On edge- addition problem

Suaad A. A. Suady Alaa A. Najim Department of mathematics College of science – University of Basrah

Abstract:

For given positive integers t and d, "Edge-addition problem" can stated as: Given a graph G with diameter d and a positive integer d'(d' < d) to obtain a graph H from G, how many edges must be added to G such that the resulting H has diameter of at most d'. Let F(t,d) denoted the minimum diameter of an altered graph obtained by adding t – extra edges to a graph with diameter d. And let p(t,d) (res. cycle) denoted the minimum diameter of a path (res. cycle) with diameter d. Clearly that F(t,d) = p(t,d). Let $T_p(P,d)$ denoted the minimum number of edges that have to be add to a path of length d in order to obtain a graph of diameter at most P. In this paper we find exact value to p(t,d), $T_p(P,d)$ for some t and d (res. P and d). Also we prove $C(t,d) \ge C(t',d')$ if $(d \ge d'$ and t = t') or (d = d' and $t \le t')$.

Keywords : Diameter, Altered graph, Edge addition.

الملخص:

1. Introduction

In this note, a graph G = (V, E) always means a simple undirected (without loops and multiple edges)with vertex –set *V* and edge-set *E*.(In general, we follow the graph-theoretic terminology of [2])*G*. The distance $d_G(u,v)$ between two vertices $u,v \in V(G)$ is the length (number of edges) of a shortest path in *G* joining *u* and *v*; if no such path exists, we set $d_G(u,v) = \infty$. The diameter D(G) is the maximum value of $d_G(u,v)$ taken over all pairs of vertices $u,v \in V(G)$, thus a graph has finite diameter if and only if it is connected. It is well – known that when the underlying topology of an interconnection network of a system is modeled by a graph *G*, the Diameter of *G* is an important measure for communication efficiency and message delay of the System [13]. The edge – addition and deletion problems are well-known [3].

Let F(t,d) denoted the minimum diameter of an altered graph obtained by adding t - extra edges to a graph with diameter d. Determining the exact value of F(t,d) is fairly difficult in general since it has been proved by Schoone, Bodlander and Van LeuWeen [13]. For given integers t, d and a connected graph G, constructing an altered graph G' of G by adding t - extra edges to G such G' has diameter of at most d in NP-complete. Thus, the problem of determining sharp upper bounds of F(t,d) is of interesting.

Let p(t,d) (res. C(t,d)) denoted the minimum diameter of a graph obtained by adding t-extra edges to a path (res.cycle) with diameter d. In [4]Deng and Xu show that F(t,d) = p(t,d) for any integer t and d.

For some small *t* 's and special *d* 's,the exact value of p(t,d) have been determined. for example, $p(1,d) = \left\lfloor \frac{d+1}{2} \right\rfloor$ for $d \ge 2$, $p(2,d) = \left\lceil \frac{d+1}{3} \right\rceil$ for $d \ge 3$, $p(3,d) = \left\lceil \frac{d+2}{4} \right\rceil$ for $d \ge 5$, determined by Schoone el at [3]. $\left\lceil \frac{d}{t+1} \right\rceil \le p(t,d) \le \left\lceil \frac{d}{t+1} \right\rceil + 1$ for t = 4,5 and $d \ge 4$ and p(t,(2k-1)(t+1)) + 1 = 2k for any positive integer *k* determined by Deng and Xu in [4]. In 2006 A.A.Najim and Xu, J. [6] established the best bound for p(t,d) which

is
$$\left\lceil \frac{d-2}{t+1} \right\rceil \le p(t,d) \le \left\lceil \frac{d-2}{t+1} \right\rceil + 1$$
, for $t \ge 6$ and $d \ge 3$.

Let $T_p(p,d)$ be minimum number of edges that have to be add to a path of length *d* to transform it to a graph of diameter at most *p*. Schoone in [11] proved that it is NP-complete to determine the $T_p(p,d)$. Alon [1] determined $T_p(2,d) = d - 2$ for $d \ge 273$ and in general, $T_p(p,d) \le (d+1) / \left\lfloor \frac{p}{2} \right\rfloor$.

The results are:

- 1. P(t,d) = 2 for t = 4,5 and $4 \le d \le t+1$.
- 2. p(t,d) = 4 for $t \ge 6$ and d = 3t + 4, 3t + 5.
- 3. p(t,d) = k + 2 for $t \ge 2$, $k \ge 1$ and d = k(t+1) + 5.
- $4.C(t,d') \ge C(t,d)$ if $d' \ge d$.
- $5.C(t,d) \ge C(t',d)$ if $t \le t'$.

