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Abstract

In this paper we consider the Pareto distribution of two parameters , since it have
many applications in economics (income and distribution of wealth), human population
and many other fields. Estimation of the distribution parameters is obtained by two
methods namely the modified moments method and the maximum likelihood method .

Approximation to the mean and variance of the estimators is made theoretically
by utilizing Taylor series expansion up to second order derivative and results assessed
practically by using Monte Carlo simulation. Two applications related to Pareto
distribution are discussed namely earthquake and dilution of concentration in the liquid.
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1.Introduction

Pareto distribution is a power law probability distribution that coincides with social,
scientific, geophysical and many other types of observable phenomena, [1].1t is a
continuous distribution bounded on the lower side and it has two parameters, shape and
mode and it is a highly skewed distribution. It is a decreasing function and it has a finite
value at the minimum value. It is a heavy tailed distribution meaning that a random
variable following a Pareto distribution can have extreme values.The mode parameter for
Pareto distribution sets the position of the “left edge” of the probability density function.
The only outcomes that can be observed from this distribution are greater than or equal to
the value of the mode parameter. Changes in the mode simply shift the boundary to the
left or right. Pareto distribution named after the Italian economist and sociologist
Vilfredo Pareto (1848-1923). It was proposed first by Pareto in (1897) at the university of
Lausanne as a model for the distribution of incomes, [3].

Pareto discovered that at the high wealth range the wealth are distributed according
to a power-law distribution. The parameters of Pareto distribution may change across
societies. Pareto claimed that the wealth distribution obeys this general distribution law,
which became known as the Pareto distribution or Pareto law. Pareto originally used his
distribution to describe the allocation of wealth among individuals since it seemed to
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show rather well the way that a larger portion of the wealth of any society is owned by a
smaller percentage of the people in that society.

This idea is sometimes expressed more simply as the Pareto principle or the "80-20
rule™ which says that 20% of the population controls 80% of the wealth, [2]. This
distribution is not limited to describe wealth or income, but many situations in which an
equilibrium is found in the distribution of the "small” to the "large™ observations. It has
been used to study the tensile strength of nylon carpet fibers [6], the city population,
occurrence of natural resources, the insurance risk, the business failures, the stock price
fluctuations, internet traffic, the wind speed and oil field locations, [7].

Also, it has application in military areas and suitable for approximating the right tails
of distribution with positive skewness, [15].

Harris C. in 1968, [8] used this distribution in determining times of maintenance
service, Pickands J. in 1975, [13] was apparently the first who used Pareto distributions
in the analysis of extreme flood events, Daragahi N. in 1989, [4] advocated the use of
Pareto distribution for annual maxima of the wind speed and that of maximum floods of
the Feather river, Smith R. in 1989, applied Pareto distribution to the study of ozone
levels in the upper atmosphere, [14], Eldesoky E. in 2006, [5] derived some recurrence
relation of single and product moments of order statistics from Pareto distribution.

2 Some Mathematical and Statistical Properties of Pareto Distribution [10]:
A continuous r.v. X is said to have Pareto distribution, denoted by X~ Par(a, ), if
X has the following p.d.f.

f(x;a,B) =
{O‘Bax_("‘“) PB<x<o ”
0, o gy e e

where a > 0, > 0 known as the shape and scalar parameters respectively. The Pareto
distribution depends on two parameters aand  and a variety of p.d.f. shapes can be
generated by fixing the value o« and letting {8 vary or fixing  and letting o vary. Figure
(1) and figure (2) show some Pareto p.d.f. with fixed o and B varying and with fixed B
and a varying respectively
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Figure(1)Pareto p. d. f* with a=1 and p=1,1.5,2,2.5
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Figure(2) Pareto p. d. f° with p=3 and 0=1,1.5,2,2.5

The c.d.f. of Pareto distribution is given by:

FG;a,B) = [, f(t o, B)dt =

0 x<B
1_(E) B < 00 teen et ettt (2)
1 X > 00

For Pareto distribution the r" moment about the origin is given by
n =EX") = f x"f(x; a, B)dx
B

_ o S 3
= a=n’ OS> T et e e e i eae eae ee een e een e e e nae e en een een ee e ee e (3)
Setting r=1,2 in the above equation one can have the following first two moments about the
origin,[12]
o

- - ' R(x2) = %B%
B =EX) = D’ a>1,u, =EX*) = 2’ a>2

The moment generating function of Pareto distribution does not exists. So direct
expectation approach could be use to find the moments and higher degree moments and
hence mean and variance for Pareto distribution is respectively given by

ap

a—1

n= o 20 e R . 3

ap?

