely closed filter.

<u>Proposition (1.18)[5]:</u> Let X be a BH-algebra, and F is a completely closed filter. Then $0 \in F$.

Theorem (1.19)[5]:

Let X be a BH-algebra , if $x^*y=y^*x \forall x, y \in X$, then every completely closed ideal is a completely closed filter.

Proposition (1.20)[5]:

Let X be a BG-algebra. Then every ideal in X is a completely closed filter.

2.THE MAIN RESULTS

In this section, we define the notions of a closed filter with respect to an element of a BH-algebra and a completely closed filter with respect to an element of a BHalgebra . For our discussion , we shall link these notions with other notions which mentioned in preliminaries.

Definition (2.1):

Let X be a BH-algebra and $b \in X$. A filter F is called a closed filter with respect to b(denoted by b- closed filter) if $b^*(0^*x) \in F \forall x \in F$.

Example(2.2):

Consider the BH-algebra $X = \{0,a,b,c\}$ with the following operation table.

*	0	А	b	с
0	0	А	b	с
а	а	0	с	b
b	b	С	0	а
С	С	В	а	0

The filter $F=\{0,a\}$ is a 0- closed filter, since

 $0^{*}(0^{*}0)=0\in F$, $0^{*}(0^{*}a)=a\in F$.

Proposition (2.3):

Let X be a BG-algebra. Then every filter in X is a 0-closed filter

Proof:

Let X be a BG-algebra ,and F be a filter

Since $0^{*}(0^{*}x) = x \quad \forall x \in X$ [By lemma (1.5)(2)]

 $\Rightarrow 0^{*}(0^{*}x) = x \quad \forall x \in F$ [Since $F \subseteq X$]

 $\Rightarrow 0^*(0^*x) \in F \quad \forall x \in F$

 \Rightarrow F is a 0-closed filter.

Proposition (2.4):

Let X be a BH-algebra. If F is a filter and normal subalgebra, then F is a b-closed filter $\forall b \in F$.

Proof:						
Let $b, x \in F$,						
$\Rightarrow b=b*0\in F$.	[Since x=x*0. By definition(1.2)(3)]					
Also $x*x=0=0\in F$	[Since X is a BH-algebra and F is a subalgebra]					
$\Rightarrow 0^*x \in F$	[Since $0, x \in F$ and F is a subalgebra. By					
	definition(1.4)]					
\Rightarrow (b*0)*(0*x) \in F	Since F is a normal set, By definition(1.15)]					
$\Rightarrow b^*(0^*x) \in F$	[Since b*0=b. By definition(1.2)(3)]					
\Rightarrow F is a b-closed filter.						
Proposition (2.5):						
Let X be a BG-algebra and I be an ideal of X. Then I is a b-closed filter, $\forall b \in I$.						
Proof :						
Since I is an ideal of a BG-algebra X						
\Rightarrow I is a completely closed	I filter[By Proposition(1.20)]					
Now, let $b \in I, x \in I$,						

 $\Rightarrow b^*(0^*x) \in I$ [Since $0 \in I$ and every ideal in BG is a completely closed ideal. By Proposition(1.11)]

Therefore, I is a b-closed filter $\forall b \in I.\blacksquare$

Proposition (2.6):

Let X be a BH-algebra. Such that $x^*y=y^*x \forall x, y \in X$ and let I be a completely closed ideal of X. Then I is a b-closed filter for all $b \in I$.

Proof:

Let I be a completely closed ideal,

 \Rightarrow I is a completely closed filter. [By Theorem(1.19)]

Now, let $b \in I$, $x \in I$

 $\Rightarrow b^*(0^*x) \in I$ [Since $0 \in I$ and I is a completely closed ideal].

Therefore, I is a b-closed filter.■

Definition (2.7):

Let X be a BH-algebra and $b \in X$, a filter F is called a completely closed filter with respect to b (denoted by b- completely closed filter) if $b^*(x^*y) \in F \quad \forall x, y \in F$.

Example (2.8): Consider the BH-algebra $X = \{0,1,2,3\}$ with the following operation table.

*	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

The set $F=\{2,3\}$ is a 2-completely closed filter, since

1)F is a filter, since

But F is not a 3-completely closed filter, since

3*(2*3)=3*3=0∉F.

Remark(2.9):

1) The b-closed filter of a BH-algebra X may be not a b-completely closed filter of X.The filter $F=\{2,3\}$ in example (2.8) is a 0-closed filter, Since

 $0^{*}(0^{*}2)=2\in F$, $0^{*}(0^{*}3)=3\in F$ but it is not 0-completely closed filters since $0^{*}(2^{*}2)=0\notin F$.

If F is a b-completely closed filter, then it is not necessary to be a b-closed filter, as example (2.8). The filter F={2,3} is a 2-completely closed filter, but it is not 2-closed filter since 3∈F but 2*(0*3)=2*1=1∉F.

