On Some Concepts of Metric in S*-Orlicz Spaces

__

Ali Hussain Battor Dhuha Abdul-Ameer Kadhim

University of Kufa, College of Education for Girls, Department of **Mathematics**

Abstract

The main purpose of this paper is to study some concepts of metric in S^* -Orlicz spaces and we give some definitions that is related to it, where $S^* = S^* [0,1]$ is the ring of all real measurable functions on [0,1].

Keywords: metric space, S^{*}-Orlicz Spaces, Banach space

الملخص :

∗ انهدف انزئيسي نهبحث هى دراسة بعض انمفاهيم انمتزيه نفضاء S Orlicz- وقد اعطينا بعض انتعاريف انمتعهقه بهذا S [∗] = انفضاء في حانة كىن S ∗ [0,1] وانتي تمثم حهقه نكم اندوال انقياسيه انحقيقه في .[0,1]

1.Introduction and Preliminaries

 The notion of the Orlicz space is generalized to spaces of the Banach space of valued functions. A well-known generalization is based on N-functions of a real variable.

 A metric space need not have any kind of algebraic structure defined on it. In many applications, however, the metric space is a linear space with a metric derived linear spaces.

We shall denote by L_F the S^{*}-Orlicz class, $C_{\infty}(Q(\nabla))$ the set of all continuous functions on the Stone compactum $Q(\nabla)$, P the Lebesgue measure and L₁(m) the set of all integrable by the measure m elements from $C_{\infty}(Q(\nabla))$.

Definition 1.1: [12]

A pair (X, \leq) consisting of a real vector space X and a partial order \leq defined on X is called a vector lattice if the following conditions are satisfied for all $x, y, z \in X$ and all real numbers $\alpha > 0$.

1. If $x \leq y$ then $x + z \leq y + z$.

2. If $x \leq y$ then $\alpha x \leq \alpha y$.

3. X is a lattice.

Remark 1.2:[11]

For a vector lattice X and $x \in X$, we make use of the following notation :

The positive part x_+ and the negative part $x_$ of X are given respectively by $x_+ = x \vee 0$, $x_-= (-x) \vee 0.$

The modulus |x| of X is defined to be $|x| = (-x) \vee x$. It is obvious that $-x_0 = x \wedge 0$ and for any $x \in X$ we have

 $x = x_{+} - x_{-}$, $x_{+} \wedge x_{-} = 0$, $|x| = x_{+} + x_{-}$.

The positive cone of a vector lattice is denoted X_+ , that is, $X_+ = \{x \in X : 0 \le x\}.$

Example 1.3:[13]

 The most obvious example of a vector lattice is the reals with all usual operations. The usual or standard order on \mathbb{R}^n is that in which (x_1) , $x_2, ..., x_n$) $\leq (y_1, y_2, ..., y_n)$ means that $x_k \leq y_k$ for $k = 1, 2, ..., n$. This order makes \mathbb{R}^n into a vector lattice in which $(x_k) \vee (y_k) = (x_k \vee y_k)$ and $(x_k) \wedge (y_k) = (x_k \wedge y_k)$. Hence $(x_k)^+ = (x_k^+)$, $(x_k)^- =$ (x_k^{-}) and $|(x_k)| = (|x_k|).$

Definition 1.4: [11]

An element from X_+ is called a Freudenthal unit and denoted by $\hat{1}$, if it follows from $x \in X$, $x \wedge \hat{1} = 0$, that $x = 0$. If $x_{\alpha} \stackrel{(o)}{\rightarrow} x$ and $\{x_{\alpha}\}\$ is increasing(decreasing) then, we write $x_{\alpha} \uparrow x$, (respectively, $x_{\alpha} \downarrow x$).[5]

Remark 1.5: [11]

 If a vector lattice X has a Freudenthal unit, then we will consider that this unit is chosen and fixed. This unit will be exactly denoted by $\hat{1}$.

Definition 1.6: [14]

The function $F(u)$: $[0, \infty) \rightarrow [0, \infty)$ is called an N-function if it has the following properties:

1. F is even, continuous, convex ;

2. $F(0) = 0$ and $F(u) > 0$ for all $u = 0$;

3. $\lim_{u\to 0} \frac{F(u)}{u}$ $\frac{u}{u} = 0$ and $\lim_{u \to \infty} \frac{F(u)}{u}$ $\frac{u}{u} = \infty$.