— 62 =
Var(X)= o* = TR
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3 Estimation of Parameters for Pareto Distribution:
3.1 Estimation of Parameters by the Modified Moments method, [9]

For Pareto distribution, we have two unknown parameters o and . So we take a r.s.
of size n from Par(o,B) and let Y; to be the first order statistic of the sample, then
according to the order statistics theory the first order statistic Y; has p.d.f.

na..—(ma+1) < <
g1(y1) = {H“B Y1 s BEyi < (6)
0, e.w.

This shows that Y; ~Par(na, ), therefore

Next, to apply the modified moments method, we set p; = M; and E(Y;) =Y; , at
a=a ,Bp =P which leads to

A3 _ (nfi—l)Yl

B = (11)

na
3.2 Estimation of Parameters by the Maximum Likelihood Method

For Pareto distribution, let X1, X,...,X, be a r.s. of size n from Par(a,B), in this case,
the likelihood function is

L(aB.x) = f(x.8) = [ [foxap)
i=1

_ —(a+1)
— aana nxi )

i=1

Therefore

InL(a, B,x) = nlna + nalnp — (a + 1) Z Inx;.
i=1
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By differentiating the above equation with respect to a and then with respect to 3, and
by setting the resulting equations equal to zero one can get:

dlnL _ ha

——— = =0at A= ,B =P e eee erreeeeereen e e e e e e eee e (12

TR B=p (12)

AL anl —0ata=a ,B=p 13

Ta nInp 2 nx;,=0ata=a ,f=P . e e e e e e e . (13)
dlnL. _ na

Unfortunately =% = 0 provide no solution so, we must select a value close to 3 as

ap
possible which maximize the likelihood function.

If B<x;<ooVi=12,..,n,then B<Y; <Y, <+ <Y, < oo
Therefore we can choose Y; = mini{X,, X,, ..., X, } to be an estimator of (3, that is
B=Y; = minfX;, X e, XuF coeeeeee e (14)

Thus by substituting eq.(14) into eg.(13) one can get:

n

In (ﬁ)
2.6

4 Some Related Theorems to Pareto Distribution

We shall give some relations depending on Pareto distribution which we need in the
work later.

1- If the r.v. X ~Par(a,p) then the r.v. Y = In X has p.d.f.

_ _(ap¥e™™, InB<y<ow
g(Y’ Q, B) - {0’ e. W. .

Proof:

Since X~Par(o,B) then the p.d.f. of X is by eq.(1).Then the function Y = InX defines

a one-to-one transformation that map the space A = {x: < x < oo} onto the space

B = {y:Inp <y < oo} with the inverse transform x = e¥ and | = Z—; = eY then the p.d.f.

of Y is
g(y; o, B) = f(e)]]]
and hence

ap%e™, InB<y<o
, e.w.

8 . B) =
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Remark

The c.d.f. of Y is given by

G(y;aB) =
0, y < Inf
B no
1-(L)", INB < Y < 00 veveeeeeeeeeeeeeeeeeesesseeeeeseeeese s (17)
1, y — o0

and the m.g.f. is given by

My (t) = E(e") = a“ftt P I ¢ T:)
with
By =INB+= (19)
and
Var(Y) = =3 oo, (20)

2-Let X1,Xy, ...,Xn be ar.s. of size n from Par(a,f3). Then :-
1-The first order statistics Y; = mini(X4, X,, ..., X, )~ Par(na,j3).
2-The limiting distribution of Y; is Deg(p).

