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1. INTRODUCTION 

Signature is popular and one of the oldest ways for an individual’s authentication and verification. Each person’s 

signature is unique and different from others. Consequently, in terms of security and fraud prevention, signatures still 

one of the most widely used methods for authenticating legal and official documents such as contracts, bank checks, 

certificates, commercial transactions, and credit cards. Forging a signature is unlawful and unethical but can only be 

done in a controlled experiment for example when creating system solutions such as the system proposed in this paper. 

An automatic verification system, must have the ability to distinguish between original and forged signatures. 

Signature verification systems for authentication can be created using the signature features. For verification systems, 

previous knowledge of the original signers and their signature style is needed [1]. There are two main categories for 

automating signature verification based on how the signature was obtained: online and offline verification. In online 

verification, special devices such as   smartphones, tablets, and optical pens are used to obtain a signature as it’s 

produced. Online models collect additional information from individuals while writing to carry out the verification [2]. 

On the other hand, offline signatures are obtained after the writing procedure on paper is finished, then scanned as an 

input to the system [3].  

The complexity of offline signature verification is higher than online one because in the latter model, dynamic features 

are available during the writing process such as pen acceleration, velocity, angle, time and pressure [4]. The 
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The objective of this paper is to propose an offline signature verification system (OSVS) designed for 

writer-independent applications. The system shall differentiate between original and forged 

signatures. The system encompasses key stages such as pre-processing, feature extraction, and model 

training and testing, employing the Support Vector Machine algorithm for classification. One 
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handwritten signature (offline) is produced via a complicated process that takes into consideration the signer's 

conditions and psychophysical state at the time of the writing process, leading to dynamic variations in the signature. 

Even with these difficulties, offline signature verification is more crucial for applications because of the unavailability 

of digital capturing devices. Both Writer-Dependent (WD) and Writer-Independent (WI) approaches is typically used 

to build the OSVS [5], [6], [7], [8]. With the WD approach, a personal model is created for each individual based on 

two distinct classes (original class and forgery class). The drawbacks of this technique are that the classifier needs 

retrain every time a new individual is added to the system. In order to create a reliable system using the WD approach, 

a large number of signatures are required, which is not practically possible in some real-world applications. On the 

contrary, only one model is created in a WI approach (also known as a global model) to address every individual 

without having to be retrained. This model is capable of classifying samples of unknown individual signatures. Hence 

it was chosen in this work.  

The rest of this paper is organized as follows. The literature review is presented in section 2. The proposed methodology 

is proposed in section 3. Finding the important features is presented in section 4. While section 5 presents the 

experimental results and discussions. Finally, section 6 presents the conclusions. 

2. LITERATURE REVIEW 

Reference [6] presented the R-SigNet architecture to reduce feature space learning for WI signature verification. This 

network extracts generic features automatically. They trained and tested the verification system using Support Vector 

Machine (SVM) by taking advantage of small generic feature space. The system’s result proved that the training time 

is reduced while the performance improved. Reference [9] introduced a novel technique based on best feature selection. 

Global features are extracted from signature image such as aspect ratio, signature area, pure height, pure width and 

normalized actual signature height. Local features are also extracted like signature centroid, angle, slope, and distance. 

Genetic Algorithm is applied on extracted features to select best features. Feature verification is performed by using 

SVM. Reference [10] presented an automatic technique with a multi-level features fusion and optimal features 

selection for offline signature verification. Eight geometric features and 22 Grey Level Co-occurrences Matrix 

(GLCM) are calculated from pre-processing signature images. A skewness-kurtosis controlled PCA (SKcPCA) based 

feature selection to selects the best features for the classification into original and forged signatures. Reference [5] 

investigated the range of geometric features to create an effective OSVS using a writer-independent technique and 

multiple classifiers. For classification, they used SVM with Gaussian radial basis function (RBF) and polynomial 

kernel (Poly). Reference [11] introduced a morphological-based approach for offline signature verification. In this 

method, the signature image is partitioned into eight grids of equal size. Morphological pattern spectra are then 

computed for each grid to address scaling challenges. The resulting vertical morphological spectra are concatenated to 

form an eighth-dimensional feature vector, represented by normalized histograms. The SVM and MLP are employed 

for verification in this system. Reference [12] introduced the Partial Invariant Chord Oriented Gap (PICOG) feature, 

a novel approach. By examining the directional variations in the gaps (sequences of white pixels) between strokes in 

a signature, they devised this feature through heuristic evolution. In the context of a writer-dependent system, a 

collection of genuine and forged signatures was employed to identify a distinct set of partial invariant chords. A 

threshold (dinv) is used to select different sets of PICOG chords for each writer, then another training step is performed 

by using PICOG chords and the similarity threshold (dth) is calculated. To determine whether the testing signature is 

legitimate or forgery, a majority score based system is used. 

