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1. INTRODUCTION 

This Warming makes adaptation harder. Extreme weather occurrences are increasing, according to IPCC statistics 

(IPCC). Ecosystems will suffer if the global average temperature rises 1.5 °C above pre-civilization levels [1]. If 

nothing is done to slow the warming trend, then the global average temperature will increase by at least 2 °C by 2060 

and as much as 5 °C by 2100 [2]. This situation would devastate the earth, causing biodiversity loss and food shortages 

[2]. 

Given that climate change affects the planet, a concerted effort must be exerted to dramatically reduce emissions of 

climate-altering gases, such as CO2 and methane (CH4). The energy sector’s greenhouse gas (GHG) emissions must 

be rapidly and significantly reduced. 

Environment Germany determined that the energy sector emitted roughly 85% of Germany’s GHGs. Energy 

generation is responsible for half of these emissions [3]. Emissions result from energy conversion, with energy 

production releasing GHG and air pollution (typically during the generation of electricity or heat). These emissions 

also encompass emissions from vehicles and fossil fuel-heated home emissions [4], including those from factories and 

power plants. 

Germany’s energy consumption increased to 21.5% from 1990 to 2016 to 582 billion kWh [5]. The country also 

reduced its electricity-related CO2 emissions from 366 million tons to 300 million tons. Accordingly, emissions have  
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decreased relative to electricity consumption. However, fossil fuels and nuclear energy provided over 67.5% of 

Germany’s crucial power in 2016. Approximately 133 billion kWh [5] is produced, with the majority from lignite 

burning, which is detrimental to the environment. 

The overall CO2 equivalent emissions of the country decreased between 1990 and 2017, with the energy sector 

contributed the most. In 2017, the energy sector accounted for 32% of the country’s 766 million metric tons of CO2 

equivalent. This amount exceeds the transportation industry’s emissions of 168 million metric tons [4]. 

In response to the high GHG emissions and the Paris Agreement, the EU pledged to minimize its emissions by at least 

40% by 2030 compared with the 1990 levels. The EU raised its aims toward the end of 2020. The European Council 

has set a legally binding target of reducing emissions by at least 55% by 2030 compared with the 1990 levels [2, 6]. 

This GHG emission reduction method should be researched, given its potential to help mitigate climate change. Efforts 

should be exerted toward achieving a future where renewable energy sources meet our energy demands. In 2011, the 

IPCC determined that lowering energy use alone would not be enough to reverse population and income pressures [7]. 

Instead, current energy infrastructure necessitates a complete overhaul. 

Umweltbundesamt found that converting Germany’s electricity supply to 100% renewable energy by 2050 is 

technically possible and ecologically advantageous [8]. If this mechanism works, then we could remove all power 

producing GHG emissions. The GHG emissions can be significantly reduced by changing the energy distribution 

system. A substantial amount of work must be carried out to prepare for a renewable energy power grid before 2050. 

Load management, enhanced storage, and transmission infrastructure adjustments are necessary [8]. 

More renewable energy into electrical systems is a key climate change goal. Increase renewable energy in power 

systems. Renewable energy sources, such as solar, wind, and geothermal power, offer clean, long-term alternatives to 

fossil fuels that emit GHGs. Despite the potential of these energy sources to provide unlimited electricity, they also 

challenges. Renewable energy sources are more weather-dependent than fossil fuel-based ones. Long-term planning 

is a challenge due to the energy supply instability. Energy system operators must optimize energy supply planning. 

This conundrum has far-reaching effects. Always maintain energy supply-demand continuity [9]. 

This approach is useful and may lower deployment risks for renewable energy sources, such as wind and solar, which 

are rapidly developing in the energy infrastructure. Accordingly, anticipating generation and demand is essential. 