It is well-known that F(u) is an N-function ,if and only if, $F(u) = \int_0^{|u|} f(t) dt$, where $f(t)$ is the right derivative of $F(u)$ satisfies:

1. $f(t)$ is the right-continuous and non- decreasing;

2. f(t) > 0 whenever $t > 0$; (3) $f(0) = 0$ and $\lim_{t \to \infty} f(t) = \infty$.

For an N-function F define $G(v) = \sup \{||u|| v| - F(u) : u \ge 0\}$. Then G is an Nfunction and it is called the complement of F. [1]

If F and G are two in mutually complementary N-function then $uv \leq F(u) + G(v)$ \forall u, $\nu \in R$ (Young's Inequality).[2]

Definition 1.7:[7]

We say that X be a bimodule over $S^* = [0,1]$, i.e. X is abelian group with respect to addition operation $(+)$ and right and left multiplication by element from S^* are defined on X having the properties:

1. $\lambda(x + y) = \lambda x + \lambda y$, $(x + y) \lambda = x\lambda + y\lambda$ 2. $(\lambda + \mu)x = \lambda x + \mu x$, $x(\lambda + \mu) = x\lambda + x\mu$ 3. $\lambda(\mu x) = (\lambda \mu)x$, $(x\lambda)\mu = x(\lambda \mu)$ 4. $\hat{1} \cdot x = x \cdot \hat{1}$, for all $x, y \in X$, $\lambda, \mu \in S^*$.

Remark 1.8:[7]

A bimodule X over S^* is called a normal S^* -module if :

1. For all $x \in X$, $\lambda \in S^*$, then $\lambda x = x \lambda$

2. For any $e \in \nabla(S^*)$, $e \neq 0$, there exists $x \in X$ such that $xe \neq 0$

3. For any decomposition of the identity $\{e_i\} \subset \nabla(S^*)$ and for any $\{x_i\} \subset X$ there exists $x \in X$ such that $x e_i = x_i e_i$, $i = 1, 2, \dots, n$

__

4. For any $x \in X$ and any sequence $\{e_n\}$ of mutually disjoint elements from $\nabla(S^*)$ it follows the equalities $e_n x = 0$, $n = 1, 2, ...$ that

$$
\left(\sup_{n\geq 1}e_n\right)x=0.
$$

 It is clear that the condition 4 implies a validity of the analogous property for increasing sequences of idempotent from S^{*}.

Definition 1.9:[11]

A normal S^{*}-module is called an S^{*}-vector lattice if X is simultaneously lattice, i.e. an ordered set in which for any two elements $x, y \in X$ there exists their supremum x $\vee y$, infimum x ∧ y and, in addition, the following algebraic operations and order agreement conditions are fulfilled :

1. for any $z \in X$ it follows from $x \leq y$ that $x + z \leq y + z$;

2. if $x \ge 0$, $\lambda \in S^*$, $\lambda x \ge 0$.

It is evident that any S^* -vector lattice X is a vector lattice in a usual sense (it is sufficient to consider X as a vector space over the field $\{\alpha \cdot \hat{1} : \alpha \in \mathbb{R}\} \approx \mathbb{R}$).

 S^* itself consider as a bimodul over S^* is a simplest example of S^* -vector lattice.

2. Basic Concepts

In this section, we start recalling the usual definitions of S^* -valued metric and S^* -Orlicz spaces.

Definition 2.1:[6]

A mapping $\|\cdot\|$: X → S^{*} from a normal S^{*}-module X into S^{*} is called an S^{*}-norm if 1. $||x|| \ge 0$ for all $x \in X$ and $||x|| = 0$ if and only if $x = 0$.

- 2. $\|\lambda x\| = |\lambda| \|x\|$ for any $x \in X, \lambda \in S^*$.
- 3. $||x + y|| \le ||x|| + ||y||$ for any $x, y \in X$.

Definition 2.2: [11]

We say that the S^* -vector lattice X with an S^* -norm $\|\cdot\|$ is a **normed** S^* **-vector lattice**, if $|x| \le |y|$, $\forall x, y \in X$, then $||x|| \le ||y||$.

Definition 2.3: [4]

A mapping $\rho: X \times X \to S^*$ is called a **metric** on a set X with values in S^{*} if 1. $\rho(x, y) \ge 0$ for any $x, y \in X$ and $\rho(x, y) = 0$ if and only if $x = y$. 2. $\rho(x, y) = \rho(y, x)$ for any $x, y \in X$. 3. $\rho(x, y) \leq \rho(x, z) + \rho(z, y)$ for any $x, y, z \in X$.

