On Some Concepts of Metric in S*-Orlicz Spaces

Ali Hussain Battor Dhuha Abdul-Ameer Kadhim

University of Kufa, College of Education for Girls, Department of Mathematics

Abstract

The main purpose of this paper is to study some concepts of metric in S^{*}-Orlicz spaces and we give some definitions that is related to it, where $S^* = S^*[0,1]$ is the ring of all real measurable functions on [0,1].

Keywords: metric space, S*-Orlicz Spaces, Banach space

الملخص:

1.Introduction and Preliminaries

The notion of the Orlicz space is generalized to spaces of the Banach space of valued functions. A well-known generalization is based on N-functions of a real variable.

A metric space need not have any kind of algebraic structure defined on it. In many applications, however, the metric space is a linear space with a metric derived linear spaces.

We shall denote by L_F the S^{*}-Orlicz class, $C_{\infty}(Q(\nabla))$ the set of all continuous functions on the Stone compactum $Q(\nabla)$, P the Lebesgue measure and $L_1(m)$ the set of all integrable by the measure m elements from $C_{\infty}(Q(\nabla))$.

Definition 1.1: [12]

A pair (X, \leq) consisting of a real vector space X and a partial order \leq defined on X is called a vector lattice if the following conditions are satisfied for all $x, y, z \in X$ and all real numbers $\alpha > 0$.

1. If $x \le y$ then $x + z \le y + z$.

2. If $x \le y$ then $\alpha x \le \alpha y$.

3. X is a lattice.

Remark 1.2:[11]

For a vector lattice X and $x \in X$, we make use of the following notation :

The positive part x_+ and the negative part x_- of X are given respectively by $x_+ = x \lor 0$, $x_- = (-x) \lor 0$.

The modulus |x| of X is defined to be $|x| = (-x) \lor x$. It is obvious that $-x_{-} = x \land 0$ and for any $x \in X$ we have

 $x = x_+ - x_-$, $x_+ \wedge x_- = 0$, $|x| = x_+ + x_-$. The positive cone of a vector lattice is denoted X_+ , that is, $X_+ = \{x \in X : 0 \le x\}$.

Example 1.3:[13]

The most obvious example of a vector lattice is the reals with all usual operations. The usual or standard order on \mathbb{R}^n is that in which $(x_1, x_2, ..., x_n) \le (y_1, y_2, ..., y_n)$ means that $x_k \le y_k$ for k = 1, 2, ..., n. This order makes \mathbb{R}^n into a vector lattice in which $(x_k) \lor (y_k) = (x_k \lor y_k)$ and $(x_k) \land (y_k) = (x_k \land y_k)$. Hence $(x_k)^+ = (x_k^+), (x_k)^- = (x_k^-)$ and $|(x_k)| = (|x_k|)$.

Definition 1.4: [11]

An element from X_+ is called a Freudenthal unit and denoted by $\hat{1}$, if it follows from $x \in X$, $x \wedge \hat{1} = 0$, that x = 0. If $x_{\alpha} \xrightarrow{(o)} x$ and $\{x_{\alpha}\}$ is increasing(decreasing) then, we write $x_{\alpha} \uparrow x$, (respectively, $x_{\alpha} \downarrow x$).[5]

Remark 1.5: [11]

If a vector lattice X has a Freudenthal unit, then we will consider that this unit is chosen and fixed. This unit will be exactly denoted by $\hat{1}$.

Definition 1.6: [14]

The function $F(u): [0, \infty) \rightarrow [0, \infty)$ is called an N-function if it has the following properties:

- 1. F is even, continuous, convex ;
- 2. F(0) = 0 and F(u) > 0 for all u = 0;

3. $\lim_{u\to 0} \frac{F(u)}{u} = 0$ and $\lim_{u\to\infty} \frac{F(u)}{u} = \infty$.

It is well-known that F(u) is an N-function ,if and only if, $F(u) = \int_0^{|u|} f(t)dt$, where f(t) is the right derivative of F(u) satisfies:

1. f(t) is the right-continuous and non- decreasing;

2. f(t) > 0 whenever t > 0; (3) f(0) = 0 and $\lim_{t\to\infty} f(t) = \infty$.