Energy demand forecasting remains challenging. Predictions can range from minutes to months or years (many years), 

making them highly versatile. This dissertation contributes to the literature on short-term load forecasting (STLF), 

which is used to construct low- and medium-voltage energy feeders for small and medium-sized enterprises with 

forecasting horizons of a few hours to a few days. Moreover, this work will utilize data from sensors surgically placed 

in Internet of Things devices, which are more reliable than smart meter data. Nonlinear trainable combinations are 

computationally costly, unlike linear forecasting models. Time-based data points are a time series. 

2. BACKGROUND 

Machine learning (ML)-based energy forecasting systems are being further developed. This sector has focused on 

electrical load and energy consumption evaluation to address supply and demand issues and environmental concerns. 

Energy load forecasting helps build, manage, and monitor power networks. Overestimation of demand can result in a 

power surplus and require additional generators, which can increase operating costs. Dependability may be 

compromised if the system cannot produce enough electricity to fulfill demand [10]. Home builders and manufacturers 

may benefit from more precise power consumption forecasts [11, 12]. 

ML techniques can accurately anticipate power demand [13]. Among the various ANN model types investigated are 

wavelet-based, long short-term memory (LSTM)-based, random forest-based, and ensemble-based [13]. 

Existing literature predicts energy usage using ML models. Culaba et al. [14] established a predictive analytic hybrid 

using K-means and SVR models. This study [15] utilized CNN and other deep learning methods to forecast future 

constructions’ energy consumption using a fraction of the data. Pinto et al. [12] predicted workplace energy use using 

ensemble models. Walther and Weigold [12] studied company energy consumption literature to better understand its 

future. 

After substantial research, several ML methods have been tested to estimate energy usage using smart meter data. 

Bharati et al. [15] predicted house smart meter usage using MLP and SVR models. Data gathering from the meter’s 

consumption history includes average load, peak load, minimum load, and interior temperature. 
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These mechanisms avoid time series modeling due to the considerable number of outcomes. Han et al. [16] used smart 

grid analysis to study idea drift. They utilized weighted majority voting to include student results and random 

prediction to prevent idea drift. The recommended procedure for identifying idea drift outperformed several other, 

better-known methods. The results supported the recommended method. Modern smart networks address energy costs 

and demand forecasts, resulting in improved power grid management. 

Heydari et al. [17] presented a hybrid system, including gravitational search algorithms (GSA), variational mode 

decomposition (VMD), and general regression neural networks. VMD analyzes intrinsic mode function (IMFS), 

whereas GSA selects time series features. 

3. METHODOLOGY 

3.1. Recurrent Neural Network (RNN) 

RNNs were developed in the 1980s to represent time data. Classic neural networks independently handle inputs and 

outputs. Neural networks struggle with time series tasks, including financial series prediction, motor control in non-

Markovian situations, and data classification (e.g., rhythm detection in music and speech). RNN efficiently models 

interdependent sequential datasets. 

A recurrent hidden state with time-dependent activation can be added to the feed-forward neural network (cycle). 

RNNs depend on prior calculations; hence, its name. RNN similarly behaves on each sequence subsegment. RNNs 

save their calculations in “memory” for later use. RNNs cannot retrace their steps forever, but they may potentially 

use data from infinitely long sequences. RNNs are useful despite this limitation. 

Figure 1 shows an RNN unfolding into a full network. If the sequence is five, then the network will be a five-layer 

neural network with each layer representing a time interval. 

RNNs have constant parameters, unlike deep neural networks (U, V, and W in the equation presented earlier). RNN 

training is comparable to NN training. Previous calculations affect the gradient at each output in the current time step. 

Every time step uses RNN parameters. Vanilla RNNs trained with BPTT have trouble learning about long-term 

dependencies due to fading or ballooning gradients. Gating systems, such as LSTM and gated recurrent unit (GRU), 

can address long-term reliance. GRUs include LSTM. 