Proof:

1- The p.d.f. and c.d.f. of Pareto sample are given by eq.(1) and eq.(2) respectively and
from order statistic theory one can have:

—(na+1
g1(y1) = { nafmty; e, < yp S
0, €. w.
that is Y; ~Par(na, B).

2-Since Y; ~Par(na, ), the c.d.f. of Y; is

0 yvi<B
B noa
Gi(y1) = 1—[—] B<y; <
Y1
1 yi1 = ©

Therefore

. 0 <
r}l_{{)lo G (1) = {1 ;,i > E
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This shows that the limiting distribution of Y; is Deg(p).
Remark
We note that,

1-The mean and variance of r.v. B = Y; that is described eq.(6) are respectively

naf

E(Y1) = Gy coveeeeessees e (21)

nap?

Var(Yy) = (na—1)2(na—2)

2-Since The limiting distribution of Y; is Deg(p) then Y; converge stochastically to .

4 Approximation to the Mean and Variance of the Modified Moments Estimators:

We shall approximate the mean and variance of the estimators that obtained by
using the modified moments method by considering the mean and variance of the Taylor
series expansion of the function g (X,Y) at point (py, puy) up to second order which is
given by, [11]:

1 a2 1 a2
E[g(X, V)] = g(ux, ny) + 5 Var[X] = g(X, Y)|tx + 5 VarlY] - g(X, Y) iy +
Y Y

Cov[X, Y] l

axoy &
Var[g(X,Y)] =

2
Var(X] [i 2(X,Y) |qu + Var[Y] l"’% (X, Y)|uxl +
iy

i) e

By setting X = X and Y = Y; in eq.(23) and eq.(24), one can get

2Cov[X, Y] l

l ........ 24)

E[g(X v1)] = g(ug my,) +5 Var[X] zg(x Y1) b +3VarlYi] zg(x Y1) e +

P—Yl Hyq

Cov[X, Y;]

62 —
9X Y, g(X, Y1)| iz

Ky

and
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Var[g(X,Y1)] = 2
Var[X] | 28X 1) g | + Varlal |55-8(% ¥1)| e
Hyq Hyq
2Cov[X, V;] |2 g(X, Y1) i [aY g(X, Y1)|u_]....(26)
Hy Ky

We have the modified method estimators given by eq.(10) and eq.(11) which is:

nXi—'Y&
H(Xi—'ya)

Q)
Il

_ (n—DXY;
niﬁ—-Y&

jeos)]

nX—Yl
n(X—Y;)

Letg(X,Y;) =a =

It is known that

VarlX] = = e

From eq.(21) and eq.(27) one can have:

nap

g(bz by, ) = e ”] [?;;‘B ol SR (29)

(a 1)_(na -1

On the other hand

dg(X, Y1) _ -1y,
0X n(X —Y;)2

nap

_ (n—1) ho—1 _ (na—1)(a—1)>2

n oaf _nap (n—1)af
Hyq

ag(X,Y1)
X

a—=1 noa-1

9%g(X, Y1)  2(n-1Y,

-2 - -
0X n(X —Yy)?
azg(Y,Yl) _ 2(n— 1)[(na 1)] _ 2(a—1)3(na—1)>2 (31)
aiz I’li - [“B _ nap ]3 - (n—l)z(Xsz ) eeeesesccsctccecces
Ky (a—1) (ma-1)
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ag(i, Yl) _(n—1) X
- — 2
6Y1 n (X _ Yl) ]
g®y)|  _ 0| 5 | @hoe-1y? 32)
6Y1 “Y n (ﬂ_ﬂ)z n(n—l)aB ) sesessssssasnsssesnes
Ky a-1 na-1/