For an N-function F define $G(v) = \sup\{u | v| - F(u): u \ge 0\}$. Then G is an N-function and it is called the complement of F. [1]

If F and G are two in mutually complementary N-function then $uv \le F(u) + G(v) \forall u, v \in R$ (Young's Inequality).[2]

Definition 1.7:[7]

We say that X be a bimodule over $S^* = [0,1]$, i.e. X is abelian group with respect to addition operation (+) and right and left multiplication by element from S^* are defined on X having the properties:

1. $\lambda(x + y) = \lambda x + \lambda y$, $(x + y) \lambda = x\lambda + y\lambda$ 2. $(\lambda + \mu)x = \lambda x + \mu x$, $x(\lambda + \mu) = x\lambda + x\mu$

- 3. $\lambda(\mu x) = (\lambda \mu) x$, $(x\lambda)\mu = x(\lambda \mu)$
- 4. $\hat{1} \cdot x = x \cdot \hat{1}$, for all $x, y \in X$, $\lambda, \mu \in S^*$.

Remark 1.8:[7]

A bimodule X over S^{*} is called a normal S^{*}-module if :

1. For all $x \in X$, $\lambda \in S^*$, then $\lambda x = x\lambda$

2. For any $e \in \nabla(S^*)$, $e \neq 0$, there exists $x \in X$ such that $xe \neq 0$

- 3. For any decomposition of the identity $\{e_i\} \subset \nabla(S^*)$ and for any $\{x_i\} \subset X$ there exists $x \in X$ such that $x e_i = x_i e_i$, i = 1, 2, ..., n
- 4. For any $x \in X$ and any sequence $\{e_n\}$ of mutually disjoint elements from $\nabla(S^*)$ it follows the equalities $e_n x = 0, n = 1, 2, ...$ that

$$\left(\sup_{n\geq 1} e_n\right) x = 0.$$

It is clear that the condition 4 implies a validity of the analogous property for increasing sequences of idempotent from S^* .

Definition 1.9:[11]

A normal S*-module is called an S*-vector lattice if X is simultaneously lattice, i.e. an ordered set in which for any two elements $x, y \in X$ there exists their supremum $x \lor y$, infimum $x \land y$ and, in addition, the following algebraic operations and order agreement conditions are fulfilled :

1. for any $z \in X$ it follows from $x \le y$ that $x + z \le y + z$;

2. if $x \ge 0$, $\lambda \in S^*$, $\lambda x \ge 0$.

It is evident that any S*-vector lattice X is a vector lattice in a usual sense (it is sufficient to consider X as a vector space over the field $\{\alpha \cdot \hat{1} : \alpha \in R\} \approx R$).

S* itself consider as a bimodul over S* is a simplest example of S*-vector lattice.

2. Basic Concepts

In this section, we start recalling the usual definitions of S^* -valued metric and S^* -Orlicz spaces.

Definition 2.1:[6]

A mapping $\|\cdot\|: X \to S^*$ from a normal S^{*}-module X into S^{*} is called an S^{*}-norm if 1. $\|x\| \ge 0$ for all $x \in X$ and $\|x\| = 0$ if and only if x = 0.

- 2. $\|\lambda x\| = |\lambda| \|x\|$ for any $x \in X, \lambda \in S^*$.
- 3. $||x + y|| \le ||x|| + ||y||$ for any $x, y \in X$.

Definition 2.2: [11]

We say that the S^{*}-vector lattice X with an S^{*}-norm $\|\cdot\|$ is a **normed S^{*}-vector** lattice, if $|x| \le |y|$, $\forall x, y \in X$, then $\|x\| \le \|y\|$.

Definition 2.3: [4]

A mapping $\rho: X \times X \to S^*$ is called a **metric** on a set X with values in S^* if 1. $\rho(x, y) \ge 0$ for any $x, y \in X$ and $\rho(x, y) = 0$ if and only if x = y. 2. $\rho(x, y) = \rho(y, x)$ for any $x, y \in X$.

3. $\rho(x, y) \le \rho(x, z) + \rho(z, y)$ for any $x, y, z \in X$.

Definition 2.4:

An S*-vector lattice X with an S*-metric ρ is called a **metric S***-vector lattice, if it follows from $|x - y| \le |z - w|$, x, y, z, $w \in X$, then $\rho(x, y) \le \rho(z, w)$.

Now, we define the $S^*\text{-}Orlicz\ spaces\ L^*{}_F.$ Let G be the complementary N-function to the N-function F.