 

Fig. 1. RNN Structure 

3.2. LSTM 

Define Hochreiter’s LSTM concept has been refined by several investigations. LSTM memory blocks are smaller 

networks with recurrent connections. Memory blocks have input, output, and forget gates. The newly incorporated 

gates allow the LSTM unit to discard stored information at each time step, unlike the usual recurrent unit. The typical 

recurrent unit differs. The LSTM avoids long-term dependability difficulties. LSTMs retain information effectively 

and learn rapidly. A neural network module-generated connectivity in all RNNs. Traditional RNNs have a single tanh 

layer or simpler recurrent module. LSTMs segment differently than repeated modules. Four neural network layers 

function together. 

In Figure 2, each line between node tips represents a vector. Vector addition is shown by pink circles. Yellow boxes 

represent learned neural network layers. Forking replicates and sends a line’s content to two locations, whereas 

concatenation connects two or more lines. The cell state, the most significant aspect of LSTMs, is the vertical line at 

the top. This aspect unalters all data. LSTMs can add or delete cell state information by carefully changing gates. Gates 

allow varying amounts of information through. Each gate uses pointwise multiplication and sigmoid neural networks.  
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The sigmoid layer calculates the percentage of each component that should pass. When the output is zero, all data are 

destroyed; when it is one, it is saved. Zero stores nothing. An LSTM contains three gates that monitor cell health. 

 

Fig. 2. LSTM Structure 

3.3. GRUs 

RNNs with a GRU are typically beneficial for long-range relationships because they avoid the vanishing gradient 

aspect of regular RNNs. A GRU’s ability to selectively remember and forget data via its gating mechanisms is critical 

to the notion, as seen by the graphic. This photo demonstrates the complex composition of a GRU cell’s two most 

important gates: the update and reset gates. The new hidden state is generated by these two gates with the current input 

and the previous hidden state. The flow of information is regulated by these two gates. The update gate determines 

how much of the old data the cell should recall to ensure that the GRU’s outputs are solely dependent on the data in 

the sequence. The reset gate achieves the purpose of allowing the cell to forget unhelpful data. The GRU cell can 

process complex input patterns using its activation functions and applying nonlinear transformations. The dynamic 

system of activations and gates used by GRUs makes them particularly successful for tasks that require an 

understanding of sequential and time-series data. 

3.4. Dataset 

The Deep learning neural networks efficiently function with time series data. Neural networks may transform input 

data into output data utilizing datasets. This mechanism allows endless complicated model learning. Technically, input 

sequence contexts can help neural network models in understanding patterns and seasonality. LSTM networks 

outperform feed-forward networks for time series applications because they can make temporal connections without 

defined window widths. 

 

Fig. 3.  GRU Structure 

LSTM networks outperform feed-forward networks. We predict several time series with an LSTM model and a 

rudimentary RNN using the Pearson and Kendall correlation functions and Keras library. We also compare the Adam 

and SGD optimizers. PJM’s 10 year megawatt-per-hour energy utilization confirmed our model, AEP. This dataset 

included residential user statistics over 12 years. The home data files include energy use and date (in MW). The RNN, 

LSTM, and GRU models require data cleaning and standardization before prediction. 
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Procedure: 

1. This experiment uses 11,273-day data. 

2. Instruction will use the first eleven hundred thousand. 

3. NumPy: A NumPy array is a multidimensional, homogeneous data structure that allows for efficient 

numerical operations and is a fundamental component of scientific computing in Python. 