Proposition (2.10):

Let X be a BH-algebra and let F be a filter of X. Then F is not b-completely closed filter, $\forall b \notin F$.

Proof:

Let F be a filter, $b \notin F$ and $x \in F$.

 $\Rightarrow b^*(x^*x)=b^*0=b\notin F.$

 \Rightarrow F is not a b-completely closed filter.

Proposition (2.11):

Let X be a BH-algebra. Then every completely closed filter is a b-completely closed filter, $\forall b \in F$.

Proof :

Let F be a completely closed filter, $b \in F$, x, $y \in F$

 $\Rightarrow b^*(x^*y) \in F$ [Since F is a completely closed filter. By definition(1.13)]

 \Rightarrow F is a b-completely closed filter.

Proposition (2.12):Let X be a BG-algebra. Then every ideal is a b-completely closed filter, $\forall b \in I$.Proof:Let X be a BG-algebra, and let I be an ideal \Rightarrow I is a completely closed filterBy Proposition(1.20)]Now, let b, x, y \in I, \Rightarrow b*(x*y) \in I[Since I is a completely closed filter .By definition(1.13)]Therefore, I is a b- completely closed filter $\forall b \in I$.

Proposition (2. 13):

Let X be a BH-algebra. Then every completely closed filter is a b- closed filter, $\forall b {\in} F.$

Proof:

Let F be completely closed filter, $b \in F$ and $x \in F$.

Since F is a completely closed filter.

Then $0 \in F$ [By Proposition(1.18)]

 $\Rightarrow b^*(0^*x) \in F$ [Since F is a completely closed filter By definition(1.13)]

 \therefore F is a b-closed filter $\forall b \in F$.

Proposition (2.14):

Let X be a BH-algebra. Then every completely closed filter is not a b- closed filter, $\forall b \notin F$.

Proof:

Let F be completely closed filter, $b \notin F$,

Since F is a completely closed filter,

Then 0∈F

[By Proposition(1.18)]

 $\Rightarrow b^*(0^*0) = b \notin F$

 \Rightarrow F is not b-closed filter \forall b \notin F.

Proposition (2.15):

Let X be a BG-algebra and N be a normal subalgebra of X. Then N is a b-closed filter $\forall b \in N$.

Proof:

Let N be a normal subalgebra.

 \Rightarrow N is a completely closed filter [By theorem(1.17)]

 \Rightarrow N is a closed filter. [By remark (1.14)]

Now, let b, $x \in N$

 $\Rightarrow b*0 \in \mathbb{N}, 0*x \in \mathbb{N},$ [Since F is a closed filter. By definition(1.12)]

 $\Rightarrow (b*0)*(0*x) \in \mathbb{N} \qquad [Since N is a normal subalgebra. By definition(1.15)]$

 $\Rightarrow b^*(0^*x) \in N$

 \Rightarrow N is a b-closed filter.

REFERENCES

- [1] C. B. Kim and H. S. Kim, "On BG-algebra", demonstratio mathematica Vol. XLI, No 3, 2008.
- [2] C. S. Hoo, "Filters and ideals in BCI-algebra", Math. Japonica 36, 987-997, 1991.
- [3] H. H. Abass and H. M. A. Saeed, "On a Closed Ideal With Respect To an Element Of a BH-Algebra", J. Kufa for Maths and Copmuter Science (Acceptable),2011.
- [4] H. H. Abass and H. A. Dahham, On Completely Closed Ideal With Respect To an Element Of a BH-Algebra, J. Kerbala university (Acceptable),2012.
- [5] H. H. Abass and H. A. Dahham, On Completely Closed filter Of a BH-Algebra, J. Tikrit university (Acceptable),2012.
- [6] J. Neggers and H.S. Kim, "On B-algebras", Math. Vensik, Vol.54,21-29,2002.
- [7] J. Neggers, "On d-algebras", Math. Slovaca 49, 19-26,1996.
- [8] K. I s'eki and Y. Imai, "On axiom system of propositional calculi XIV", Proc. Japan Acad. 42, 19-20, 1966.
- [9] M. A. Chaudhry and H. F-Ud-Din,"Ideals and Filters in BCH-algebra", Math. Japonica 44, No. 1, 101-112, 1996.
- [10] Q. P. Hu and X. Li, "On BCH-algebras", Math. Seminar Notes Kobe University No. 2, Part 2, 11: 313-320, 1983.
- [11] Q. Zhang, E. H. Roh and Y. B. Jun, "On fuzzy BH-algebras", J Huanggang, Normal Univ. 21(3), 14–19, 2001.
- [12] Y. B. Jun, E. H. Roh and H. S. Kim, "On BH-algebras", Scientiae Mathematicae 1(1), 347–354, 1998.