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Abstract

In this paper the concepts extension of graphs and the extensible class of

graphs have been introduced. The extensibility number of graphs has been

defined. Furthermore the regular graphs (digraphs) which have extensibility

number 1, 2 or 3 have been characterized.

Keywords: Extension of graphs(digraphs), Eulerian graphs(digraphs), Regular graph-

s(digraphs).

1 Introduction

Kharat and Whaphare [2001] introduced the concept of reducibility number for posts

in lattices theory. Attar [2005] introduced analogous concept in graph theory. In fact

he studied the reducibility of graphs (digraphs) and he characterized the reducibility
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number for some classes of graphs(digraphs). Attar [2007] introduced the concept

of contractibility number of graphs. Further, Attar [2009] introduced the concept

of extension graphs (digraphs), and he characterized the extensibility number for

some graphs (digraphs). In this work, a new definition for extension graphs has been

introduced. Furthermore, the extensible class of graphs and the extensibility number

of regular graphs(digraphs) have been characterized.

If e is an edges of a graph G having end vertices v, w then e is said to join the vertices

v and w and these vertices are said to be adjacent. In this case we also say that e is

incident to v and w, and that w is a neighbor of v. An independent set of vertices

in G is a set of vertices of G no two of which are adjacent. Let v be a vertex of the

graph G, if v joined to itself by an edge, such an edge is called loop. The degree of

v denoted by d(v) is the number of edges of G incident with v, counting each loop

twice. If two (or more) edges of G have the same end vertices then these edges are

called parallel. A graph is called simple if it has no loops and parallel edges. We say

that G is r-regular graph if the degree of every vertex is r. A simple graph in which

every two vertices are adjacent is called a complete graph, the complete graph with

n vertices is denoted by Kn.

A graph G is connected if there is a path joining each pair of vertices of G, a graph

which is not connected is called disconnected. A connected graph which contains no

cycle is called a tree. A graph G is Hamiltonian if it has a cycle which includes every

vertex of G

A digraph D is said to be weakly connected (or connected) if its underlying graph

is connected. A digraph D is called simple if, for any pair of vertices u and v of D,

there is at most one arc from u to v and there is no arc from itself.

Let v be a vertex in the digraph D. The indegree id(v) of v is the number of arcs

of D that have v as its head, i. e., the number of arcs that go to v. Similarly the

outdegree od(v) of v is the number of arcs of D that have v as its tail, i. e., that go

out of v. A digraph D is called k-regular if id(v) = od(v) = k for each vertex v of D.
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For the undefined concepts and terminology we refer the reader to [4, 5, 6].

All the graphs (digraph) through out this paper are simples.

2 Extension of Graphs

In this section, we introduced the concepts extension of graph, extensible class

of graphs and the extensibility number of graphs.

Definition 1 [4]

Let G1 and G2 be two graphs with no vertex in common. We define the join of

G1 and G2 denoted by G1 + G2 to be the graph with vertex set and edges set given

as follows:

V (G1 +G2) = V (G1) ∪ V (G2),

E(G1 +G2) = E(G1) ∪ E(G2) ∪ J

where J = {x1x2 : x1 ∈ V (G1), x2 ∈ V (G2)}.

Thus J consists of edges which join every vertex of G1 to every vertex of G2.

Attar[1] defined the extension of graphs as follows:

Definition 2 [1]

Let G be a nontrivial graph. The extension of G is a simple graph denoted by

G+S obtained from G by adding a nonempty set of independent vertices S such that

every vertex in S is adjacent to every vertex in G .

In this work we define the extension of graphs as follows:

Definition 3

Let G be a nontrivial graph. The extension of G is a simple graph denoted by

G ∗ S obtained from G by adding a nonempty set S of independent vertices different

from the vertices of G to the graph G such that every vertex in S is adjacent to at

least one vertex in G. In such a way S is called extension set of G. In particular if S

consists of a single element v, then v is called extension vertex of G.

Here, we define the extensible class of graphs.
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Definition 4

Let = be the class of graphs with certain property. Then = is called extensible

class of graphs, if for every graph G ∈ =, there exists an extension vertex v different

from the vertices of G such that G ∗ v ∈ =.