3. THE PROPOSED METHODOLOGY 

The main steps in the proposed method for the proposed OSVS include: 

Step 1: using a third-party dataset of signature. 

Step 2: pre-processing of signature image. 

Step 3: extracting features from signature image. 

Step 4: normalization/standardization of extracted features (i.e. pre-processing of data prior to training and 
testing). 

Step 5: training a model. 

Step 6: testing the model. 

Figure 1 shows a diagram of the proposed methodology. 

https://doi.org/10.25195/ijci.v49i2.417
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Fig. 1. Diagram of the proposed system. 
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3.1 CEDAR Dataset 

In our proposed method, The Centre of Excellence for Document Analysis and Recognition (CEDAR) dataset is used 

[13]. The dataset is freely available and were widely used by researchers. This dataset includes the signature of 55 

individuals (signers) from different backgrounds and cultures. A 24 original signatures were provided by each of them. 

For each of the initial signatories, a total of 24 forged signatures were generated by mimicking the signatures of three 

individuals eight times. This process yielded a combined set of 1320 authentic signatures and an equal number of 

forged signatures. It is worth noting that the signature images included in the CEDAR dataset are presented in grayscale 

mode. Figure 2 shows two samples, original on the left and forged on the right. 

 

 

 

 

 

 

 

 

 

Fig. 2. Sample images from CEDAR dataset. 

3.2 Pre-processing 

During this phase, various image enhancement operations are executed on the signature image with the aim of 

eliminating superfluous data from the image. The pre-processing stage includes the following steps: 

1. Resize Image: Signature images within the CEDAR dataset vary in size. To standardize their dimensions, 

the images are centered and resized to a resolution of 200 x 200. 

2. Binarize the Image: The signature image undergoes conversion into a binary format (black and white) 

through the application of the Otsu binarization algorithm [14]. The algorithm aims to identify the threshold 

value with the minimal total entropy for both the foreground and background. In accordance with Otsu's 

approach, the threshold is determined based on statistical data from the image. For a given threshold value, 

denoted as ‘t’, the variance of clusters T0 and T1 can be computed. The optimal threshold value is 

ascertained by minimizing the sum of the weighted class variances, with weights representing the 

probabilities of the respective groups. Initially, the histogram and probability (p) for each intensity level of 

the grayscale image are computed. The initial weights (w), mean (μ), and variance parameter (σ) for each 

intensity level are all set to zero, as outlined by [9] and [15]. The formula for determining the within-class 

variance at any given threshold ‘t’ is expressed as follows: 
2
w = wbg(t) * 2

bg(t) + wfg(t)
 * 2

fg (t)  (1) 

where 

wbg(t) = ∑ 𝑝(𝑖)𝑡
𝑖=1      (2) 

wfg(t)
  = ∑ 𝑝(𝑖)𝑙

𝑖=𝑡+1    (3) 

μbg(t) = 
∑ 𝑖∗𝑝(𝑖)𝑡

𝑖=1

𝑤bg(𝑡)
  (4) 

μfg(t) = 
∑ 𝑖∗𝑝(𝑖)𝑙

𝑖=𝑡+1

𝑤𝑓𝑔(𝑡)
   (5) 

2
bg(t) = 

∑ (𝑖− µ𝑏𝑔(𝑡))
2

∗𝑝(𝑖)𝑡
𝑖=1

𝑤𝑏𝑔(𝑡)
   (6) 
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2
fg(t) = 

∑ (𝑖− µ𝑓𝑔(𝑡))
2

∗𝑝(𝑖)𝑙
𝑖=𝑡+1

𝑤𝑓𝑔(𝑡)
   (7) 

 

3. Changing Polarity (if needed): In this step of pre-processing the image pixels value are reversed (flipped). 

All background pixel inverted to zero and foreground pixels (signature) to 255.  

