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Abstract

In this paper, we have provided some examples motivating the use of Lie
symmetries. Also, we have discussed the properties of one- parameter groups of
transformations (Lie groups) and introduced the ideas of invariants of the group of
transformations. In the case of ordinary differential equations use of Lie symmetries
resulted in a separable ODE when the governing DE was first order and a reduction of

order when the governing DE was of order greater than one.
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1.1 Introduction

In this section, we discuss the construction of a one-parameter group of
transformations which leaves a given ordinary differential equation (ODE)
unchanged. We shall find that if an ODE is invariant under a one-parameter group of
transformations then use of an invariant of the group results in a simplification of the
ODE. If the differential equation is of first order then the equation will become a
separable differential equation. For a higher order differential equation, the use of an
invariant leads to the reduction in the order of the equation by one. We firstly
illustrate finding infinitesimals for an ODE from first principles and then quote a

general result for a general first —order ODE.

1.2 ( one- parameter transformation groups)

Definition: In the (x,y) plaﬁe, the transformation

n=fyen=gkxye  (11)
is a one- parameter group of transformations if the following properties hold:
(1) (identity) the value € = 0 characterises the identity transformation,
x = f(x,y,0), y=9(xy,0)
(ii) (inverse) the parameter - ¢ characterises the inverse transformation,
x = f(x,y1,—€), y = g(*1,y1,—€)

(iii) (closure) if x, = f(xy, Y1, 6), Y2 = g(x1,y1,6) then the product of the two

transformation is also a member of the set of the transformation (1.1) and moreover is

_—
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characterised by the parameter e+6, that is x; = f(x,y,e+6), y,=

glx,y, e+ 8),see[1],[5].

Example 1.1

Show that the transformation

Xy = y1 = (1+ex)’y (1.2)

1+ex’
does indeed form a one-parameter group of transformations as defined above.
1) Firstly when €e =0,x; =x, y; =y, so (i) is satisfied.
2) On rearranging (1.2) we obtain

(1+ex)xy=x

ox(ex; —1)+x =0

x = 1
- 1-exq
TN
And Y= (1+ex)?
Y1
Eby = X1 N2
(1-1-6——-1_“1)

oy =y (1 — ex)?

X1
1—-exg

;o y=y1(1—exp)?

50, x=

so that - € characterizes the inverse and (ii) is satisfied .

3) we see that if
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kg = 1.:;,:1: Y2 = (1+6x;)%y; then we have
X
1+ex
xZ =

- X
1+ 5(1 +ex)

X
= = —_—
*2 1+(e+0)x

and

s
14

Y2=(1+436.

2
DY, = [(1 + 6.—x—).(1 + ex)] y

1+ex
=Yz = [1 + ex + 6x]y

=¥z = (0% (e+a)x)%y,

so that x, and y, are members of the group of transformations, characterised by

€ + & . Therefore (iii) is satisfied.

Remark:

The transformations ( 1.1) are called point transformations because the transformed
values only depend on the dependent and independent variables x and y (and not
derivatives of variables) and the parameter e.The functions f(x, y,

are referred to as the global form of the group,[7]. For small values of €, we can

expand f and g and since

X =x, Vi=y at e=0

we have

2 2
ex) (1 +ex)?y

€) and g(x, ¥, €)

R
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d d
X =x+ E(ﬁ e=0+0(e), yy=y+ E(ﬁ)e:ﬂ +0(e?) (1.3)

where O(€?) indicates terms of order €? and higher.Defining X(x,y) and Y(x,y)

by

X(69) = (Demo and  Y(6,) = ()., (1.4)
then we obtain

x1 =x+eX(x,y) + 0(€?), y; =y + €Y (x,y) + 0(?)(1.5)

and (1.5) is referred to as the infinitesimal form of the group. X(x,y), Y(x,y) are

often referred to as "the infinitesimal", see [1],[5].
1.3 Invariants of a group
Definition:

In [2],[4], A differential function F(x, y) is called an invariant function of a group G

wherex* = f(x,y,€), y* = g(x,y,¢€),
if F(x*,y*) = F(x,y),(1.6)
Definition:

The infinitesimal generator of a one-parameter Lie group of transformations where

¥=x+€eX(x,y)+0(€?), y=y+eY(x,y)+0(?)(1.7)
is given by I'= X{% y):%—-}- Y(x,y)%. (1.8)

see [4],[6].
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Example (1.2)

Consider the standard first order equation (Bernoulli’s equation)[3],

d

& TP@y = q@y" n=1(1.9)

We wish to find the infinitesimals for a group of transformations of the form

= f(x’ 6)1 Yy = g(x, E)y

which leaves (1.9) invariant. Hence, consider
dx1 2 TPV = q(x)y} (1.10)

and we rewrite this in terms of x and y .