Now, we introduce the following two propositions.

proposition 1

The class of connected graphs is extensible class of graphs.

proof

It follows from Definition 3, the extension vertex preserve the connectedness of

graph.

proposition 2

1. The class of Hamiltonion graphs is not extensible class.

2. The class of trees is not extensible class.

3. The class of complete graphs is not extensible class.

4. The class of bipartite graphs is not extensible class.

5. The class of Eulerian graphs is not extensible class.

6. The class of regular graphs is not extensible class.

proof

1. Let G be a Hamiltonian graph with n vertices. It is clear that the extension

vertex v which is adjacent to exactly one vertex in G gives G ∗ v is not Hamil-

tonian.

2. Let T be a tree. If the extension vertex v is adjacent to more than one vertex

in T , then T ∗ v contains a cycle.
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3. Let Kn be a complete graph. If the extension vertex v is adjacent to less than

n vertices of Kn, then Kn ∗ v is not complete.

4. Let G be X, Y - bipartite graph, and v be extension vertex of G such that v is

adjacent to a vertices in X and a vertices in Y . It is clear that the resulting

graph G ∗ v is not bipartite.

5. Let E be an Eulerian graph. Then E is connected and every vertex of E has an

even degree. Suppose that v0 is an extension vertex of E . If v0 is adjacent to

odd number of vertices in E . Then E ∗ v0 is not Eulerian.

6. Let R be a regular graph with n vertices, and v0 be an extension vertex of R. If

v0 is adjacent to h vertices in R such that h<n. Then R∗v0 is clearly not regular.

Now, the question is that, what is the smallest extension set of vertices which make

the non extensible graph is extensible. In order to answer this question we introduced

the following definition:

Definition 5

Let = be the class of graphs with certain property, and G ∈ = be a nontrivial.

The extensibility number of G with respect to = is the smallest positive integer m, if

exists such that there exists an extension set S of G with cardinality m in which the

new graph G ∗ S ∈ =. We write m = ext=(G). If such a number dose not exist for G

then we say that the corresponding extensibility number is ∞.

One can see immediate, the class of graphs = is extensible class if and only if the

extensibility number of every graph G ∈ = is one.
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3 Extension of Regular Graphs

In this section, we characterized the regular graphs which have extensibility num-

ber equal to 1, 2 or 3.

Theorem 1

Let R be the class of regular graphs, R ∈ R.Then the extR(R) = 1 if and only if

R is a trivial or complete graph and there exists a vertex v0 different from the vertices

of R such that v0 is adjacent to every vertex in R exactly once .

proof:

Let R be an r-regular graph with n vertices. Suppose that extR(R) = 1. Then

by Definition 5, there exists an extension set of vertices with single element v0, such

that R ∗ v0 ∈ R. By Definition 3, we must have v0 is adjacent to every vertex in R

exactly once. Then d(v0) = n and the degree of every vertex of R in the graph R ∗ v0
is r + 1, but R ∗ v0 is regular. Then we must have n = r + 1. As R ∗ v0 is regular,

then either r = 0, then n = 1 and R is a trivial graph, or r = n−1 and R is complete

graph.

Conversely, Let v0 be a vertex different from the vertices of R such that v0 is

adjacent to every vertex in R exactly once, and R is trivial or complete. If R is trivial

graph then it is not difficult to see that extR(R) = 1.

Suppose that R is complete graph with n vertices. Then R is regular graph with

regularity degree n− 1, we prove that extR(R) = 1.

If v0 is adjacent to every vertex in R exactly once. Then d(v0) = n and the degree of

every vertex of R is n− 1 + 1. Then the degree of every vertex in R ∗ v0 is n. Thus

the new graph R ∗ v0 is n-regular graph. As such v0 is extension vertex of R with

respect to R. Hence extR(R) = 1

Theorem 2

Let R be a class of regular graphs, R ∈ R be an r-regular simple graph with n
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vertices. Then extR(R) = 2 if and only if there exist two independent vertices u, v

different from the vertices of R and one of the following holds:

(a) each of u and v is adjacent to every vertex in R exactly once, and r = n− 2.

(b) each of u and v is adjacent to n
2

vertices in R, n is even, r = n
2
− 1 and

N(u) ∩N(v) = φ.

proof:

Let R be an r-regular simple graph with n vertices. Suppose that extR(R) = 2.

Then by Definition 5, there exist two extension vertices u, v such that R ∗ {u, v} ∈ R

and u, v are independent vertices. As R ∗ {u, v} is regular then d(u) = d(v) in

R ∗ {u, v}. Since R ∗ {u, v} is simple then we have the following cases:

(i) R ∗ {u, v} is (r + 2)-regular graph.

(ii) R ∗ {u, v} is (r + 1)-regular graph.