4. Bounding Box: Create a rectangle box enclosing the signature in the signature image (convex hull). The 

unnecessary parts of the signature image are cropped (removed). This method further speeds up processing 

by removing empty space around the signature. Figure 3 shows a sample image passing through pre-

processing stage. 

3.3 Feature Extraction 

Following the pre-processing phase, ten geometric features are derived from the pre-processed signature image. 
This set of features encompasses signature area, mean, standard deviation, perimeter, the number of connected 
components, vertical edges, horizontal edges, end points, branch points, and lines. These individual features are 
then consolidated to create a vector representing the geometric characteristics of the signature. 

During the feature extraction stage, the following procedures are undertaken: 

 Initially, ten geometric features, referred to as global features, are extracted from the entire image. 

 Subsequently, the image is partitioned into equal 4x4 areas, as illustrated in Figure 4, and the identical 
ten features are extracted individually from each partition (zone) of the signature image, now referred to 
as local features.  

      

(a)                                    (b) 

      
(c)                                 (d) 

 

(e) 

Fig. 3. Pre-processing of a sample image. (a) Input image from CEDAR dataset (b) Resized image (c) Binarized image using Otsu’s 

method (d) Change polarity applied (e) Bounding box around signature. 
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(a)                                   (b) 

Fig. 4. Image partitioning (a) Input image (b) Image divided into 4x4 parts (zones). 

The features that were extracted from signature image are described in the following subsections. 

1. Signature Area: The computation of the signature image pixel area involves multiplying the height of the 

signature image within the bounding box by its corresponding width. 

Area = Height * Width (8) 

2. Mean: To determine the mean feature, the total number of foreground pixels is divided by the total number 

of pixels in a signature image. 
 

Mean = 
1

𝑡𝑜𝑡𝑎𝑙
 ∑ 𝑝𝑓𝑔(𝑖)𝑡𝑜𝑡𝑎𝑙

𝑖=0  (9) 

 

3. Standard Deviation: To calculate the standard deviation feature, the deviation of the foreground from its 

mean is assessed. 

SD = √
∑( 𝑀𝑒𝑎𝑛 – 𝑝𝑓𝑔(𝑖))

2

𝑡𝑜𝑡𝑎𝑙
  (10) 

4. Perimeter of Signature: The complete distance encircling a signature image is referred to as its perimeter. 

It represents the length of the outline or boundary of any two-dimensional geometric shape. The 

computation of the signature's perimeter involves multiplying 2 by the sum of its length and width. 

 

Perimeter = 2 (lx + ly)  (11) 

where  

lx: length of the side 

ly: length of the breadth (width) 

5. Number of Connected Components: Connected components refer to groups of pixels sharing the same 

intensity value and connected to each other through 8-connectivity. The Connected Component Labeling 

(CCL) algorithm, developed by [16], is a two-scan algorithm. In the initial scan, all object pixels in the 

image are examined and assigned temporary labels. Following the determination of all temporary labels, 

the second scan consolidates labels belonging to the same connected component (CC) into a single class 

label. Each pixel is then labeled with a grey-level or color label, depending on the component it was 

assigned to. Figure 5 illustrates the mask employed by the CCL algorithm. 

    p 

(i-1,j-1) 

q 

(i-1,j) 

r 

(i-1,j+1) 

s 

(i,j-1) 

x 

(i,j) 
 

   

Fig. 5. Mask used in the CCL algorithm (8-connectivity window). 

6. Number of Vertical Edge: Sobel gradient kernel is used in the vertical direction (Figure 6) to get the 

number of vertical edges feature. 
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Sobel Edge Detector: In our proposed method, Sobel edge detector is used to find the number of both 

vertical and horizontal edges. A Sobel edge detector has made up of two 3x3 convolution kernels, the 

second kernel is the 90 degree rotation of the first kernel [17].  

 

7. Number of Horizontal Edge: The Sobel gradient kernel is employed in the horizontal direction, as 

depicted in Figure 6, to obtain the feature representing the number of horizontal edges. 

[
−𝟏 𝟎 +𝟏
−𝟐 𝟎 +𝟐
−𝟏 𝟎 +𝟏

]          [
+𝟏 +𝟐 +𝟏
   𝟎   𝟎   𝟎
−𝟏 −𝟐 −𝟏

] 

x-direction kernel      y-direction kernel 

                                                                  (vertical)             (horizontal) 

Fig. 6. Sobel filter. (left) x-direction. (right) y-direction. 

