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ABSTRACT

The numerical solution of Huxley equation by the use of two finite
difference methods is done. The first one is the explicit scheme and the
second one is the Crank-Nicholson scheme. The comparison between the
two methods showed that the explicit scheme is easier and has faster
convergence while the Crank-Nicholson scheme is more accurate. In
addition, the stability analysis using Fourier (von Neumann) method of two
schemes is investigated. The resulting analysis showed that the first scheme
is conditionally stable if, , ; 2-abbt . 2(Dx)*  and the second

4 ’ 4 - ab (Dx)?

scheme is unconditionally stable.
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1. Introduction

It is probably not an overstatement to say that amost all partial
differential equations (PDEs) that arise in a practical setting are solved
numerically on a computer. Since the development of high-speed computing
devices the numerical solution of PDEs has been in active state with the
invention of new algorithms and the examination of the underlying theory.

Thisis one of the most active areas in applied mathematics and it has
agreat impact on science and engineering because of the ease and efficiency
it has shown in solving even the most complicated problems. The basic idea
of the method of finite differences is to cast the continuous problem
described by the PDE and auxiliary conditions into a discrete problem that
can be solved by a computer in finitely many steps. The discretization is
accomplished by restricting the problem to a set of discrete points. By
systematic procedure, we then calculate the unknown function at those
discrete points. Consequently, a finite difference technique yields a solution
only at discrete points in the domain of interest rather than, as we expect for
an analytical caculation, a formula or closed-form solution vaid at all
points of the domain [11]. Manoranjan et a [12] obtained estimates for the
critical lengths of the domain at which bifurcation occurs in the cases
b=0,a, 0<a£l/2, and 1.

Manoranjan [13] studied in detail the solutions bifurcating from the
equilibrium state u =a. Eilbeck and Manoranjan [3] considered different
types of basis functions for the pseudo-spectra method applied to the
nonlinear reaction-diffusion equation in 1- and 2- space dimensions. Eilbeck
[4] extended the pseudo-spectral method to follow steady state solutions as a
function of the problem parameter, using path-following techniques. Fath
and Domanski [6] studied the cellular differentiation in a developing
organism via a discrete bistable reaction-diffusion model and they used the
numerical simulation to support their expectations of the qualitative
behavior of the system. Lewis and Keener [10] studied the propagation
failure using the one —dimensional scalar bistable equation by a passive gap
and they used the numerical simulation in their study. Binczak et a [1]
compared the numerical predictions of the smple myelinated nerve fibers
with the theoretical results in the continuum and discrete limits. Broadbridge
et d [2] re-examined the derivation of the gene- transport equations and
used the Gaussian clump of aleles by the use of a numerical method-of-
lines by usng PDETWO program. Lefantzi et a [9] presented their findings
for various orders of spatial discretizations as applied to SAMR (Structured
Adaptive M esh Refinement) smulations.
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In this paper, the numerical solution of Huxley equation by usng two
finite difference methods and stability analysis of these two methods are
analyzed.

2. The Mathematical Model
One of the famous non-linear reaction-diffusion equations is the
generalized Burgers-Huxley (gBH) equation:

2
%+aud % % = buft- u® )(u? - a) ()
a3?0,b30,d>0,and ai (0,)
If wetaked =1, a * 0,and b * 0, equation (1) becomes the following
Burgers-Huxley (BH) equation:

fu, Tu_ Tu_

U e bu(1- u)(u- a) (2)
Equation (2) shows a prototype model for describing the interaction

mechanism, convection transport. When b =0, and d =1, equation (1) is

reduced to Burgers eguation which describes the far field of wave

propagation in nonlinear dissipative systems

2
ﬂ_u+auﬂ_u_ﬂl;:0 (3)
qt ix qx
When a =0, and d =1, eguation (1) is reduced to the Huxley equation
which describes nerve pulse propagation in nerve fibers and wall motion in
liquid crystal

Tu T
e bu(- u)(u- a) (4)
It is known that nonlinear diffusion equations (3) and (4) play
important roles in nonlinear physics. They are of specid significance for
studying nonlinear phenomena [19]. Zeldovich and Frank- Kamenetsky
formulated the equation (4) in 1938 as a model for flame front propagation
and for this reason this equation sometimes named Zeldovich-Frank-
Kamenetsky (ZF) equation, which has been extensively studied as a simple
nerve mode [1]. In 1952 Hodgkin and Huxley proposed their famous
Hodgkin-Huxley model for nerve propagation. Because of the mathematical
complexity of this model, it led to the introduction of the simpler Fitzhugh-
Nagumo system. The simplified model of the Fitzhugh-Nagumo system is
Huxley equation [18]. Because Huxley equation is a specid case of
Fitzhugh-Nagumo system, it is sometimes named Fitzhugh-Nagumo (FN)
equation [5] or the reduced Nagumo equation or Nagumo equation [15]. In
sixties, Fitzhugh used equation (4) as an approximate equation for the
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description of dynamics of the giant axon. This equation was among the first
models of excited media[8].
In this paper, we shall take the Huxley equation as a model problem [12]:

:T;: %— bu(- u)(u- a)

xI [-L,L], t3 0

u(x0)=(b- H)x*+H,b30,H >0 (5)
u(- Lt)=u(L,t)=b (6)

For the purpose of numerica calculations, we shall take:

b=1,al (0,1),L=1,0£b£1,and 0<H £1,0£t£3.
3. Derivation of the Explicit Scheme Formula of Huxley Equation
[14] isR={(x,t):- LEXEL,0£t£c} Assume that the rectangle

subdivided into (n- 1)by(m- 1) rectangles with sides Dx =h, Dt =k.
Start at the bottom row, where t =t, = 0, and the initial condition is[12]:
u(x,t,)=f(x)=(b- H)x*+H ,i=23,...,n-

A method for computing the approximations to u(x,t) at grid pointsin
successive rows will be developed

{ul.t;Ji=234,..,n-1, j=234,.,m (7)
The difference formulas used for u, (x,t) and u,, (x,t) are:

0 (xt)= u(x,t+ kk)— u(x.t) +o(K) )

0, (xt) = u(x+h,t)- 2urg>2<,t)+u(x— h,t) o) )

Where the grid points are:

Xy =% +h, X, =% - h’tJ+l_t Kot

=t -k
]

Neglecting the terms O and O( ) and use approximation U ;

for u(>g,tj) in eguations (8) and (9), which are in turn substituted in

equation (4), we get

Ui,j+1k' Ui,j ) Ui+1,j - ZI:IIZJ +Ui-1,j — bUi,j(l- uiyj)(uiyj _ a) (10)
From equation (10), we have

U Uy = (U - 20 +uy )+ kb (- o ) - a) (12)

Where r =k/h?
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After some mathematical manipulation, we obtain
Ui jaa = r(ui-l,j +Ui+1,j)+(1‘ 2r - kba)ui,j +kb(ui,j)2(1+a' Ui,j) (12)
Equation (12) represents the explicit finite difference formula for
equation (4). Equation (12) is employed to create (j +1)th row across the
grid, assuming that approximationsin the jth row are known.
Notice that this formula explicitly givesthe value u, ;,, in terms of

Uopjs Ujand U, ;.

ij o1
4. Stability Analysis of the Explicit Scheme Using Fourier

(von Neumann) Method
The basic idea of this method is to replace the solution of the finite

difference method u,, , a time t by y ()¢, where i =+~ 1, g >0 [16].

To apply von Neumann method to equation (4), we resort to the linearized
stability analysis[7], we have

2
I T4 by (13)
m qx
The finite difference explicit formulafor (13) is:
u -u u -2u, ., +u
n,m+1 nm _ n+L,m n,n; n-im _ abunm (14)
Dt () |

Substituting u, ,, =y (t)e*in (14), we have

+ X _ igx ig(x+Dx) _ 3 + ig (x- Dx) )
vl Gy ey 0
g’ (t + UDt)- y (t)geiw = (yD)((t))z [eing +eix 2]eigx - aby (t)eigx b
y (t+00)-y (1) =ry ()fe™ +e - 2|- abDyy ()
Where r = k/h?
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y (t+Dt)-y (t)=ry (t)cosgbx +isingDx + cosgDx- i singDx- 2|- abDty (t)

=1y ()f2cosgDx - 2]- abity ()

= 2ry (t)cosgx - 1] - abDty (t)

=-2ry (t)1- cosgdx]- abDty (t)

= 2ry (t)L- - 2sin?(gDx/2))]- abDty (t)

=-4ry (t)sin?(gbx/ 2)- abDty (t)b

y (t+Dt)=y (t)- 4ry (t)sin*(gDx/2)- abDty (t)

= [1- 4rsin?(gDx/2)- abDt) (1) b

y (t+Dt)/y (t)=1- 4rsin?(gx/2)- abDt =x
Where x can be visualized as the amplification factor and we get

y (t+D)ly (t)=x (15)
As we advance the solution from aparticular plane y (t) to the next

planey (t+Dt), y (t +Dt)- y (t) must start decreasing or aternativelyy (t)

must be bounded function, i.e.y (t)should not tend infinity for large t.
From equation (15), for boundedness of (15), we need

b+ ) £1p

x| £1p

[1- 4rsin®(gDx/2)- abDt| £1 (16)
In the above inequality, the right-side inequality is:

1- 4rsin?(gDx/2)- abDt £1

Implies r >0 and thisisawaystrue.