If R ∗ {u, v} is (r + 2)-regular then we must have each of u, v is adjacent to

every vertex in R exactly once, in this case d(u) = d(v) = n. As R ∗ {u, v}

is(r + 2)-regular, then we must have n = r + 2, that is r = n− 2 in R and (a)

holds.

If R ∗ {u, v} is (r + 1)-regular graph, then we must have each of u and v is

adjacent to n
2

vertices in R and N(u) ∩N(v) = φ. In this case n must be even

and d(u) = d(v) = n
2
. Thus every vertex in R must have regularity degree n

2
−1

(as R ∗ {u, v} is regular) and (b) holds.

Conversely, Suppose that (a) holds. That is there are two vertices u and v

such that each of them is adjacent to every vertex in R and r = n − 2. Then

d(u) = d(v) = n in R∗{u, v} and every vertex in R has degree r+2 in R∗{u, v},

but r = n− 2 in R, then every vertex in R has a degree n− 2 + 2 in R ∗ {u, v}.

That is every vertex in R ∗ {u, v} has a degree n, i.e., R ∗ {u, v} is regular. As

such u, v are extension vertices and extR(R) ≤ 2.
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If extR(R) = 1, by Theorem 1, there exist a vertex v0 different from the vertices

of R such that v0 is adjacent to every vertex in R exactly once and R is either

trivial or complete graph. If R is trivial, then R has regularity degree 0 and

0 = n − 2 =⇒ n = 2 a contradiction. If R is a complete graph then r = n − 1

a contradiction to our assumption that r = n − 2. Thus extR(R) 6= 1. Hence

extR(R) = 2

If (b) holds, that is there are two vertices u and v such that each of them is

adjacent to n
2

vertices in R, N(u) ∩N(v) = φ , n is even and r = n
2
− 1. Then

d(u) = d(v) = n
2

in R ∗ {u, v} and every vertex in R has a degree r + 1 in

R ∗ {u, v} , but r = n
2
− 1 in R then r = n

2
− 1 + 1 = n

2
in R ∗ {u, v}. Thus

every vertex in R ∗ {u, v} has a degree n
2
. Hence R ∗ {u, v} is regular and u, v

are extension vertices. Hence extR(R) ≤ 2.

If extR(R) = 1 , then by Theorem 1, R is either trivial or complete graph. If R

is trivial graph then R has regularity degree 0 and 0 = n
2
− 1 =⇒ n = 2 a con-

tradiction. If R is a complete graph, then r = n−1 which implies n−1 = n
2
−1

a contradiction. Hence extR(R) = 2.

Theorem 3

Let R be a class of regular graphs, R ∈ R be an r-regular graph with n vertices.

Then extR(R) = 3 if and only if, there exist three independent vertices u, v and w

different from the vertices of R and one of the following holds:

(1) each of u, v, w is adjacent to every vertex in R exactly once, r = n − 3, and

n 6= 4.

(2) every vertex in R is adjacent to exactly two vertices from u, v, w and d(u) =

d(v) = d(w) in R ∗ {u, v, w}, and the regularity degree of R is r = 2n
3
− 2 with

n 6= 6 and n divisor of 3.

(3) each of u, v, w is adjacent to n
3

vertices in R and N(u), N(v), N(w) are mutually
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disjoint, r = n
3
− 1 and n divisor of 3.

proof:

Let R be an r-regular graph with n vertices. Suppose that extR(R) = 3. By

Definition 5, there exist three vertices u, v and w such that R ∗{u, v, w} ∈ R and u, v

and w are independent vertices.

As R ∗ {u, v, w} is simple regular, then d(u) = d(v) = d(w) in R ∗ {u, v, w}, and we

have the following cases:

(i)R ∗ {u, v, w} is (r + 3)-regular graph.

(ii)R ∗ {u, v, w} is (r + 2)-regular graph.

(iii)R ∗ {u, v, w} is (r + 1)-regular graph.

If (i) holds, then we must have each of u, v, w is adjacent to every vertex in R exactly

once. In this case d(u) = d(v) = d(w) = n. As R∗{u, v, w} is simple regular we must

have r = n − 3 in R. If n = 4, and r = n − 3 ⇒ r = 1, in this case R is isomorphic

to two independent edges. In such away we can add two independent vertices u0, v0

such that each of them is adjacent to two vertices from R and N(u0) ∩ N(v0) = φ.

Then we get R ∗ {u, v} is regular and u0, v0 are extension vertices. Thus by Theorem

2 (b), extR(R) = 2 a contradiction, and (1) holds.