*g(X,Y;)  2(m-1X

oY} nX-Y)?
2 (% 2(n—1)[-E
02Xy 20D[gp]  2(a-12(na-1)? 13
| e _n[ e ]3 = D aZgE e (33)
My, @1 (ma-1)
and
?g(X,Y;) (-1 -2X 1 (n—1) » 2X
%Y, 1 |m vV = o|” X=Y)™ 1=
x0Y; X-v) (X-Y) n X—Y,
—( -1) IX+Y1l
X—Y
—( 1)” Y,
) = -2 apf + naf
2%g(X,Yq) _ —(n- 1)[ naf ] I(a—l) (na—l)l _
X - _ o map | T
0X0dYq u“Yxl (a— 1) (na—1) D heD
—(x—1)2 —_1)2 n—
(@) a1y @roanl) (34)

na2p2(n—1)>2
In general X converge stochastically to uy and we prove that Y; converge

stochastically to p. So XY; converge stochastically to uxP, [23], therefore

aB?

EXYi] 2 pgB =" o (35)

a—1

and hence

af? of nof
—1 (a=D(a-1)

.(36)

Cov[X, Y;| = E[XY;] — E[X]E[Y,] =

By substituting eq.*(22), (28),(29),(31), (33), (34) and (36) in eq.(25), one can get the
approximation to the expected value of @ which is given by:

E[a] = E lnX Yll l op? l
) 2 |n(a— D?(a—2)

2(a — 1)3(na — 1)?
(n— 12ap?
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1] naf3? 2(a—1)?*(na—1)3
2 | (na — 1)%(no — 2) n(n — 1)%2a?p2
—af? —(a—1)?*(na—1)*(2nac—n — 1)
| (a —1)(na—1) no?B2(n —1)2 l
(a—1Dma—1)[na—1 a—1 2na—n-1
MEEE I Py R R ] SURRORION ¢ V)
Moreover

lim E(@) = a.

n—oo

This shows that @ is asymptotically unbiased estimator of a.

By substituting eq.*(28), (30), (22), (310) and (36) in eq.(26), one can obtain the
approximation to variance of @ which is given by:

S nx —yi
Var[&] = Var lm
B af? [ (na— D (a— 1?2
B [n(a -D%2(a-2)|]| (—1Dap
naf3? 1[(ox — 1) (no — 1)?
[(n(x —1)2(na — 2)| n(n — 1af
) —af? [ (na—1)(a—1?][(a—1)(na—1)?
[((x — 1D (na — 1)] i (n—1)af l [ n(n—1)af l
and hence
. (ma-1D*a-1)?1 1 1
Var[a] = na(n — 1)? [a St 3 + 2] cee ere e eee eee e een ee e (38)
Next, let
— oy 5 (m—DXY
g(X’Yl) =k= ni—Yl

From eq.(21), eq.(27) and the above equation one can have:

-5 (Gas)
=, = s = B 39
g(ux |-1Y1) (aTﬁl)_(na—_Bl) B ( )
On the other hand
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og(X, Y1) _ (n=DY?

0X (nX — Y;)?
— nafl 2
ogXyy)|  _ @ DEH]  @n? 40
6? ui - I:H(XB _ﬂ]z - (n—l)(xz I I P I R R TR ( )
Ky a—1 na-1
0%g(X,Y:) 2n(n-—1)Y?
3 = — 3
0X [nX — Y]
— nof 2
62g(X’Y1) — zn(n_l)[na—l] —_— 2(1’1(X-1)((1—1)3 (41)
aiz “Y - [naB _ﬂ 3 — n(n_1)2a43 ) seteescansssennansensene
LlYl a—1 na-1
_ —2
(')g(X, Yl) n(n—1)X
pal— 2
M [nX-Yy]
— aff z
og(Xyv.)|  _ n@-D[5] | ma-1)? "
v | = [mB Taag P m(uoDyal s (42)
P-Yl a—1 noa-1
_ —2
9*g(X,Y;) _2n(n— DX
2 = — 3
oY [nX — Y]
— afd 2
22g(X.Y1) _ Zn(n—l)[m _ 2(a-1)(na—1)3 43)
6Y% u’i - [%_ﬂ 3 - nz(n—1)2a4B ...........................
HYl a—1 na-1
and
9%g(X,Y;) _ —2n(n— DXY;
= = — 3
0x0dY; [nX _ Y1]
— naZBZ
2g(Xyy)| _ TAO-DEThe | —2@-D)2(ma-1)? (44)
6§6Y1 ug - [nth_naB 3 - n(n—1)2a4B ...........................
Ky a—1 na-1