4. Data for sequence length modeling are prepared. 

5. Our recommended models will be trained on these data. 

3.5. Overall Methodology 

A flowchart depicts our study’s approach, which begins with data gathering and ends with model evaluation. In the 

first phase’s Start function, Python imports Numpy, Pandas, Matplotlib, and several Keras components. These libraries 

are used for numerical computing, data processing, and model development and training. After the necessary libraries 

are imported, the dataset “AEP_hourly.csv” must be read into a pandas Data Frame. Subsequently, the Datetime 

column must be converted to pandas datetime objects and the Data Frame indexed by this column. These processes 

must be completed as part of the prepare and resample data process. Data resampling to daily means will further reduce 

computing cost and granularity. Thereafter, the MinMaxScaler is used to scale the data values against the range of zero 

to one. Accordingly, the model is given the normalized input values. This step is crucial for the robust and efficient 

training of models that are scaled sensitive. Subsequently, the data will be in the matrix formats that are suitable for 

time series forecasting. This process produces a structured matrix in which each row represents unique input sequences 

to the model. Thereafter, the data must be properly prepared to evaluate the performance of the model on unseen data 

to separate the data into training and test sets. This separation ensures that the generalizability of the model is 

objectively assessed from the training data. The model’s technique is based on loops called “For Each Model” and 

“For Each Optimizer”. In this context, several models will be created using different optimizers, such as Adam and 

SGD, for the generate model function. The models are formed using LSTM, RNN, and GRU.  

The Model Training and Evaluation portion is bounded by the dashed box. This section involves a repeatable process 

of fitting the model, making predictions, and calculating the metrics. After each model is fit to the training set, you 

will need to test it against the test set you created. After making the prediction, you will need to calculate root mean 

square error (RMSE) and mean absolute error (MAE) as performance metrics. The Plot Results node will help you 

complete the process by showing the visualization step of graphing the actual versus expected energy use. The 

technique moves to the Plot Loss Across Epochs after the loops are done. This process of visualizing the training 

process over time helps in diagnosing models that have difficulty converging. Lastly, the process is finished with the 

End of the methodological sequence. A flowchart is a box-and-arrow diagram that provides an overview of a 

methodological storyline. The computing techniques and their sequence, consisting of sequential phases and looping 

repetition, are summarized in a graphical format. The cyclic nature of model training and evaluation stages and the 

logical sequence of processes are outlined in Figure 4, which summarizes this entire technique. 

4. RESULTS 

This work examines and contrasts three separate neural network designs, namely, LSTM, RNN and GRU, to predict 

power usage. In addition, two separate optimizers, Adam and stochastic gradient descent, are utilized. The finding is 

illustrated by a set of graphs depicting the difference between the true second and the expected power usage of around 

1600 days. 

4.1. LSTM Performance 

The LSTM models for training by the Adam optimizer show a close tracking of actual energy consumption trends, 

although some peaks are partially tracked (Figure 5). Meanwhile, the LSTM models for training by the SGD optimizer 

also show a similar tracking pattern of prediction, with a slightly different volatility captured in the actual data (Figure 

6). 
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Fig. 4. Overall Methodology 

4.2. RNN Performance 

The RNN models trained with the Adam optimizer exhibit a reasonable prediction capacity, with the predicted values 

well encompassing the actual values, despite a considerable degree of noise in the predictions (Figure 7). Under SGD, 

the RNN’s performance slightly deteriorates, as demonstrated by the increasing noise in the prediction (Figure 8). 

4.3. GRU Performance 

The GRU models exhibit performance analogous to the LSTM when utilizing the Adam optimizer, tightly mirroring 

the actual data with some discrepancies during peak values (Figure 9). The GRU models show more variability and a 

slight decrease in prediction smoothness with SGD, similar to the RNN (Figure 10). 
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4.4. Loss Over Epochs 

The graph representing the test loss across epochs for all models and optimizers (Figure 11) indicates that the LSTM 

and GRU models with Adam optimizer not only converge faster but also achieve a lower loss compared with the SGD 

optimizer, suggesting better overall performance. 

4.5. Discussion 

In our comparative analysis, the models with the Adam optimizer outperform those with SGD in terms of convergence 

speed and stability. This observation is consistent with the theoretical underpinnings of Adam, which combines the 

benefits of two other extensions of stochastic gradient descent — AdaGrad and RMSProp. 