6. $T_p(p,d) = 4$ For $p \ge 7$ and d = 5(p-1).

7. $T_p(p,d) = k + m - 1$ Where $p \ge 12, 0 \le r \le 3$ and

$$(m, i, j) = \begin{cases} (7, 0, -8) & where \quad k = 0, 1 & \dots, (1) \\ (7, 1, -5) & where & 0 \le k \le p - 7 & \dots, (2) \\ (5, 0, -8) & where & 0 \le k \le 3 & \dots, (3) \\ (5, 3, 8) & where & 0 \le k \le 4 & \dots, (4) \end{cases}$$

Lemma 2.1 :- $P(t,d) = \left| \frac{d-2}{t+1} \right| + 1 = 2$ for t = 4,5 and $4 \le d \le t+1$.

proof :- Let $p = x_0 x_1 \dots x_d$ be an $(x_0 - x_d)$ - path and let *G* be an altered graph obtained from *p* by adding *t* -*extra* edges and having diameter, d(G) = p(t,d)

Where $4 \le d \le t + 1$ and t = 4, 5

From Deng Z.G. [4], we have $1 \le P(t,d) \le 2$. We show that $p(t,d) \ne 1$. Suppose that p(t,d) = 1. Thus *G* is complete undirected graph.

From lemma A. A. Najim [8] the number of the extra edges is equal to $t_d \ge \frac{d(d-1)}{2}$

 $t \ge 6$ contradiction since t = 4,5. Thus p(t,d) = 2. Lemma 2.2:- p(t,d) = 4 for $t \ge 6$ and d = 3t + 4, 3t + 5.

proof: At first we prove that $p(t,d) \ge 4$ where d = 3t + 4, 3t + 5. From A.A.Najim. [9] p(t,d) = 4 where $t \ge 4$, $3t + 1 \le d \le 3t + 3$ and

From S. A. AL-Bachary [12] $p(t,d) \ge p(t,d')$ if $d \ge d'$; then we get $p(t,d) \ge 4$. From A.A.Najim. [10] $p(t,d) \le \left\lceil \frac{d-2}{t+1} \right\rceil + 1$, for $t \ge 6$; we get $p(t,d) \le 4$.So, p(t,d) = 4.

Theorem 2.1:-

p(t,d) = k + 2 for $t \ge 2$, $k \ge 1$ and d = k(t+1) + 5.

proof :-

Let G be an altered graph construct from a single path $P = x_0 x_1 \dots x_d$ plus t – extra edges

such that the diameter of G is p(t,d).

Construction of theorem 2.1

Let d = k(t+1) + 5. we add t – extra edges: $e_1 = x_0 x_{2k+3}$

$$e_r = x_h x_{k(r+1)+5}$$
 where $r = 2, 3, ..., t$ and $h = \begin{cases} k+1 & \text{, if } r \text{ is even} \\ 2k+3 & \text{, if } r \text{ is odd} \end{cases}$

Now the end – vertices of these edges divide P into t + 1 segments : $P_1 = (x_0, x_{k+1})$ $P_2 = (x_{k+1}, x_{2k+3})$ $P_3 = (x_{2k+3}, x_{3k+5})$ $P_i = (x_{(i-1)k+5}, x_{ik+5})$ where $t \ge 3$ and i = 4, 5, ..., t + 1

It is easy to see that : $\varepsilon(p_1) = k + 1$ $\varepsilon(p_i) = k + 2$ where i = 2, 3.

$$\mathcal{E}(p_i) = k$$
 where $i = 4, 5, ..., t + 1$.

We will prove the distance between any two vertices x and y of V(G), is less than

or equal k+2. Now we define $\frac{t(t+1)}{2}$ cycles, $c^1, c^2, \dots, c^{\frac{t(t+1)}{2}} as$:

$$c_{i}^{-1} = p_{1} \cup p_{2} + e_{i}$$

$$c_{i}^{-2} = p_{1} \cup p_{3} + e_{1} + e_{2}$$

$$t \ge 2$$

$$c_{i}^{-2} = p_{1} \cup p_{3} + e_{1} + e_{2}$$

$$c_{i}^{-3} = p_{2} \cup p_{3} + e_{2}$$

$$c_{i}^{-4} = p_{1} \cup p_{4} + e_{2} + e_{3} + e_{4}$$

$$t \ge 3$$

$$c_{i}^{-5} = p_{2} \cup p_{4} + e_{2} + e_{3}$$

$$c_{i}^{-5} = p_{2} \cup p_{4} + e_{2} + e_{3}$$

$$c_{i}^{-5} = p_{2} \cup p_{4} + e_{2} + e_{3}$$

$$c_{i}^{-5} = p_{2} \cup p_{4} + e_{2} + e_{3}$$

$$c_{i}^{-5} = p_{2} \cup p_{4} + e_{2} + e_{3}$$

$$c_{i}^{-5} = p_{2} \cup p_{i+1} + e_{1-4} + e_{i}$$

$$c_{i}^{-5iq} = p_{2} \cup p_{i+1} + e_{1-4} + e_{i}$$

$$c_{i}^{-5iq} = p_{3} \cup p_{i+1} + e_{2} + e_{i-4} + e_{i}$$

$$c_{i}^{-1i(i+3)} = p_{i} \cup p_{i+1} + e_{2+i} + e_{i} + e_{i} + e_{j+1}$$

$$where t \ge 4, q = \sum_{r=4}^{i} (r-1)m, i = 4, 5, ..., t, m = \begin{cases} 0 & if \quad r = 4 \\ 1 & if \quad r > 4 \end{cases}$$

$$c_{i}^{-1i(i+3)} = p_{4+i} \cup p_{i+1} + e_{2+i} + e_{3+i} + e_{j} + e_{j+1}$$

$$where t \ge 5, q' = \sum_{r=4}^{j} r, i = 0, 1, ..., j - 4, j = 4, 5, ..., t - 1$$

$$c_{i}^{-1i(i+2)} = 2k + 4$$

$$where r \ge 5, q' = \sum_{r=4}^{j} r, i = 0, 1, ..., j - 4, j = 4, 5, ..., t - 1$$

$$c_{i}^{-1i(i+2)} = 2k + 4$$

$$where r t \ge 5, q' = \sum_{r=4}^{j} r, i = 0, 1, ..., j - 4, j = 4, 5, ..., t - 1$$

$$c_{i}^{-1i(i+2)} = 2k + 4$$

$$where r t \ge 5, q' = \sum_{r=4}^{j} r, i = 0, 1, ..., j - 4, j = 4, 5, ..., t - 1$$

$$c_{i}^{-1i(i+2)} = 2k + 4$$

$$where r t \ge 5, q' = \sum_{r=4}^{j} r, i = 0, 1, ..., j - 4, j = 4, 5, ..., t - 1$$

It is easy to see that any two vertices x and y of V(G), are contained in cycle

 $c^{\frac{t(t+1)}{2}}$ define above the fact :

$${Z \choose Z}$$
: $Z = 1, 2, ..., \frac{t(t+1)}{2} \} \le \left\lfloor \frac{2k+5}{2} \right\rfloor$

at $p(t, k(t+1)+5) \le k+2$(1) pmKerjouas[7] we have

 $1) + 5 \ge \frac{k(t+1) + 5 + t - 3}{t+1}$ $\frac{1}{k(t+1) + 5} \ge k + 2 \dots \dots \dots (2)$

tions (1) and (2) we get

(1)+5) = k + 2.

NowLet $C = (x_0 x_1 \dots x_d)$ be a cycle of length *d* and let C(t,d) be a minimum diameter of C after adding t – extra edges. Suppose *G* is the new graph after addition.

Lemma 2.3 :- $C(t,d') \ge C(t,d)$ if $d' \ge d$.

proof :- Let *d* and *d* 'be two positive integer such that $d' \ge d$. Let C(t,d) and C(t,d') be minimum diameter of altered graph *G* and *G* 'obtained from a single paths $P = (x_0, x_1, ..., x_d)$ and $P' = (x_0, x_1, ..., x_{d'})$ respectively plus *t* -extra edges. Then there are $x, y \in V(G)$ and $x', y' \in V(G')$ such that $C(t,d) = d_G(x, y)$ $C(t,d') = d_{G'}(x', y')$ (1)

Suppose that C(t,d) > C(t,d').....(2)

Since C(t,d) = d(G) and C(t,d') = d(G')Then $C(t,d') \ge d_{G'}(u',v')$, $\forall u',v' \in V(G')$ $\Rightarrow C(t,d') \ge d_{G'}(u,v)$, $\forall u,v \in \{x_0, x_1, ..., x_d\}$ $\Rightarrow C(t,d') \ge d_{G'}(x,y)$ From (1) and (2) above we get $\Rightarrow d_G(x,y) > d_{G'}(x,y)$ but this contradiction Then $C(t,d') \ge C(t,d)$

Lemma (2.4) :- $C(t,d) \ge C(t',d)$ if $t \le t'$.

proof :- Let *t* and *t* ' be two positive integer such that $t \le t$ '

Let C(t,d) and C(t',d) be minimum diameter of altered graph G and G 'obtained from a

single path $P = (x_0, x_1, ..., x_d)$ plus t -extra edges and t '-extra edges respectively.