If(ii) holds, that is the regularity degree of R ∗ {u, v, w} is r+ 2. In this case we must

have each vertex of R is adjacent to exactly two vertices from u, v, w. As R∗{u, v, w}

is regular graph, then we have d(u) = d(v) = d(w) = 2n
3

in R ∗ {u, v, w}. In this case

n must be divisor of 3 and the regularity degree of R is equal to 2n
3
− 2. If n = 6, and

r = 2n
3
− 2 =⇒ r = 2, in this case R is C6 and we can add two independent vertices

x, y different from the vertices of C6 such that each of them is adjacent to exactly

three vertices of C6 and N(u) ∩ N(v) = φ. In such away R ∗ {u, v} is a 3-regular

graph and u, v extension vertices. By Theorem 2 (b), extR(R) = 2 a contradiction to

our assumption. Hence extR(R) = 3 and (2)holds.
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If(iii) holds, that is the regularity degree of R ∗ {u, v, w} is r + 1. Then we must

have each of u, v, w is adjacent to n
3

vertices in R and N(u), N(v), Nw) are mutually

disjoint. In this case n must be divisible of 3 (as R is regular), in this case d(u) =

d(v) = d(w) = n
3

in R ∗ {u, v, w}. Hence we must have r = n
3
− 1 in R and (3) holds.

Conversely, Suppose that one of (1), (2) or (3) hold. Suppose that (1) holds that

is there are three vertices u, v, w such that each of them is adjacent to every vertex

in R and r = n− 3. Then d(u) = d(v) = d(w) = n in R ∗ {u, v, w} and every vertex

in R has a degree r + 3 in R ∗ {u, v, w}. As r = n − 3 in R, then every vertex in

R has a degree n − 3 + 3 = n in R ∗ {u, v, w}. That is every vertex in R ∗ {u, v, w}

has a degree n, thus R ∗ {u, v, w} is regular and u, v, w are extension vertices. Hence

extR(R) ≤ 3.

Suppose that extR(R) = 1, by Theorem 1, R is either trivial or a complete graph

and there exists a vertex v0 different from the vertices of R such that v0 is adjacent

to every vertex of R exactly once. If R is trivial then R has regularity degree 0 and

0 = n− 3 =⇒ n = 3 a contradiction to definition of trivial graph. If R is a complete

graph then r = n− 1 . Thus n− 3 = n− 1 a contradiction. Hence extR(R) 6= 1.

Suppose that extR(R) = 2 , then by Theorem 2 there exist two vertices u, v different

from the vertices of R and one of following hold:

(a) each of u, v is adjacent to every vertex in R exactly once and r = n− 2. or

(b) each of u, v is adjacent to n
2

vertices inR, n is even, r = n
2
−1 andN(u)∩N(v) = φ.

If(a) holds, then r = n− 2 , thus n− 2 = n− 3 a contradiction.

If (b) holds, then n
2
− 1 = n − 3 ⇒ n = 4 a contradiction to our assumption. Thus

extR(R) 6= 2. Hence extR(R) = 3.

Suppose that (2) holds. That is r = 2n
3
−2, n divisor 3 with n 6= 6 and there exist three

vertices u, v, w different from the vertices of R such that every vertex in R is adjacent

to two vertices from u, v, w and d(u) = d(v) = d(w). Then d(u) = d(v) = d(w) = 2n
3

in R ∗ {u, v, w}. Then the degree of every vertex of R increase by 2 in the graph
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R ∗ {u, v, w}. But r = 2n
3
− 2 in R.Thus every vertices in R has a degree 2n

3
− 2 + 2 in

R∗{u, v, w}. That is every vertex in R∗{u, v, w} has a degree 2n
3

. Thus R∗{u, v, w}

is regular, u, v, w are extension vertices. Hence extR(R) ≤ 3. If extR(R) = 1, then by

Theorem 1 R is either trivial or complete graph. If R is trivial then R has regularity

degree 0 and 0 = 2n
3
− 2 ⇒ n = 3 a contradiction. If R is complete graph then

r = n− 1 implies 2n
3
− 2 = n− 1 a contradiction. Thus extR(R) 6= 1.

If extR(R) = 2, then by Theorem 2 , one of the conditions (a) or (b) above holds:

If(a) holds then r = n− 2 and 2n
3
− 2 = n− 2 a contradiction.