A comparison table summarizing the key performance metrics, such as RMSE and MAE for each model and optimizer 

combination could provide a clearer perspective on the performance differences. The plots show that the GRU and 

LSTM models with Adam optimizer are likely to yield lower RMSE and MAE values compared with those with SGD, 

indicating their superior predictive accuracy and reliability for this application. 

The convergence graph demonstrates the effectiveness of the Adam optimizer across all tested neural network 

architectures by providing consistently lower loss values. Accordingly, Adam’s adaptive learning rate mechanism can 

be useful for the time series prediction tasks in the energy consumption domain. The data presented in performance 

comparison Table 1 provide a summary of how well the LSTM, RNN, and GRU models have fit the training and 

testing datasets when utilizing the Adam and SGD algorithms. The data have been shown with three decimal places to 

ensure precision. 

In this case, the LSTM model combined with the Adam optimizer has slightly better fit to the training data than other 

models, with the lowest MAE values on the training and test sets. Accordingly, the LSTM model is efficient in 

capturing the patterns of energy consumption data. The RNN and GRU models have high error rates. These errors 

increase even more with the SGD optimizer. This result shows that the Adam optimizer could be more proficient in 

fine-tuning model weights for this type of data than the typical SGD algorithm. The RMSE data show a significant 

leap from training to test predictions for all models, indicating that all of them are overfitting on the training data, and 

more suitable model tuning and data regularization should be used to enhance model generalization. 

TABLE I .   RESULT COMPARISON 

 

 

 

 

 

 

 

 

Fig. 5. .  LSTM Model Predictions with the Adam Optimizer 

Model Optimizer RMSE 

(train) 

RMSE 

(test) 

MAE 

(train) 

MAE 

(test) 

LSTM Adam 0.070 15022.113 0.053 14922.264 

SGD 0.110 15052.863 0.087 14995.446 

RNN Adam 0.069 14992.241 0.053 14894.386 

SGD 0.078 15144.826 0.061 15054.494 

GRU Adam 0.071 15212.686 0.055 15112.185 

SGD 0.101 15119.119 0.081 15050.894 
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Fig. 6. LSTM Model Predictions with the SGD Optimizer 

 

Fig. 7.  RNN Model Predictions with the Adam Optimizer 

 

Fig. 8.   RNN Model Predictions with the SGD Optimizer 

 

Fig. 9.  GRU Model Predictions with the Adam Optimizer 
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Fig. 10. GRU Model Predictions with the SGD Optimizer 

 

Fig. 11. Test Loss Across Epochs for all Models and Optimizers 

5. CONCLUSIONS 

This work focused on thoroughly exploring time-series forecasting using the capabilities of contemporary neural 

networks. The LSTM and GRU models have been applied to the sensitive sensor-generated data in IoT devices to 

improve the interpretation and achieve highly accurate energy consumption predictions. These advancements are vital 

for enhancing the performance of smart grids, promoting greater energy efficiency and sustainability. The results 

suggest that LSTM, particularly when combined with the Adam optimizer, demonstrated the most promising results 

by significantly mitigating the margin of error, as evidenced by the minimal RMSE and MAE values on the test set. 

The rest of the nonlinear models were approximated with significantly less efficacy, including the RNN and GRU 

frameworks, as well as the Adam and stochastic gradient descent optimizers. Nonetheless, when applying the lessons 

learned to the unseen data, this study found a significant discrepancy, indicating severe overfitting. This finding implies 

an urgent knowledge gap in the areas of regularization techniques and model tuning to advance ML and transform the 

models into the ones that can not only perform but also learn the consumption pattern for new data reliably, mimicking 

the new data pattern. These findings are valuable for future programs focused on energy consumption forecasting. This 

study demonstrated the profound influence that the model selection and optimization strategies have on developing an 

accurate and reliable predictive model. These strategies are paramount for the subsequent data-based decision-making 

processes in smart energy systems and beyond. 
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