Definition 2.4:

An S^{*}-vector lattice X with an S^{*}-metric *ρ* is called a **metric S^{*}-vector lattice**, if it follows from $|x - y| \le |z - w|$, x, y, z, w \in X, then $\rho(x, y) \le \rho(z, w)$.

Now, we define the S^* -**Orlicz spaces** L^* _F. Let G be the complementary N-function to the N-function F.

Set

 $L_F^* = \{x \in C_\infty(Q(\nabla)) : \lambda^{-1}x \in L_F \text{ for some number } \lambda = \lambda(x) > 0\}.$ We shall denote μ by the integral constructed by the measure m.

3.The Main Results

In this section, we investigate the important results concerning with the S^* -valued metric in S^{*}-Orlicz spaces.

Firstly, we need the following information.

Proposition 3.1:[8]

For every $x \in L_F^*$, we have

$$
\bigvee_{y\in A(G)}|\mu(xy)|<\infty,
$$

where $A(G) = \{y \in L_G : \mu(G(y)) \le \hat{1}\}.$

This leads to define the following norm on L_F^* which is called the Orlicz norm:

$$
||x||_F = \bigvee_{y \in A(G)} |\mu(xy)|,
$$

for every $x \in L_F^*$.

Proposition 3.2:[9]

If $x \in L^*$, then

$$
||x||_F = |||x||_F = \bigvee_{y \in A(G)} \mu(|xy|).
$$

Remark 3.3:[10]

 $||x||_F$ is a S^{*}-norm on L_F^{*}. In addition $|x| \le |z|$, x, z $\in L_F$, implies, that $||x||_F \le ||z||_F$. Thus, $(L_F^*, \| \cdot \|_F)$ is a normed S^{*}-vector lattice.

Proposition 3.4:

Let L_F^* be S^{*}-Orlicz space, L_F be S^{*}-Orlicz class and $\|\cdot\|$ be an S^{*}-norm, then $\|x\|_F$ is a S^{*}-valued metric on L_F^* . In addition $|x-y| \le |z-w|$, $x, y, z, w \in L_F$, implies, that $\rho(x, y) \leq \rho(z, w)$. Furthermore, (L_F^*, ρ) is a metric S^{*}-vector lattice. **Proof:**

1. for any $x, y \in L^*$, then

$$
\rho(x, y) = \|x - y\|_{F} = \bigvee_{z \in A(G)} |\mu(x - y)z| \ge 0.
$$

and for any $x, y \in L^*_{F}$,

$$
\rho(x, y) = 0 \Leftrightarrow ||x - y||_F = 0 \Leftrightarrow |||x - y||_F = 0 \Leftrightarrow \bigvee_{z \in A(G)} [\mu|(x - y)z|] = 0
$$

$$
\Leftrightarrow \mu[|xz - yz|] = 0 \Leftrightarrow xz - yz = 0 \Leftrightarrow x = y.
$$

2. For any $x, y \in L^*$, then

$$
\rho(x, y) = \|x - y\|_{F} = \bigvee_{z \in A(G)} |\mu(x - y)z|
$$

$$
= \bigvee_{z \in A(G)} \mu[|(y-x)z|] = ||y-x||_F = \rho(y,x).
$$

\n3. $\rho(x,y) = ||x-y||_F = ||x-z+z-y||_F$
\n
$$
= \bigvee_{w \in A(G)} \mu[|(x-z+z-y)w|]
$$

\n
$$
\leq \bigvee_{w \in A(G)} \mu[|(x-z)w + (z-y)w|]
$$

\n
$$
\leq \bigvee_{w \in A(G)} \mu[|(x-z)w|] + \bigvee_{w \in A(G)} \mu[|(z-y)w|]
$$

\n
$$
= ||x-z||_F + ||z-y||_F = \rho(x,z) + \rho(z,y).
$$

\nThus, $||x||_F$ is a S^{*}-valued metric on L^{*}_F.
\nNow, let x, y, z, w \in L_F and $|x-y| \leq |z-w|$. Then
\n
$$
\rho(x,y) = ||x-y||_F
$$

\n
$$
= \bigvee_{r \in A(G)} \mu[|(x-y)r|]
$$

\n
$$
= ||z-w||_F = \rho(z,w)
$$

\nTherefore, $(1^* \, e)$ is a matrix S^{*} vector lattice

__

Therefore, (L_F^*, ρ) is a metric S^{*}-vector lattice.