If (b) holds then 2n
3
− 2 = n

2
− 1 ⇒ n = 6 a contradiction to our assumption n 6= 6.

Thus extR(R) 6= 2.Hence extR(R) = 3.

Suppose that (3) holds, that is there are three vertices u, v, w such that each of them is

adjacent to n
3

vertices in R and N(u), N(v), N(w) are mutually disjoint and r = n
3
−1.

Then d(u) = d(v) = d(w) = n
3

in R∗{u, v, w} and every vertex in R has a degree r+1

in R∗{u, v, w}. As r = n
3
−1 in R , thus every vertex in R has a degree n

3
−1+1 = n

3

in R∗{u, v, w}. That is every vertex in R∗{u, v, w} has a degree n
3
. Thus R∗{u, v, w}

is regular graph and u, v, w are extension vertices. Hence extR(R) ≤ 3. Suppose that

extR(R) = 1 by Theorem 1, R is either trivial or complete graph. If R is trivial then

R has regularity degree 0 then 0 = n
3
− 1⇒ n = 3 a contradiction. If R is a complete

graph then r = n− 1. Thus n− 1 = n
3
− 1 a contradiction.

Suppose that extR(R) = 2, by Theorem 2 one of the conditions (a) or (b) above holds.

If(a) holds, then n
3
− 1 = n− 2 a contradiction.

If(b) holds, then n
2
−1 = n

3
−1 a contradiction, thus extR(R) 6= 2. Hence extR(R) = 3,

and the proof is completed.
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4 Extension of Digraphs

In this section, we introduced the concepts extension of digraph, extensible class

of digraphs and the extensibility number of digraphs.

Attar [1] defined the extension of digraphs as follows:

Definition 6 [1]

Let D be a nontrivial digraph. The extension of D is a digraphs denoted by

D + S obtained from D by adding a nonempty set of independent vertices S such

that every vertex in S is adjacent or adjacent by but not both every vertex in D.

In this work we defined the extension of digraphs as follows :

Definition 7

Let D be a nontrivial digraph. The extension of D is a simple digraph denoted by

D ∗S obtained from D by adding a nonempty set of independent vertices S different

from the vertices of D such that every vertex in S is adjacent or adjacent by but

not both at least one vertex in D. In such away S is called extension set of D. In

particular, If S consists of single element v, then v is called extension vertex of D.

Now, we define the extensible class of digraph.

Definition 8

Let D be the class of digraphs with certain property. Then D is called exten-

sible class, if for every digraph D ∈ D, there exist an extension vertex v, such that

D ∗ v ∈ D.

Here we introduce two propositions:

proposition 3

The class of connected digraphs is extensible class of digraphs with respect to

connectedness.

proof

The proof is follows from Definition 7.
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proposition 4

Each of the classes regular digraphs, Eulerian digraphs and Hamiltonian digraphs

is not extensible class.

proof

The proof is similar to that in proposition 2.

The definition of extensibility number of digraph is analogous to that in Definition 5,

only replace every graph G by a digraph D as following:

Definition 9

Let D be the class of digraphs with certain property, and D ∈ D be a nontrivial.

The extensibility number of D with respect to D is the smallest positive integer m,

if exists such that there exists an extension set of vertices of D with cardinality m in

which the new digraph D ∗ S ∈ D. We write m = extD(D). If such a number dose

not exist for D, then we say the corresponding extensibility number is ∞.

5 Extension of Regular Digraphs

In this section, we characterized the regular digraphs which have extensibility

number equal to 2 or 3.

Remark 2

Let R be a class of regular digraphs and D ∈ R. Then extR(D) ≥ 2.

Proof

The proof follows from Definition 7.

Theorem 4

Let R be the class of regular digraphs, D ∈ R be an r-regular digraph with even

number of vertices n. Then extR(D) = 2, if and only if r = n
2
− 1, and there exist

two independent vertices u, v different from the vertices of D such that each of them

is adjacent to n
2

vertices and adjacent by the remaining n
2

vertices of D exactly once,
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with N+(u) ∩N+(v) = φ.