Substituting eq.$(28), (36), (22), (39), (41), (43) and (44) in eq.(25), one can get the
approximation to the expected value of B which is given by:

(n— DXY;] _ 1 ap? 2(not — 1) (o — 1)3
nX — Y, l — P72 [n(a —1)2(a— Z)l l n(n — 1)2a%pB

E[G]EE[

1 naf? 2(a — 1)(na—1)3
2 [ | = D
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[ —af? l [—2(0( —1)?(na — 1)Zl
(

a—1) n(n — 1)%a*B
hence
a1 Bla—1)(na—1) 1 1
E[B] =B+ (@ = 2) (= 1) [a Sttt 2] SO (1))
Moreover
lim E(B) = B

This shows that {8 is asymptotically unbiased estimator of B.

By substituting eq.*(28), (40), (22), (42), and (36) in eq.(26), one can obtain:

o (n— DXY;] ap? (a—1)2 7
Var[ﬁ]“’arl XY, l‘ln(a—l)%a—@“ (n—1>a2]

2

naf? (na — 1)?

(na — 1)2(ma — 2)||n(n — 1)a?
—af? (a —1)? ][ (na—1)?

+2 [(a — 1D (na — 1)] I_ (n— 1)azl n(n — 1)a?

hence

(a-1)% | (na—1)?
Var[B] no(3(n D?2L(@-2)  (na-2)

+2(a— 1)(na — 1)] ........................ (46)

5 Approximation to the Mean and Variance of the Maximum Likelihood
Estimators

We have the maximum likelihood estimators given by eq. (14) and eq.(15) which
IS:

o)

= Yl = min[?@(l,xz, ...,Xn}

n;)(_
> ()

From the previous work the first order statistic Y; ~Par(na, )

Q)

Therefore

E[B] = ElYil = = (47)

Moreover

PO
HnER =l e =P
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This shows that f is asymptotically unbiased estimator for B.
Moreover

nofB?

Var[B] = Varly;] = TER I TE

.. (48)

Since

R n n 1
o= = =

n ) — 1 '
n:1 In (ﬁ) i=1 In(x;) — niny, o ?:1 In(x;) — Iny;

jos)

By setting Z; = InX; and W = InY; one can get:

~ 1 1
a =
1 Z—W
— n —
XLz~ W

By setting X = Z and Y = W in eq.(23) and eq.(24), one can get:

92
E[g(Z W)] = g(uz, mw) + Var[ |—s@w)| +
oz
62 —
~Var[W] =2 g(Z, W), +
Hw
Cov[Z, W] [am g(ZW)| u_] ....................................... (49)
Hw
and
2 2
o — 9 -
Varg(Z,W)] = Var{Z] ﬁg(z, W)| o | Varwl mg(Z, w) b
2Cov(Z, W) [;—Zg(zw) HE] [%g(zw)hzl ............................. (50)
Hw Hw
By using eq.(19) and eg.(20), one can obtain:
Mz =InB+=, (51)
Var(Z) = # ............................................................ (52)
B =INB =, L, (53)
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and

W has c.d.f as given by equation (17), that is

0 w < Inf
Hw) =4 1 — (Lw)“ INB < W < 00 oo (55)
1 W — o0

This shows that the r.v. W is converges stochastically to Inf.