Hence, in order that (16) isto be satisfied, we need

- 1£1- 4rsin?(gDx/2)- abDt b

- 2£-4rsin?(gbx/2)- abDt b

23 4rsin?(gx/2)+ abDt b

1 abDt .

ST g ren (@Dx/2)

For some b , sin?(gDx/ 2) is unity and hence the above condition
reduces to
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2- abDt

e — a7)
Since r =Dt/ (Dx)?, from inequdity (17) , we have
2(Dx)?
Dt — 2L 18
4+ ab (Dx)? as)

This precisely the conditions imposed on the explicit scheme to be
stable.

5. Derivation of the Crank-Nicholson Scheme Formula of Huxley
Equation
Theisdiffusionterm u,, inthis method is represented by central

differences, with their values at the current and previous time steps averaged
[17]:

_1éai(x- hit+k)- 2u(xt+k)+u(x+ht+k)+u(x- ht)- 2u(xt)+u(x+h,t)ol
u, == &}(19)

28 h?
u = u(x,t+k)- u(x,t)
' k
By using the approximation u; ; for u(>g ,tj) in equations (19) and
(20), which are in turn substituted into equation (4), we have
U= U ) Uiy~ 2ui,j2+1+ui-1,j+1_ Uiy j - 2ui,2j U g = bu j(l' u J)(u ) a) (21)
k 2h 2h ’
From (21), we get
20, - 20 - r(ui+Lj+l_ 2U, 4y +ui—l,j+l)
:r(ui+l,j - 22U, +Ui-1,j)+2kb(ui,j - (ui,j)z)(ui,j - a)
r =k/h?> Where

After some mathematical manipulation, we get
Uy UL ) (24200 = (U o )+ (25 2r - 2akb)u

i+1,j+1 i+1,]
+2b(u, Plita-u,) , i=234..n-1 (22)

(20)

i,j+1

Equation (22) represents the Crank-Nicholson formulafor equation (4).

The terms on the right hand side of equation (22) are all known.
Hence, the equations in (22) form a tridiagonal linear agebraic system
AX =B.

The boundary conditions are used in the first and last equations only
e u,=u,,=b,and u,,=u, .,,=b, " j.

Equations in (22) are especidly pleasing to view in their tridiagonal
matrix form AX =B, where A is the coefficient matrix, X is the unknown
vector and B is the known vector as shown below:
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e+2r -r U?uz,jﬂl;l
é atu,,,, Y
g-r 2+2r -r a€ " u
é l:l,\u j+ s =
a -1 2+2r -1 a€ M
A /e . u
é u% -
é -r 2+2r -r l:la'ln-Zj+1u
A _ + e ! l’.\l
e r 2+2r( QUi

2rb+(2- 2r - 2ab K)u,, +2b k{u, , PlL+a- u,,)+ru,,
r(uzvj +u4'j)+(2— 2r - 2ab K)u,, +2b k(uavj)2(1+ a- Ua,j)

r(up_lj +Up+1j)+(2' 2r - 2ab.k)up'j +2b k(u .)2(1+ a- up'j)

p.J

(un-a,j +un_1'j)+(2— 2r - 2ab k)u, ,; +2b k(un_z'j)2(1+ a- un-2,j)
U, +(2- 2r- 2ab k)u, ., +2rb

cooooooooc

-
-

@ @ @ @ D D D D D D

OC

When the Crank-Nicholson scheme is implemented with a computer,
the linear system AX = B can be solved by either direct means or by
iteration.In this paper, the Gaussian elimination method (direct method) has
been used to solve the algebraic syssem AX = B.

6. Stability Analysis of the Crank- Nicholson Scheme Using Fourier
(von Neumann) Method
The finite difference Crank-Nicholson formulafor (13) is.

