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Abstract

In this paper, we have provided some examples motivating the use of Lie

symmehies. Also, we have discussed the properties of one- parameter groups of

transformations (Lie groups) and introduced the ideas of invariants of the group of

t t"*forro"tio*. 
In the case of ordinary differential equations use of Lie qmmetries

resulted in a separable ODE when the goveming DE was first order and a reduction of

order when the goveming DE was of order greater tlan one.

Kevwords.' Lie symnretries, the group of tansformations, the

infinitesima ls, ordinarydiftrenti aI equations, canonical coor dinates.

:o.il,ll

$LJ,.!ll dJlc."+. ul.ll-j, U,!!tj .cls . J cJlJ.Lljj rllij-Y f.!lt^:,., Uj{+.,'^ltl lrA s!

,l"s:-! !J-r:oYl :et-ali:ll crY.rLJl & U.llltj t S .( d abJ+. ) s..^.,ir stJl +tjilt 6tl

.11 t_e)l!:-;ll g" i;.t11:c)l l;l-U:!l iJ.tL.Jl i'F Lso ullr crl.l.liill J.i ii.,"..,ltl a+Jil el drlJS$

.\tr o. Jst cil,s tlt !4ljJ Jtjiil

\i
I



Journal of CoIIege ofEducation for pure sciences Vol.5 No. | 20ls

1.1 Introduction

In this section, we discuss the construction of a one_parameter group of
hansformations which leaves a given ordinary differential equation (ODE)

unchanged' we shat find that if an oDE is invariant under a one-parameter group of
hansfomrations then use ofan invariant ofthe group results rn a simplification of the

oDE' If the differential equation is of first order trren the equatron will become a
separable difrerential equation. For a higher order differential equatio4 the use of an

invariant leads to the reduction in the order of the equation by one. We firstly
illustrate finding infinitesimars for an oDE from first principles and then quote a

general result for a general first _order ODE.

1.2 ( one- parameter transformation groups)

Definition: In th e (x,y) plane, the transformation

x1 =f@,y,e)y1 =s@,y,e) (1.1)

is a one.parameter group of transformations if the following properties hold:

(i) (identity) the value e = 0 characterises the identity tansformation.

x=f(x,y,o), y=s@,y,o)

(ii) (inverse) the parameter - e characterises the inverse ffansformation,

x= f (xuyr,-e), y= g(xt,yt,_e)

(iii) (closure) if x2= f (4,y1,6), y2 - g(\,y1,6)then the product of the two

transforrnation is also a member of the set ofthe transforrnation (r. r) and moreover is
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characterised by the parameter 6+d, that is x2= f @,y,e+ 6), !z=
g(x,y,e * 6),see tll,tsl.

Examole 1.1

Show that the transformation
'r
II

t
\=fr, yr= 1L+ex)2t (r.2)

does indeed fonn a one-panmeter group oftansformations as defined above.

Firsfly when e = 0 , 11 -- x, yt = n so (i) is satisfied.

On reananging (1.2) we obtain

(l*ex)x1-x

ox(e4- 1) * x1 = Q

,llx=-L
l-€rl

' tL+r*1,

1)

2)

And

I *v=#
oy -- y1(! - ex1)2

So,x='ft, y-yr(I -ex1)z

so that - € charact€rizes the invene and (ii) is satisfied .

3) we see thst if
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xz=#i, y2= (l* dx)2y1 thenwehave

IFex- 1+ d'(T+ 
6r-11-)

4x" = x
- l+(€+d)r

and

vz - (7 + o.ii, .(L+ ex)zy

{

I

+y2=fI*ex+6xfzy

+yr=(L+(e+6)x)zy,

so that r2 and.y2 are members of the group of transformations, characterised by
e * d . Therefore (iii) is satisfied.

Remark:
;.

The transformations (1.1) are called point transfonnations because the hansformed f
values only depend on the dependent and independent variables x and. y(and not

derivatives of variables) and the parameter e.The function s f (x,y, e) and g(x,y, e)

are referred to as fle global form of the group,[Z]. For small values of e, we can

expand/and.gutdsince

oy, = lG+ d.#,) . (L + elfz y

we have

x7=x, yt=y at e=O
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x1 = x + e(),=o + o(e2), h. = ! r rf),=o+ 0(62) (1.3)

where O(ez) indicates terms of order e2 and higher.Defining X(x,y) and. Y(x,y)

bv

x(x,y) = SS,=o ""o v(x,fl = (!5,=o (1.4)

then we obtain

\ = x + €x(x,y) + o(ez), y1-- y * eY(x,y) + o(€'zXl.5)

and (1.5) is referred to as flre infinitesimal form of the group. X(x,y),Y(x,y) are

often referred to as "the inf initesimal", see [],[5].