Set

L^{*}_F = {x ∈ C_∞(Q(∇)): $\lambda^{-1}x ∈ L_F$ for some number $\lambda = \lambda(x) > 0$ }. We shall denote µ by the integral constructed by the measure m.

3.The Main Results

In this section, we investigate the important results concerning with the S^* -valued metric in S^* -Orlicz spaces.

Firstly, we need the following information.

Proposition 3.1:[8]

For every $x \in L_F^*$, we have

$$\bigvee_{y\in A(G)} |\mu(xy)| < \infty,$$

where $A(G) = \{y \in L_G : \mu(G(y)) \le \hat{1}\}.$

This leads to define the following norm on L_F^* which is called the Orlicz norm:

$$\|\mathbf{x}\|_{\mathrm{F}} = \bigvee_{\mathbf{y} \in \mathrm{A}(\mathrm{G})} |\mu(\mathbf{x}\mathbf{y})|,$$

for every $x \in L_F^*$.

Proposition 3.2:[9]

If $x \in L_F^*$, then

$$\|x\|_{F} = \||x|\|_{F} = \bigvee_{y \in A(G)} \mu(|xy|).$$

Remark 3.3:[10]

 $||x||_F$ is a S^{*}-norm on L^{*}_F. In addition $|x| \le |z|, x, z \in L_F$, implies, that $||x||_F \le ||z||_F$. Thus, $(L^*_F, ||\cdot||_F)$ is a normed S^{*}-vector lattice.

Proposition 3.4:

Let L_F^* be S^{*}-Orlicz space, L_F be S^{*}-Orlicz class and $\|\cdot\|$ be an S^{*}-norm, then $\|x\|_F$ is a S^{*}-valued metric on L_F^* . In addition $|x - y| \le |z - w|$, $x, y, z, w \in L_F$, implies, that $\rho(x, y) \le \rho(z, w)$. Furthermore, (L_F^*, ρ) is a metric S^{*}-vector lattice. **Proof:**

1. for any $x, y \in L_F^*$, then

$$\rho(x, y) = ||x - y||_F = \bigvee_{z \in A(G)} |\mu(x - y)z| \ge 0.$$

and for any $x, y \in L_F^*$,

$$\rho(\mathbf{x}, \mathbf{y}) = \mathbf{0} \Leftrightarrow \|\mathbf{x} - \mathbf{y}\|_{F} = \mathbf{0} \Leftrightarrow \||\mathbf{x} - \mathbf{y}|\|_{F} = \mathbf{0} \qquad \Leftrightarrow \bigvee_{\mathbf{z} \in A(G)} [\mu|(\mathbf{x} - \mathbf{y})\mathbf{z}|] = \mathbf{0}$$
$$\Leftrightarrow \mu[|\mathbf{x}\mathbf{z} - \mathbf{y}\mathbf{z}|] = \mathbf{0} \Leftrightarrow \mathbf{x}\mathbf{z} - \mathbf{y}\mathbf{z} = \mathbf{0} \Leftrightarrow \mathbf{x} = \mathbf{y}.$$

2. For any $x, y \in L_F^*$, then

$$\rho(x,y) = \|x-y\|_F = \bigvee_{z \in A(G)} |\mu(x-y)z|$$

$$= \bigvee_{z \in A(G)} \mu[|(y - x)z|] = ||y - x||_{F} = \rho(y, x).$$
3. $\rho(x, y) = ||x - y||_{F} = ||x - z + z - y||_{F}$

$$= \bigvee_{w \in A(G)} \mu[|(x - z + z - y)w|]$$

$$= \bigvee_{w \in A(G)} \mu[|(x - z)w + (z - y)w|]$$

$$\leq \bigvee_{w \in A(G)} \mu[|(x - z)w|] + \bigvee_{w \in A(G)} \mu[|(z - y)w|]$$

$$= ||x - z||_{F} + ||z - y||_{F} = \rho(x, z) + \rho(z, y).$$
Thus, $||x||_{F}$ is a S*-valued metric on L^{*}_F.
Now, let x, y, z, w $\in L_{F}$ and $|x - y| \leq |z - w|$. Then
 $\rho(x, y) = ||x - y||_{F}$

$$= \bigvee_{r \in A(G)} \mu[|(x - y)r|]$$

$$= ||z - w||_{F} = \rho(z, w)$$
Therefore, $(1^{*}, \rho)$ is a metric S* vactor lattice

Therefore, (L_F^*, ρ) is a metric S^{*}-vector lattice.