-u u - 2u +u u -2u _+uU
n,m+1 nm _ T ntlmt+l n,m+1 n-1m4q n+l,m n,m n-1m
= -abu,, (23)

Dt 2(Dx)? 2(Dx)?
Substituting u,, ,, =y (t)eigx in equation (23), we have

u
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y (t+Dt)e” -y (t)e™ _y (t+Dt)e"™ - % (t+Dt)e™ +y (t +Dt)e®* >
Dt 2(Dx)
B 2y (e vy
2(DX)2 aby (t)e p

g/ (t+ %tt)' y (t)u iox =y2(EI;XI)32t) [ei@ P Z]ei@( _,_23(/#.(32[@@ b Z]ei@( .

aby (t)e* b
y (t+Dt)-y (t)=—ry (t2+ Dt)[e@‘ +e'P .2 +ryT(t)[eig)‘ +e P 2]- abDty (t)

+

Where r = k/h?

y (t+0r)-y () =" L+

2" ]cosgDx +i singDx + cosgDx - i singDx - 2]
+rY(t)[Cosgjx+ising)<+cosng—isin93x-2]-athy )

=y—[2cosgpx 2]+ ry [2cosgpx- 2]- abDy (1)

=ry t+Dt[cosgpx 1 +ry (t [cosgpx-l]- abDty (t)
=-ry (t +Dt)[1- cosgdx]- ry (t)1- cosgDx]- abDty (t)
=1y (t+DO)fL- @- 2sn?(ex/2)]- ry QL @- 2sin?(@x/2))|- abDty (t)
=-2ry (t+Dt)sin?(gDx/ 2)- 2ry (t)sin?(gDx/ 2)- abDty (t) P
y (t+Dt)+2ry (t+ Dt)sin?(gbx/ 2) =y (t)- 2ry (t)sin?(gDx/2)- abDty (t)p
@+ 2rsin?(gDx/2)y (t+Dt)=(1- 2rsin?(gox/2)- abDt)y (t) P
_1- 2rsin®(gDx/2)- abDx

y (t+ o0y (0= 1+ 2r sin?(gDx/ 2) i
_1- [or sin?(gDx/ 2) + abD]
y (t+ou)ly (t)= 1+2r sin?(gDx/ 2)
For stability, we need
y (t+Dt)y f)£1 b
X|£1 b [1- [2r sin?(gDx/ 2) + abDt

| 1+2rsin’(@x/2) |
Hence, the Crank-Nicholson scheme is unconditionally stable.

=x b y (t+Dt)ly (t)=x

£1,"r,a,b,Dt

7. Conclusions
We concluded from the comparison between the two schemes that the
explicit scheme is easier and has faster convergence than the Crank-
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Nicholson scheme which is more accurate than the explicit scheme and the

results of this paper are affirming the analytical results which obtained by
Manoranjan et al [12] as shown below:

thenb=0(1) If u(xt)® 0 ast® ¥ if L<p/(l- a).
then b=a(2) If u(x,t)® a ast® ¥ if L<p.
then b=1(3)If u(xt)® 1 ast® ¥ if L<p/a.
as shown in figure (1) and table (1). In addition, from stability anaysis, we
concluded that the explicit scheme is conditionaly stable if
2-abDt o 2(Dx)?

4 4- ab(Dx)

unconditionally stable.

r £ while the Crank-Nicholson scheme is
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Figure (1)
Figure(1)Explains the solution of the Huxley equation by the use of
Crank-Nicholson scheme for various values of H at a=b=0.8
The figure shows that the solution of the problem converges to the
steady state solution u = a = 0.8 as t gets large at specific boundary

condition b = 0.8.

94



Numerical Solution And Stability...

Table (1)

Explicit Crank-Nicholson Explicit Crank-Nicholson
b=0.25, a=0.25, b=0.25, a=0.25, b=0.25, b=0.25, a=0.25,
H=0.1 H=0.1 a=0.25, H=0.3 H=0.3

0.1000 0.1000 0.3000 0.3000
0.1287 0.1274 0.2910 0.2914
0.1573 0.1513 0.2817 0.2836
0.1771 0.1706 0.2751 0.2772
0.1933 0.1862 0.2696 0.2720
0.2056 0.1987 0.2654 0.2678
0.2152 0.2087 0.2621 0.2644
0.2228 0.2167 0.2595 0.2616
0.2287 0.2232 0.2575 0.2594
0.2333 0.2284 0.2559 0.2576
0.2369 0.2326 0.2546 0.2561
0.2397 0.2359 0.2536 0.2549
0.2420 0.2387 0.2528 0.2540
0.2437 0.2409 0.2522 0.2532
0.2451 0.2426 0.2517 0.2526
0.2461 0.2440 0.2514 0.2521
0.2470 0.2452 0.2511 0.2517
0.2476 0.2461 0.2508 0.2514

Table (1) shows the solution of Huxley equation by the use of
Crank-Nicholson scheme and explicit scheme for some values of a, b, and H

The table above explains that the solution of the two schemes
converges to the steady state solution u = a = 0.25 and the number of steps
which are needed to reach the solution u = a= 0.25 in the explicit scheme is
less than the number of steps in the Crank-Nicholson scheme at specific
boundary condition b =0.25 and H = 0.1, 0.3.
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