Remark 3.5:[10]

If $x \in L_F^*$ and $||x||_F \leq \hat{1}$, then $x \in L_F$ and $\mu(F(x)) \leq ||x||_F$.

Proposition 3.6:

If $x, y \in L^*$ and $\rho(x, y) \leq \hat{1}$, then $x, y \in L_F$ and $\mu(F(x, y)) \leq \rho(x, y)$.

Proof:

Clearly x, $y \ge 0$. Choose a sequence of simple elements $z_n \ge 0$ such that $z_n =$ (x_n, y_n) and $(x_n, y_n) \uparrow (x, y)$.

Then $(x_n, y_n) \in L^*$ and $\rho(x_n, y_n) \leq \hat{1}$ (see Remark 1.5.1 [9] and Proposition 3.3)). Let

$$
(x_n, y_n) = z_n = \sum_{i=1}^{k(n)} \lambda_i^{(n)} e_i^{(n)}
$$
 and $w_n = \sum_{i=1}^{k(n)} f(\lambda_i^{(n)}) e_i^{(n)}$,

where $f(t)$ is the right-hand derivative of the N-function F. By (Lemma 1.6.1 [3]), we have $\mu(\widehat{G}(w_n)) \leq \widehat{1}$.

By Young's Inequality , we get

 $(x_n, y_n)w_n = F(x_n, y_n) + G(w_n)$ From this we have

 $\mu(F(x_n, y_n)) \leq \mu(F(x_n, y_n)) + \mu(G(w_n)) = \mu((x_n, y_n)w_n) \leq \rho(x_n, y_n) \leq \rho(x, y).$ Since $(x_n, y_n) \uparrow (x, y)$, then $F(x_n, y_n) \uparrow F(x, y)$ (see Lemma 1.5.1 [5]). Since $\mu(F(x_n, y_n)) \le \rho(x, y)$, it follows from (Levi's Theorem [4]), that $F(x, y) \in L_1(m)$, i.e. $x, y \in L_F$ and $\mu(F(x, y)) \le \rho(x, y)$.

References

[1] J. Alexopoulos, D. Barcenas and V. Echandia; Some Banach Space Characterizations of the Δ_2 -Condition, Kent State Univ., Stark Campus, 2003.

[2] J. Alexopoulos; A brief Introduction to N-functions and Orlicz function Spaces , Kent State Univ., Stark Campus, (13-17) 2004.

[3] A. Battor, O. Benderski and S. Yaskolko; Measurable Fields of Orlicz Space, Thesis reports. XU All-Union school on the theory of operators in function space, Uljanovsk (Russian), 1990.

[4] O. Ya. Benderskii, B. A. Rubshtein; Universal measurable Fields of Metric Space, Thesis of reports, International Conf. -Baku., part II, -40P. (Russian), 1987.

[5] S. L. Gubta and N. Rani; Fundamental Real Analysis, Delhi, 1970.

[6] V. Sh. Muhamedieva; Homomorphisms of Banach Modules Over Semifields, Cad. Dissertation, Tashkent (Russian), 1979.

[7] M. V. Podoroznyi; Banach Modules Over Rings of Measurable Functions, In book: Applied Mathematics and Mechanics, Proc. Tashkent Univ., -N. 670, (41-43)1981.

[8] M. Stone; Applications of the Theory of the Boolean Ring to General Topology, Trans. Amer. Math., Soc. -V41, (375-481)1937.

[9] M. Stone; Algebraic Characterizations of Special Boolean Rings, Fund. Math., -V.29, (223-303)1937.

[10] D. A. Vladimirov; Boolean Algebras, Moscow: Nauka, -319p., 1969.

[11] B. Z. Vulikh; Introduction to the Theory of Partially Ordered Space, Moscow, -407p., 1961.

[12] J. Harm Van der Walt; Order Convergence on Archimedean Vector Lattices and Applications, Univ. of Pretoria, 2006.

[13] A.W. Wickstead; Vector and Banach Lattices, Pure Mathematics Research Centre, Queen's University Belfast

[14] X. Yin, C. Qian and Y. Chen; On the Uniformly Convexity of N-Functions, Universidad Tecnica Federico Santa Maria, 2009.