1

Z—W

Letg(zw) =0 =

From eq.(51) and eq.(52), one can obtain:

( )] ! = (56)
Hw lnB‘l‘a_lnB‘Fm
On the other hand
og(zw) -1
0Z (Z — W)?
ag(Zw)| -1 _ —n2e .
az s - 1_ i ) - (n_ 1)2;
W (B 4= —InB+ o)
o’g(ZwW) 2
. Z-wy
o’g(ZW)| 2
07 I (np+l_imp+-Ly
Hw (04 no
2n3a3
=TT e (58)
ogZW) _ 1
oW  (Z-W)?2
ag(zw)| 1 2 o)
6W UZ_ l_ iz_(n_l)Z' e
ne (InB + o In + na)
o*g(Zw) 2

oWz (Z-W)3
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o’g(ZwW)| 2 _22n’d? (60)
W2 i el jee s -1 :
e (nB+ 1 InB + noc)
and
o*g(zw) -2
aZow ~ (Z—W)3
o*g(ZwW)| -2 _ —2n’d’ (61)
0ZOW |nz 1_ 1y (=-1)3 77 h
w (nB+ 1 In + noc)

Since Z converge stochastically to uz and W converge stochastically to Inf3. So W
converge stochastically to pzInf, therefore

E[ZW] = pzInp = [m B +§] InB

hence

Cov[Z, W] = E[ZW] — E[Z]E[W] = (ms + )ms (ln[3+%>(ln[3+n—1a>
hence

—(adnf + 1)

By substituting eq.®(52), (54), (56), (58), (60), (61) and (62) in eq.(49), one can get

E[a] = E[g(Z W)]

Cov[Z W] = . (62)

2n3a3 2n°a
=n—1+§[na2] l(n— 1) nZaZH(n—l)3
[ (alnB + 1)] I l
(n—1)3

hence
E[a]
1

- [1 * n—1
na(3n + 1 + 2nalnf)
(n—1)3

..(63)

Moreover

lim E(@) = a.
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This shows that @ is asymptotically unbiased estimator of a.
By substituting eq.® (52),(54),(57),(59) and (62) in eq.(50), one can get:

Var[a] = Var[g(z W)]

—n’a?
naz] [(n —1)2 nzaz] [(n - 1)2
2[ (oclnB+1)H —n?a? “
no? (n—1)?2]| (n—1)2

hence

Var[a]

_ n?a?(3n + 2nalnp + 1)
- (n—1)*

.. (64)

6 Procedure for Generating Random Variates of Pareto Distribution:

We shall consider one procedure for generating random variates from Pareto
distribution depend on the inverse transform method.

The c.d.f. of Pareto distribution is given by eq.(2), by setting u=F(x;a, ) this implies
that

X = _Gf
(1—u)x

and can be summarized by giving the following algorithm:

Algorithm(P-1):

1
2

Read o, p where a, B >0.
Generated U from U (0,1).

3- Set X=—"1.

(1-U)
4- Deliver X as ar.v. generated from Par(a.,p).
5- Stop.

7 Some Applications Related the to Pareto Distribution
7.1 Earthquake

In this application we consider the magnitude of earthquake in Japan where each r.v.
is the magnitude of earthquake with the assumption that the r.v.5 follow Pareto
distribution. For this, we calculate @ and B by two methods and then using Chi-square
test to find the value of Y and then compare it with the tabulated values of Chi-square
distribution to find the values of significant level in which our assumption is true.
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Japan:

For this application the r.v. is the magnitude of earthquake in Japan as shown in
table(1), where n=52.

Table(1) represents the magnitude of earthquakes in Japan.

8.4 7.9 8.3 7.1 7.5 825 |85 7.8 8 8
8.6 8.4 8.4 6.9 7 7.1 8 6.6 8.5 8.3
7.6 8.4 1.2 6.8 8.1 7.1 7.6 7.7 6.8 7.5
6.9 7 7.2 8.3 8.1 6.9 6.6 6.9 6.9 7.1
6.5 6.6 7 7.4 7.2 9 6.8 7.1 6.5 6.5
6.6 6.8

(i) The maximum likelihood method
For this method, the estimation of the parameters are
@ = 7.4407, B =6.500

The test statistic for this application is Y=3.5209 with 4 deg. of freedom. This value
of Y is compared with the tabulated critical values of a given significance level of Chi-
square test. Then we get table (2).

Table (2) represents the Critical values of a given significance level of Chi-square test
and decisions for Finland.