1.3 Invariants of a group

Definition:

Ia |2l,l4l, A differential function F(x,y) is called an invariant function ofa group G

wherer'= f (x,y,e), y- - g@,y,e),

if F(x.,y") - F(x,y),(r.6)

Definition:

T\e infrnibsfunal generatorof a one-parameter Lie gtoup oftransformations where

x = x + eX(x,y) + O(e2), y : y + ey(x,y) + 0(€2)(1.7)

I

isgivenby r = x@,D*+vfr,il{r.

see [4],[6].

(1.8)
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Example fl.2)

Consider the standard first order equation @emoulli,s eguation)[3],

*! * Ok), = q(x)yn n + t (1.9)

We wish to find th e infrnitcsimals for a group of kansformations of the form

x1 =f(x,e), yl =S@,€)y

which leaves (1.9) invariant. Hence, consider

#. * o@)t, = q(xy)yi e.to)

and we rewrite this in tenns of x and y .

Now, fr= ifsfr,OOfi

*=b n"r,,,t+ s@,4 *ul(;6) (111)

Now, we will substitute (1.1 t) in (l.lO) to get

| ),,,.
fi o,@,e) + s(x,e)#l#6) + p1)s(x,e)y = q(f)g(x,e)ny,

* *, [# * f,(,, u)p U)] = s (f) s @, e),-1 f,(x, e)yn.

Equating this wirh our Off + p(x) y = q(rc)yn

we may deduce

I

,l
I

,14 =ffi+ f,(x,e)p(f) (t.12)
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q(x) = q(fl S @, e)-1 f,(x, e).

On substituting the expansions

(1.13)

i

Y'tX'p*Xp':9.

On substituting the expansions (a),ft) and(c) into (1.13) we obtain

(1.14)

r) q(x) =

[q(x) + ex(x)q' (r) + 0(62)l[1 + eX,(x)] (t + erlx; + 0(€2))4-1

-) 
q(x)lr + eY(x) + o(€2)l = lq(x) + €x(x)q' (x) + o(e2) + ex' (x)q(x) +

e2 x' 1x1x (x) q' (x) + e x' (x)o (e2)l [1 + (er(x) + o (€2))ln

Since (1 * X)a = \ t nX +"\;D X' * n(n-9(n-z)r': * ...

r) q(x) + €q(x)Y(x) + q(x)o(e2) :

[q(x) + ex(x)q'(x) + oG\ + ex'(x)q(x) + e2x'(x)x(x)q' (x)

+ eX'(x)o(e2)U7 + nleY(x) + o(e2)l

+-:jltev(x) + 0(62)1, +...]

r+ q@) + eq(x)Y(x) + q(x)o(e2) : {q(x) + ex(x)q' (x) + o(e2) + ex' (x)q(x) +

e2x'(x)x(x)q'(x) + ex'(x)o(e2) + my(x)q(x) + e2ny(x)X(x)q'(x) +

,
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i.e. a separable equation and so has a solution of the form

1=4(u)+c,

for certain functi onsQ and 4 . For higher order DEs, the differential equation can be

treated as " t absent "and so the substitution p = f

reduces the order bY one.

In order to find canonical coordinates we note that when we change variables from

(x,y) to (u,t),the differential operator (1.29) is transformed to

r - ro)*+ r@)*,

where f(t) and f(u) denote the effect of f on the functions t(x, y) and u(x,y) '

As we require the operator to becom. f = * ,

the equations f(t) = 1, f(u) = 6 must be satisfied'

Solving these equations we can find the canonical coordinates.

That is, we solve

x9!+y9! - r.Xg! +yL - o."ax''av ''" at -aY

1.5 The case studv

Consider the first-order ODE

i'v
?= f(x)y" + s(x)y^ (1.31)
dx

for real constants m, n ,

L2

r

!

!
J
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This equation includes the Riccati equation.

y' = a(x)y2 + b(x)y + c(x),

(when n = Z, m: 1,c(x) = O),

the Bemoulli equation

dx

)
I

t
I

I
y' + q(x)y -- Q@)yk,(when n = 7)

and Abel's equation of the first kind (when n,m are integers).

We want to solve (1 .31) using symmetries when

f(x) + o

To frnd the infinitesimals for the equation

and g(x) + 0; n+m'

F(x,y) where

F (x,y) = f (x)y" + s @)y^ (1.32)

we use the criteria (1.21) with X - X(x), y = Y(y)and find

yn lX f' + X' fl + lX' g + X g' ly^ * y"-! lnY ff + y^-rfmY sl - y" lY' fl'

y^[Y'sl=o (1.33)

We need to consider the cases where

l.y" ,!^ ,y'-|Y,y^-lY ,ynf are lineaiy independent.