8. Number of End Points: An endpoint is a foreground pixel in its neighbourhood that has only one other 

foreground pixel. To determine the number of endpoints feature, the Zhang-Wang thinning algorithm is 

applied to obtain the one-pixel-wide skeleton of the signature image. 

Thinning algorithms are commonly employed to extract the skeleton of a pattern by eliminating redundant 

data at the shape boundary, resulting in a slender representation. The Zhang-Wang algorithm serves as an 

off-the-shelf parallel thinning algorithm, executing thinning operations on the binary image through 

repetitive sub-iterations until no more points can be removed without breaking or shortening lines. One 

sub-iteration removes south and east boundary pixels, while the other removes north and west boundary 

pixels. The algorithm includes additional rules to preserve the connectivity of the skeleton [18]. 

 

9. Number of Branch Points: A branch point is a foreground pixel surrounded by two to four other 

foreground pixels in its neighbourhood.  

 

10. Number of Lines: To determine the number of lines, the Hough Transform (HT) is applied. The HT is a 

robust method for detecting straight lines in an image, even in the presence of noise and missing data. In 

line detection using HT, each point in the image votes for every possible line that passes through it. These 

votes are then accumulated in a Hough Space, represented by an accumulator array as shown in Figure 7. 

In the Hough space, each line in the signature image corresponds to a point. Each line is represented as a 

point in the (ρ, θ) parameter space, where 'p' denotes the distance from the origin to a line perpendicular to 

it, and 'θ' is the angle formed by the positive x-axis and the line [19]. The relevant equation is as follows: 

ρ = x cos θ + y sin θ   (12) 

 

(a)                                                    (b) 

Fig. 7. Hough Transform (a) Line representation in xy-plane. (b) Hough space. Taken from [19]. 

3.4  Normalization and Standardization 

Normalization is a technique of data pre-processing which is used to modify feature values in a dataset to a standard 

scale. This serves to ease data analysis and modelling as well as reduce the effect of different sizes on the accuracy of 

https://doi.org/10.25195/ijci.v49i2.417
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the models in machine learning. Normalization is one of the scaling techniques, where values are shifted and rescaled 

until they fall in the range of 0 and 1. It is also referred to as Min-Max scaling [20]. 

For normalization the following formula is used: 

𝑋′= 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (13) 

 

where 

𝑋′: is the new value of feature value (X) which is between 0 and 1. 

𝑋𝑚𝑖𝑛: is the minimum value of each feature. 

𝑋𝑚𝑎𝑥: is the maximum value of each feature. 

Another method of scaling is standardization, which involves centering the numbers around the mean and utilizing a 

unit standard deviation. This process aims to set the mean of the attribute to 0, resulting in a distribution with a unit 

standard deviation [20]. 

For standardization the following formula is used: 

 𝑥′ =  
𝑥− 𝜇

𝜎
     (14) 

where 

µ: is the mean of feature values. 

𝜎: is the standard deviation of feature values. 

3.5 Training Data 

The data undergo training through the SVM algorithm. The primary objective of SVM is to employ a maximal margin 

classifier, represented by an optimal hyper-plane. The process involves mapping the data domain to a feature space 

using a kernel function, enabling the classification of classes. Figure 8 illustrates two class samples separated by a 

margin using the SVM approach. 

A separating hyper-plane can be written as: 

w.u + b ≥ 0    (15) 

The hyper-planes defining the sides (class) of the margin can be written as: 

w.u + b ≥ 1  for positive class  (16) 

w.u + b ≤ -1   for negative class  (17) 

 

Fig. 8. Training of linearly divided data by SVM. Taken from [21]. 

Support Vectors 
Maximum margin 
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4. FINDING FEATURE IMPORTANCE THROUGH PERMUTATION 

Feature importance is a concept that transcends any particular machine learning model or technique; instead, it is a 

strategy applicable to any model, irrespective of its fundamental design or complexity. Permutation feature importance 

stands out as a widely-used model-agnostic method for assessing the significance of features. This method involves 

evaluating how the model's performance changes when the values of a specific feature are randomly shuffled. As this 

technique severs the link between the feature and the target, the reduction in the model score indicates the extent to 

which the model relies on that feature. Comparing the model's performance before and after shuffling allows for the 

determination of feature importance, with the feature causing the most substantial decline in performance being 

deemed the most important. The process initiates with fitting a model to the dataset, followed by making estimates 

while shuffling the values of each column (feature) in the dataset. This process is repeated multiple times (e.g., 3, 5, 

10), resulting in a mean importance score for each input feature, along with a distribution of scores based on the 

repetitions. 