Significance Level 0.20 0.10 0.05 0.02 0.01
Critical Value 5.9886 7.7794 0.4877 11.668 13.277
Decision Accept Accept Accept Accept Accept

(it) The modified moments method

For this method, the estimation of the parameters are

@ =7.597, B=6.4835

The test statistic for this application is Y=4.1536 with 4 deg. of freedom. This value
of Y is compared with the tabulated critical values of a given significance level of Chi-
square test. Then we get table (2).

The following figure shows the values of the p.d.f. at the values of r.v.®

X1, X5, ..., X5, that are given in table(1) .
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/ /V;a':ﬂ/ !

. flx;7.4407,65) |

. f:7.5997,6:4835))

Figure(3) the values of p.d.f. at specific values of r.v.5.
7.2 Dilution of Concentration in the Liquid

In an chemical experiment let n represent the number of doing the experiment of
dilution of concentration in the liquid and consider the r.v. to be the new concentration.

Let k;, (i=0,1,2,...,n) be the concentrationand v; represent the volume. The
dilution experiment is based on the general dilution law which can be written as:
Vi—1Ki_1

ki = i= 1,2,...,n
Vi

where k; is a given initial value of dilution and v, is a given initial value of the volume.
We consider the r.v* to be the dilution of saltiness in any liquid. Each r.v. is the new
dilution with assumption that the r.v* follow Pareto distribution. For this, we calculate
@and B by two methods and then using Chi-square test to find the value of Y and then
compare it with the tabulated values of Chi-square distribution to find the values of
significant level.

For kg = 6 and vy = 2 and n=59 the r.v’* are as shown in table(3).

Table(3) represents the values of concentration in the liquid.

6 4 3 2.4 2 1.7143 |15 1.3333 | 1.2 |1.0909

1 0.9231 1 0.8571 0.8 0.75 0.7059 |0.6667 | 0.6316 | 0.6 |0.5714

0.5455 0.5217 | 0.5 0.48 0.4615 | 0.4444 |0.4286 | 0.4138 | 0.4 ]0.3871

0.3750 | 0.3636 | 0.3529 | 0.3429 | 0.3333 | 0.3243 | 0.3158 | 0.3077 | 0.3 | 0.2927

0.2857 | 0.2791 | 0.2727 | 0.2667 | 0.2609 | 0.2553 | 0.25 0.2499 |0.24 | 0.2353

0.2308 | 0.2264 | 0.2222 | 0.2182 | 0.2143 | 0.2105 | 0.2069 | 0.2034 | 0.2
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(i) The maximum likelihood method
For this method, the estimation of the parameters are
@ =11145 B=0.2
The test statistic for this application is Y=0.25006 with 5 deg. of freedom. This value

of Y is compared with the tabulated critical values of a given significance level of Chi-
square test. Then we get table (4).

Table(4) represents the critical values of a given significance level of Chi-square test and
decisions for Greece.

Significance Level [0.20 0.10 0.05 0.02 0.01
Critical Value 7.2893 9.2364 11.07 13.388 15.086
Decision Accept Accept Accept Accept Accept

(it) The modified moments method
For this method, the estimation of the parameters are
@ = 1.3585, B =0.1975

The test statistic for this application is Y=3.7149 with 5 deg. of freedom. This value of Y
is compared with the tabulated critical values of a given significance level of chi-square
test. Then we get table (4). The following figure shows the values of the p.d.f. at the
values of r.v.® X4, X,, ..., X5 that are given in table (3).

fxaB)
‘ flr1145,0.2)
A S N S S N L ]
! .. f(%;1.3585,0:1975)
sl

Fig(4) represents the values of p.d.f. at specific values of r.v.5.
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Conclusions

We can conclude from our study the following

1-The approximated mean and variance become more accurate if the higher order of
approximation is used.

2-The earthquake and general dilution law show that both applications fit Pareto
distribution for all significance level a.

3-This study can be extended for Pareto distribution of three parameters.

4-This study is applicable for any phenomena in which has an equilibrium of the
distribution of small to large observations.
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