Proof

Let D be an r-regular digraph with even number of vertices n. Suppose that

extR(D) = 2. Then by Definition 9, there exist two extension vertices u, v such that

D ∗ {u, v} ∈ R , and u, v are independent vertices. As D ∗ {u, v} is regular digraph

then id(u) = od(u) = id(v) = od(v) in D ∗ {u, v}. By Definition 7, D ∗ {u, v} is

simple digraph, then we must have D ∗ {u, v} is (r + 1)-regular digraph. That is

id(w) = od(w) = r + 1, ∀ w ∈ D in the digraph D ∗ {u, v}. In this case we must

have u is adjacent to n
2

vertices in D and adjacent by the remaining n
2

vertices of

D exactly once similarly for v. If u and v have a common neighbour in D, we get

a contradiction to the regularity of D ∗ {u, v}. Since the regularity degree of every

vertex in D is (r+ 1) in D ∗ {u, v} and the degree of each of u, v is n
2
. Then we must

have n
2

= r + 1 in D ∗ {u, v}. This implies r = n
2
− 1 in D.

Conversely, Suppose that r = n
2
−1 and there exist u, v different from the vertices

of D such that each of them is adjacent to n
2

vertices and adjacent by n
2

of D exactly

once and N+(u)∩N+(v) = φ. Then id(u) = od(u) = id(v) = od(v) = n
2

in D ∗ {u, v}

also id(w) = od(w) = n
2
− 1 + 1, ∀w ∈ D, which implies id(w) = od(w) = n

2
. Hence

D ∗ {u, v} is regular digraph and u, v are extension vertices. Thus extR(D) ≤ 2. By

the Remark 2, above extR(D) 6= 1. Hence extR(D) = 2.

Theorem 5

Let R be the class of regular digraphs, D ∈ R be an r-regular digraph with n

vertices such that n divisible of 3. Then extR(D) = 3, if and only if r = n
3
− 1, and

there exist three independent vertices u, v, w different from the vertices of D such

that each of u, v, w is adjacent to n
3

vertices of D exactly once, and adjacent by n
3

vertices from the remaining vertices of D exactly once, with N+(u), N+(v), N+(w)

are mutually disjoint and every vertex in D is adjacent to exactly one vertex from

u, v, w.

Proof
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Let D be an r-regular digraph with n vertices and n divisible of 3. Suppose that

extR(D) = 3. Then by Definition 9, there exist three extension vertices u, v, w such

that D∗{u, v, w} ∈ R, and u, v, w are independent vertices. As D∗{u, v, w} is regular

digraph then id(u) = od(u) = id(v) = od(v) = id(w) = od(w) = n
3

in D ∗ {u, v, w}.

By Definition 7, D ∗ {u, v, w} is simple digraph, then we must have D ∗ {u, v, w}

is (r + 1)-regular digraph. That is id(z) = od(z) = r + 1, ∀z ∈ D in the digraph

D ∗ {u, v, w}. In this case we must have u is adjacent to n
3

vertices in D exactly once

and adjacent by n
3

vertices from the remaining vertices of D exactly once, and every

vertex in D is adjacent to exactly one vertex from u, v, w. Similarly for v and w. If

two or three from u, v, w have a common neighbour, we get a contradiction to the

regularity of D ∗ {u, v, w}. If h is a vertex in D which is adjacent to two or three

vertices from the vertices u, v, w. Then we get a contradiction to D ∗ {u, v, w} is

regular. Since the regularity degree of every vertex in D is r+ 1 in D ∗ {u, v, w} and

the regularity degree of u, v, w is n
3
. Then n

3
= r + 1 in D ∗ {u, v, w}. This implies

r = n
3
− 1 in D.

Conversely, Suppose that there exist three vertices u, v, w different from the ver-

tices of D such that each of them is adjacent to n
3

vertices exactly once and adjacent by

n
3

vertices from the remaining vertices of D exactly once with N+(u), N+(v), N+(w)

are mutually disjoint and every vertex in D is adjacent to exactly one vertex from

u, v, w, r = n
3
− 1. Then id(u) = od(u) = id(v) = od(v) = id(w) = od(w) = n

3
in

D ∗ {u, v, w}, also id(z) = od(z) = n
3
− 1 + 1 ∀z ∈ D in the digraph D ∗ {u, v, w},

which implies id(z) = od(z) = n
3
. Hence D ∗ {u, v, w} is regular digraph and u, v, w

are extension vertices. Thus extR(D) ≤ 3.

By Remark 2, extR(D) 6= 1. If extR(D) = 2, by Theorem 4, there exist two vertices

u, v different from the vertices of D such that each of them is adjacent to n
2

vertices

and adjacent by the remaining n
2

vertices of D exactly once and u, v have no common

neighbour with r = n
2
−1 in D. Thus n

2
−1 = n

3
−1 a contradiction, thus extR(D) 6= 2.

Hence extR(D) = 3 and the proof is completed.
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