2.y" ,y^ ,yn-LY ,y^-rY ,y"i may be linearly dependent.

In the case where y" ,y^ ,y"-rY ,y^-1Y ,y"V are linearly independent, each ofthe

coeffrcients in (1.33) must be identically zero' This then leads to

Journal of College of Education for pure sciences Vol.5 No, I 2015

andlv = !,

+(ftpx1 vx+d.yvy=!'

By solving these equations, we obtain

y=yn-L(! f itx), -d u =ltny.I
t

and our ODE then becomes under the new variables

1)u +
du
dv 1-m n-m

L+ A(-r-)u'r-"
="[,'-

du
a,
du
dx

D

I

which is separable.

As an example, let /(x) = x2 ardn -- 2, m = 3

, /1-m\ , rSince s =A\;)(l f dx))t-"f(x)

then, g :6as where d is constant.

Hence, the differential equation we are solving is

y = x'y' + dx' y'

Canonical coordinates then are

11 =yn-r(j fdx)

(using d = 1).

v = lny

Substituting the new variables into the DE, we get the separable DE

u(l+du)+L
r+du
I]

=:--z ^nA

du
dv
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'= ^ffi)U r a,>)o rc*t

This corresponds to the ODE (1.31)

Journal of College of Education for pure sciences Vol.5 No. I 2015

f =U=0 or X =Y=0'

ln the situation wh ere yn ,y^ ,y'-LY ,y^-rY ,y"Y rnay be linearly dependent, we

fmd the following non-trivial cases:

Case (1):I = d/ v/ith m,n,f ,g+0andm+n

To find the infinitesimal X for equation (1.31) from equation (1.33)we obtain

where a is an arbitary constant.

Hence,

fl= rron^. 
[, t-+l ( r oa)H r,>f,^

and the infinitesimal generator (1.29), is

1a(7-n)1".\A...4
\ / i lax)a;+rqY)ay

Now, to find the corresponding invariant solutions we first find the canonical

coordinates:

Solving, f (u)

o(!/1Sar1ux+ayua=o

a
I

where k is an arbitrary constant. Then, we substitute ln u,v to get the solution in

terms ofthe original variables x, y.

Solving this DE we get, for E > ]

@.(2[r = 0

In this case x = # and requires g(x) - yf(x),

so the DE isjl = f @)(y" * yy^) .

The canonical coofdinates are u=y, p _ [ f (x)dx

and under these coordinates, the DE reduces to

dlt'-= u" +vu"'.
dt

Case (3) :l/ : yyn withm = |

.. r(n-l\ " ---m mrs case r = fil J S@)4,

and require

f (i =8?s@) [ s(x)dx.

so the goveming DE is

(Yto, I s@)ax)t" + s@)v.

|rntau, + u + tl+ 

'fi 
tan-1 (#_ I = v I k

a

I

tly
dx

lo
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The canonical coordinates are found to be

u=U s(x)dxl-fi6t'-", " =#+ p

and under these coordinates the DE reduoes to

due
I dv (n-l)u
F

r As an example, with n=2,9=x2 an'd y =e=1,owDEi

. / ^ r .\ "Y'=V'Jx')Y"+x"Y

*5

Y'-iYz +x2!

lNote: This equation could be solved as a Bernoulli equation

dy-xs"
#- rr, =|f wtrhv =. yr-z - y-l'l

Using the canonical coordinut"su =f + y-t und v = -y-7

and substituting into the DE' we E"t # = 1 - 1' a separable DE'

D Solving this separable DE we getu *ln(1 -u) = -v + k;(where k is an arbitrary

I 
"orrstant). 

So that in terms ofthe original variables:

/x3.1\ | ,x3 1.\ 1,'.
(. r .t,) +rn11 - t t + 

r) )= r+ 
r<

1.6 CONCLUSION

Symmefies are most useful in the study of differantial equations and they are

useful in different ways- Firstly, the use of symmetry tansformation can be used to

solve ordinary differential equations by leading to a variable-absent equation and thus

t7
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simpli$ing the problem. This is achieved by the use of canonical coordinates..

Secondly, a symmetry of a differential equation tansforms solutions into other

solutions and thus symmetries can be used to generate new solutions ftom old ones.

In this paper, we investigated the applioation of Lie symmefies to the equation

+ g(x)y'
tdv

& = f(x)Y"

where f,g+0 and n+m.

we found special cases for the coefficient functions that allowed either a full genenl

solution ofthe ODE or at least a transformation that lead to a separable equation.
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