Remark 3.5:[10]

If $x \in L_F^*$ and $||x||_F \leq \hat{1}$, then $x \in L_F$ and $\mu(F(x)) \leq ||x||_F$.

Proposition 3.6:

If $x, y \in L_F^*$ and $\rho(x, y) \le \hat{1}$, then $x, y \in L_F$ and $\mu(F(x, y)) \le \rho(x, y)$. **Proof:**

Clearly x, y ≥ 0 . Choose a sequence of simple elements $z_n \ge 0$ such that $z_n =$ (x_n, y_n) and $(x_n, y_n) \uparrow (x, y)$.

Then $(x_n, y_n) \in L^*_F$ and $\rho(x_n, y_n) \leq \hat{1}$ (see Remark 1.5.1 [9] and Proposition 3.3)). Let

$$(x_{n,y_{n}}) = z_{n} = \sum_{i=1}^{k(n)} \lambda_{i}^{(n)} e_{i}^{(n)}$$
 and $w_{n} = \sum_{i=1}^{k(n)} f(\lambda_{i}^{(n)}) e_{i}^{(n)}$,

where f(t) is the right-hand derivative of the N-function F. By (Lemma 1.6.1 [3]), we have $\mu(G(w_n)) \leq \hat{1}$.

By Young's Inequality, we get

 $(\mathbf{x}_n, \mathbf{y}_n)\mathbf{w}_n = \mathbf{F}(\mathbf{x}_n, \mathbf{y}_n) + \mathbf{G}(\mathbf{w}_n)$ From this we have

 $\mu(F(x_n, y_n)) \le \mu(F(x_n, y_n)) + \mu(G(w_n)) = \mu((x_n, y_n)w_n) \le \rho(x_n, y_n) \le \rho(x, y).$ Since $(x_n, y_n) \uparrow (x, y)$, then $F(x_n, y_n) \uparrow F(x, y)$ (see Lemma 1.5.1 [5]). Since $\mu(F(x_n, y_n)) \le \rho(x, y)$, it follows from (Levi's Theorem [4]), that $F(x, y) \in L_1(m)$, i.e. $x, y \in L_F$ and $\mu(F(x, y)) \le \rho(x, y)$.

References

[1] J. Alexopoulos, D. Barcenas and V. Echandia; Some Banach Space Characterizations of the Δ_2 -Condition, Kent State Univ., Stark Campus, 2003.

[2] J. Alexopoulos; A brief Introduction to N-functions and Orlicz function Spaces, Kent State Univ., Stark Campus, (13-17) 2004.

[3] A. Battor, O. Benderski and S. Yaskolko; Measurable Fields of Orlicz Space, Thesis reports. XU All-Union school on the theory of operators in function space, Uljanovsk (Russian), 1990.

[4] O. Ya. Benderskii, B. A. Rubshtein; Universal measurable Fields of Metric Space, Thesis of reports, International Conf. -Baku., part II, -40P. (Russian), 1987.

[5] S. L. Gubta and N. Rani; Fundamental Real Analysis, Delhi, 1970.

[6] V. Sh. Muhamedieva; Homomorphisms of Banach Modules Over Semifields, Cad. Dissertation, Tashkent (Russian), 1979.

[7] M. V. Podoroznyi; Banach Modules Over Rings of Measurable Functions, In book: Applied Mathematics and Mechanics, Proc. Tashkent Univ., -N. 670, (41-43)1981.

[8] M. Stone; Applications of the Theory of the Boolean Ring to General Topology, Trans. Amer. Math., Soc. -V41, (375-481)1937.

[9] M. Stone; Algebraic Characterizations of Special Boolean Rings, Fund. Math., -V.29, (223-303)1937.

[10] D. A. Vladimirov; Boolean Algebras, Moscow: Nauka, -319p., 1969.

[11] B. Z. Vulikh; Introduction to the Theory of Partially Ordered Space, Moscow, - 407p., 1961.

[12] J. Harm Van der Walt; Order Convergence on Archimedean Vector Lattices and Applications, Univ. of Pretoria, 2006.

[13] A.W. Wickstead; Vector and Banach Lattices, Pure Mathematics Research Centre, Queen's University Belfast

[14] X. Yin, C. Qian and Y. Chen; On the Uniformly Convexity of N-Functions, Universidad Tecnica Federico Santa Maria, 2009.