Now, x=§@a@m
d d 1
27 = h&a@+mx@ﬂgag (1.11)

Now, we will substitute (1.11) in (1.10) to get

[y 9x(x,€) + g(x,€) J ( -

Tas) TPy = a(rgee ey

Y [EE2+ £ wn] = aHgte i (e eon

Equating this with our DESE:— +px)y = q(x)y"

we may deduce

9x (%, €)

p(x) = e

+ £ (x e)p(f) (1.12)

ey
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a(x) = q(Ng(x, )" f (x,€) - (1.13)

On substituting the expansions

fx,€) =x+eX(x) + 0(e?), g(x,€) =1+ €Y (x) + O(€?) ............ (a)
P(f) =p(x) + €XGP (X) + 0(€),  woeeeeeeeeeeeeoe (b)
q(f) = q(x) + eX()G (X)) + O(ED),  eovooeeeeeeeeee (c)

into (1.12) we obtain on equating terms of order €,
Y +Xp+Xxp =0. (1.14)
On substituting the expansions (a),(b) and(c) into (1.13) we obtain

q(x) =

n-1

[q(x) + eX(x)q (x) + O(eD][1 + eX'(x)] (1 + ¥ (x) + 0(e?))

q(O[1 + €Y (x) + 0(e?)] = [q(x) + eX(x)q (x) + 0(e?) + €X' (x)q(x) +

e2X ()X (x)q (x) + €X' (x)0(e®)][1 + (¥ (x) + O(e2))]"

Since (1 + X)" = 1+nx+$xz +L‘13).("—HZ)X3+"-

q(x) + eq(x)Y (x) + q(x)0(e?) =
[q(x) + eX(x)q (x) + O(e?) + €X (x)q(x) + €2X (X)X (x)q (x)
+ eX () 0N + n[e¥Y (x) + 0(e?)]

+n(n— 1)

LY () + 0D + -}

q(x) + eq(x)Y (x) + q(x)0(e?) = {q(x) + eX(x)q (x) + 0(e?) + €X' (x)q(x) +
e2X (X)X (x)q (x) + €X' (x)0(e?) + enY (x)q(x) + €2n¥Y (X)X (x)q (x) +

7
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i.e. a separable equation and so has a solution of the form

t=7u) +c,

for certain functionsg and 1 . For higher order DEs, the differential equation can be

1] n : 1 dt
treated as " t absent "and so the substitution p = ==

reduces the order by one.

In order to find canonical coordinates we note that when we change variables from

(x,y) to (u, t), the differential operator (1.29) is transformed to

ad d
F=F(t)EE+F(u)51:,

where I'(t) and I'(u) denote the effect of I on the functions t(x,y) and u(x,y) .

. a
As we require the operator to become ' = o

the equations I'(t) = 1, I'(u) = 0 must be satisfied.
Solving these equations we can find the canonical coordinates.
That is, we solve

at at au du _
X§+YE_ 1‘Xax+yay'_0'

1.5 The case study

Consider the first-order ODE

dy _ n 2%
o fy™ + g(x)y (1.31)

for real constants m, n .

12
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This equation includes the Riccati equation.
Y =a()y® +b(x)y + c(x),
(whenn=2, m=1,c(x) =0),
the Bernoulli equation
¥ + @)y = p()y*,(when n=1)
and Abel’s equation of the first kind (when n, m are integers) .
We want to solve (1.31) using symmetries when
fG)+0 and gx)#0; n#+m-
To find the infinitesimals for the equation % = F(x,y) where
F(x,y) = f(x)y™ + g(x)y™ (1.32)
we use the criteria (1.21) with X = X(x), ¥ = Y(y)and find
YUXF + X 1+ X g+ Xg y™ +y" Y fl + ym T my g] =yt Y f] -
y"[Y'gl=0 (1.33)
We need to consider the cases where
1y, y™,y"" 1y ,y™~1Y ,y"¥ are linearly independent.
2.y",y™,y""1y,y™~1Y ,y"Y may be linearly dependent.