This mean V(G) = V(G') there are $x, y \in V(G)$ and $x', y' \in V(G')$ such that

$$C(t,d) = d_G(x, y)$$
, and $C(t',d) = d_G(x', y')$

Since $d_G(x, y) \ge d_G(u, v)$, $\forall u, v \in V(G)$

$$\Rightarrow d_G(x, y) \ge d_G(x', y')$$

Since $d_G(x, y) \ge d_G(x', y')$

$$\Rightarrow d_G(x, y) \ge d_{G'}(x', y')$$

Then $C(t,d) \ge C(t',d)$.

G G'

Definition 2.1:-The regular segment is a sub paths of the path p_n containing in its interior endpoint of an edge in subgraph H of G.

Lemma 2.5 :- The number of regular segments in any simple graph contains Hamilton path p_n is $2(\varepsilon - n) - 1$.

proof:- Let *G* be simple connected graph have Hamilton path $P_n = x_0 x_1 \dots x_n$. Suppose $t = \varepsilon - n$ and $E_1 = \{e_1, e_2, \dots, e_t\}$ is a set of extra edges adding to p_n .

Let $H = [E_1]$ denoted the subgraph of *G* induced by the set of edges E_1 . And let V(H) be the set of the end points of extra edges. Then

 $|V(H)| \le 2t$, since each segment is a maximal sub path of p_n and every regular segment includes only two vertices from V(H).

Then the number of regular segments is |V(H)| - 1.

Then the number of regular segments are $2(\varepsilon - n) - 1$.

Theorem 2.2 :- $T_{p}(P,d) = k + m - 1$

where $p \ge 12$, d = (k+m)(p-i)+r+j, $0 \le r \le 3$ and

$$(m, i, j) = \begin{cases} (7, 0, -8) & \text{where} \quad k = 0, 1 \dots (1) \\ (7, 1, -5) & \text{where} \quad 0 \le k \le p - 7 \dots (2) \\ (5, 0, -8) & \text{where} \quad 0 \le k \le 3 \dots (3) \\ (5, 3, 8) & \text{where} \quad 0 \le k \le 4 \dots (4) \end{cases}$$

proof :- Let d = (k + m)(p - i) + r + j

from equations (1), (3) and from A.A.Najim[10]we get

$$T_{p}(P,d) \ge \left\lceil \frac{d}{p} \right\rceil - 1 = \left\lceil \frac{(k+m)(p-i)+r+j}{p} \right\rceil - 1$$
$$T_{p}(P,d) \ge \left\lceil \frac{(k+m)(p-i)+r+j}{p} \right\rceil - 1 = k+m-1 + \left\lceil \frac{-i(k+m)+r+j}{p} \right\rceil$$

$$= k + m - 1 + \left\lceil \frac{r-8}{p} \right\rceil \text{ since } i = 0 \text{ and } j = -8$$
$$= k + m - 1 \text{ ; since } \left\lceil \frac{r-8}{p} \right\rceil = 0. \text{ So } T_p(P,d) \ge k + m - 1$$

from equations (1), (2), (3) and from A.A.Najim[10] we get

$$\begin{split} T_{p}(P,d) &\leq \left\lfloor \frac{d-2}{p-2} \right\rfloor - 1 = \left\lfloor \frac{(k+m)(p-i)+r+j-2}{p-2} \right\rfloor - 1 \\ &= \left\lfloor \frac{(k+m)(p-i-s)+s(k+m)+r+j-2}{p-2} \right\rfloor - 1 \quad \text{where} \ S = \begin{cases} 2 & , \ if \ i = 0 \\ 1 & , \ if \ i = 1 \end{cases} \\ &= k+m-1 + \left\lfloor \frac{s(k+m)+r+j-2}{p-2} \right\rfloor \quad . \quad \text{Since} \ \left\lfloor \frac{s(k+m)+r+j-2}{p-2} \right\rfloor = 0 \\ &\text{So} \quad T_{p}(P,d) \leq k+m-1 \end{split}$$

from equations (2) , (4) and from A.A.Najim [10] we get

$$\begin{aligned} T_{p}(P,d) &\geq \left\lceil \frac{d-2}{p-1} \right\rceil - 1 = \left\lceil \frac{(k+m)(p-i)+r+j-2}{p-1} \right\rceil - 1 \\ T_{p}(P,d) &\geq \left\lceil \frac{(k+m)(p-i-s)+s(k+m)+r+j-2}{p-1} \right\rceil - 1 \quad \text{where} \quad S = \begin{cases} 0 & , \text{ if } i = 1 \\ -2 & , \text{ if } i = 3 \end{cases} \\ &= k+m-1 + \left\lceil \frac{s(k+m)+r+j-2}{p-1} \right\rceil; \quad \text{Since} \quad \left\lceil \frac{s(k+m)+r+j-2}{p-1} \right\rceil = 0 \end{aligned}$$