In the case where y™ ,y™ ,y" 1Y ,y™ 1Y ,y"Y are linearly independent, each of the

coefficients in (1.33) must be identically zero. This then leads to

13
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and/'v = 1,
a(1—
-:»(T")ffdx) v tayy, =1-
By solving these equations, we obtain
u=y" ([ fdx), and v= éln y.

and our ODE then becomes under the new variables

i o 1
u
il el (L e =
- 1+ A( YuT-n
x 1—n

which is separable.

As an example, let f(x) =x?> andn=2, m=3

Since g = A (T2) ([ f de) T £(x)

5

then, g =ax”> whered is constant.

Hence, the differential equation we are solving is
y = x2y? + ax® y3

Canonical coordinates then are

3
u=yn—1(ffdx):% and v=Iny

(using @ = 1).
Substituting the new variables into the DE, we get the separable DE
du u(l+au)+1

dv 1+ au
15
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f=g=0 or X=Y=0-

In the situation where y™ ,y™ ,y™~1Y,y™~1Y,y"Y may be linearly dependent, we

find the following non-trivial cases:
Case (1):Y = ay with m,n,f,g#0andm #n

To find the infinitesimal X for equation (1.31) from equation (1.33) we obtain

where «a is an arbitrary constant.

Hence,
n._

o=A(— f fan) " f6)

This corresponds to the ODE (1.31)

D _ ey +[a(222) ([ ra0) ™ s>

and the infinitesimal generator (1.29), is

_(a(l—n) ad i
- (5= [ rix) g+ @

Now, to find the corresponding invariant solutions we first find the canonical

coordinates:

Solving, TI'(u) =0

:b(%”—)ffdx)ux + ayu, =0

Journal of College of Education for pure sciences VoL.5 No.1 2015

-h[b—-

Solving this DE we get, for @ >

1 _ 1 2 1
Eln[&u2+u+1| + —tan™! it

V-1 Gaer o Utk

where k is an arbitrary constant. Then, we substitute in u,v to get the solution in

terms of the original variables x, y.
Case (2):Y =0

In this case X = —f% and requires g(x) = yf(x),

L dy
so the DE = D k™) +
The canonical coordinates are u =y, v = [ f(x)dx

and under these coordinates, the DE reduces to
du
o =u" + yu™

Case (3) :¥Y = yy™ withm =1
I th = y(n-1)

n this case X & [ g(x)dx
and require

f0) ="V g0 [ g(x)dx.

so the governing DE is

d i |
== ( Do [ (x)dx)y +g()y.

16
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The canonical coordinates are found to be

1-n

u=[f gl)dx] ——==y*",  v=a5tB

and under these coordinates the DE reduces to

_cE €
dv  (m—1u

As an example, with n =2 ,g = x? andy =€ =1,ourDEi
= (xzfxz)yz +x2y

!

5
ie. y' =5y +x%y

[Note: This equation could be solved as a Bernoulli equation

dy 2 &> 2 2 1-2 -1
dx—xy—?y withv =y =y ]

3
Using the canonical coordinatesu = % +yland v=-y™!

and substituting into the DE, we get j—z = 11—1 — 1, aseparable DE.

Solving this separable DE we getu + In(1 —u) = —v + k ; (where k is an arbitrary

constant). So that in terms of the original variables:

(x3+1)+1 (1 (x3+1)) L
A e n —_—— it —_— .
3 vy 3y ¥

1.6 CONCLUSION

Symmetries are most useful in the study of differential equations and they are
useful in different ways. Firstly, the use of symmetry transformation can be used to

solve ordinary differential equations by leading to a variable-absent equation and thus
17
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simplifying the problem. This is achieved by the use of canonical coordinates..
Secondly, a symmetry of a differential equation transforms solutions into other

solutions and thus symmetries can be used to generate new solutions from old ones.

In this paper, we investigated the application of Lie symmetries to the equation

dy == n m
T fGy" + gy

where f,g#0 and n#m-

We found special cases for the coefficient functions that allowed either a full general

solution of the ODE or at least a transformation that lead to a separable equation.
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