So $T_p(P,d) \ge k + m - 1$

from equations (4) and from A.A.Najim[10] we get

$$T_{p}(P,d) \leq \left\lfloor \frac{d-7}{p-3} \right\rfloor - 1 = \left\lfloor \frac{(k+m)(p-i)+r+j-7}{p-3} \right\rfloor - 1 = k+m-1 + \left\lfloor \frac{r+j-7}{p-3} \right\rfloor$$

Since $\left\lfloor \frac{r+j-7}{p-3} \right\rfloor = 0$.So $T_{p}(P,d) \leq k+m-1$

From above result we get $T_p(P,d) = k + m - 1$.

Lemma 2.6 :- $T_p(P,d) = 4$ For $p \ge 7$ and d = 5(p-1).

proof :-From Kerjouas [7] we have

$$p(t,d) \ge \left\lceil \frac{d}{t+1} \right\rceil , \quad \text{put} \quad P = p(t,d)$$

$$P \ge \left\lceil \frac{d}{t+1} \right\rceil = \left\lceil \frac{5(p-1)}{t+1} \right\rceil \Longrightarrow P \ge \frac{5p-5}{t+1}$$

$$t \ge 4 - \left\lfloor \frac{5}{P} \right\rfloor = 4. \quad \text{since } p \ge 7.\text{So} \quad T_p(P,d) \ge 4.$$

From A.A.Najim[10] we have

$$T_{p}(P,d) \leq \left\lfloor \frac{d-7}{p-3} \right\rfloor - 1 = \left\lfloor \frac{5(p-1)-7}{p-3} \right\rfloor - 1$$

$$T_{p}(P,d) \leq 5 + \left\lfloor \frac{3}{p-3} \right\rfloor - 1 \Rightarrow T_{p}(P,d) \leq 4, \text{since } p \geq 7. \text{Thus } T_{p}(P,d) = 4. \blacksquare$$

References

[1] Alon, N., Gyarfas, A. and Ruszinko, M., "Decreasing the diameter of bounded degree graphs", J. Graph Theory 35(2000), 161-172.

[2] Bondary , J.A. and Murty U. S. R. "Graph Theory with Application", Macamillan Press, London, 1976.

[3] Chun , F. S. R., Garey, M. R., "Diameter bounds for altered graph" . J. graph Theory.1984,8(4):511-534 .

[4] Deng , Z.G. and Xu , J. –M., "On diameters of altered graph" . J. Mathematical study. 37(1)(2004), 35-41.

[5] H.-X. Ye, C. Yang, J.-M.Xu, "Diameter Vulnerability of graphs by edge deletion", Journal of discrete Mathematics, Vol. 309, pp. 1001-1006, 2009.

[6] J. Bond and C.peyarat," Diameter Vulnerability in network "Graph Theory with Application to Algorithm and Computer Science, John Wiley and sons Inc., pp.123-149, 1985.

[7] Kerjouas, Arete - Vulerabitite,"du Diameter dan les Resaux d' Interconnection",

LRI Research Report no. 261(1986), University de paris-Sud ,Orsay, France.

[8] A.A. Najim., J.-M. Xu."On edge addition of altered graphs", Journal of University

The Proceedings of the 4th Conference of College of Education for Pure Sciences

of Science and Technology of China , Vol.35,No.6, PP.725-731, 2005 . [9]A.A. Najim , J.-M. Xu "On Edge addition and Edge deletion ", Journal of University of Science and Technology of China, Vol.36, No.9, PP.951-955, 2006. [10] A.A. Najim , J.-M. Xu"On Edge addition and Edge deletion of Graphs ",Ph.D. thesis, Journal of University of Science and Technology of China,2006 . [11] Schoone , A. A., Bodlaender, H. L.and Van Lee ween, J.,"Diameter increase caused by edge deletion". J. Graph Theory 11(1987), 409-427 . [12] S. A. AL-Bachary"On Edge addition and Edge deletion problems of Graphs", M.Sc. thesis, university of Basrah , 2009.

[13] XuJuming, Topological Structure and Analysis of Interconnection Network, Dordrecht/Boston/ London,2001.