Permutation importance algorithm overview: 

1. Inputs: Fitted predictive model (m) and tabular dataset  (D) for either training or validation. 

2. Compute the reference score (s) of model m on dataset D, representing the accuracy for the classifier. 

3.  For each feature (j) in the columns of D: 

A. For each repetition (k) in the range 1 to K: 

           i. Randomly shuffle column j of dataset D to create a corrupted version named Dk,j. 

            ii. Compute the score (sk,j) of model m on the corrupted data Dk,j. 

B. Compute the importance (ij) for feature fj, defined  

as: 

ij= s - 
1

𝐾
 ∑ sk,j

𝐾
𝑘=1                 (18) 

 

5.  EXPERIMENTAL RESULTS AND DISCUSSION 

The feature extraction process is executed through Visual Basic, while the training and testing phases are implemented 

using Python. The experiment is conducted on a laptop equipped with a Core i5 CPU and 8 GB of RAM. In this study, 

both global and local features are extracted and utilized for each signature image. Each signature image is characterized 

by 170 features, and the dataset comprises a total of 44,880 records stored in a Comma Separated Values (CSV) 

database file. Various performance metrics, including Accuracy, Precision, Recall, F1-score, False Acceptance Rate 

(FAR), and False Rejection Rate (FRR), are employed to assess the model's performance.   

Accuracy computed as in (19) below. 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (19) 

True Positive (TP): The model correctly predicted the signature as original, and the actual value was indeed 
original. 

True Negative (TN): The model accurately predicted the signature as forgery, and the actual value was indeed 
a forgery. 

False Positive (FP): The model incorrectly predicted the signature as original, but the actual value was a forgery. 
This is also known as a Type-I error. 

False Negative (FN): The model erroneously predicted the signature as forgery, but the actual value was original. 
This is also referred to as a Type-II error. 
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Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (20) 

Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (21) 

F1-score = 
2∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (22) 

FAR = 
𝐹𝑃

𝐹𝑃+𝑇𝑁
  (23) 

FRR = 
𝐹𝑁

𝐹𝑁+𝑇𝑃
 (24) 

 

 

In this paper, we studied many aspects of the offline signature verification including: pre-processing of data 

(normalization vs. standardization); kernel (Poly vs. RBF); dataset distribution between training and testing (80%-20% 

vs. 5-fold); different values of the C and gamma parameters (C=1, 10, 100 and gamma=1, 10, 100). The results are 

reported in Tables I-V. Note that, the best result in each table is shown in bold. 

The first experiment studied the following parameters: Kernel (Poly and RBF); C (1, 10, 100); gamma (1, 10, 100); 

pre-processing of features (normalization vs. standardization); and the dataset is divided into training set (80%) and 

testing (20%) vs. 5-fold. The comparison between poly and RBF kernels with (normalization and standardization) is 

shown in Tables I and II. In the normalization case (Table I), the highest accuracy value obtained for Poly kernel is 

77.29%, with C parameter equals 100. However, the accuracy is raised to 89.24% when RBF kernel is used, with the 

value of C=100 and gamma=10. For the case of standardization (Table II) the accuracy was 68.02% with Poly kernel 

and value of C=100, and 95.42% for RBF kernel, with the value of C=100 and gamma=1.  

 

 

 

TABLE I.  COMPARISON BETWEEN POLY AND RBF KERNEL WITH NORMALIZATION FEATURES. 

kernel C gamma 
Accuracy 

(%) 

FAR 

(%) 

FRR 

(%) 

poly 1 - 72.89 8.00 45.94 

poly 10 - 75.89 8.00 39.99 

poly 100 - 77.29 8.07 37.14 

RBF 1 1 86.12 26.22 1.68 

RBF 1 10 87.88 21.91 2.43 

RBF 1 100 87.78 22.25 2.30 

RBF 10 1 88.05 22.02 1.99 

RBF 10 10 88.74 20.81 1.81 

RBF 10 100 88.5 22.47 0.66 

RBF 100 1 88.91 20.79 1.5 

RBFa 100 10 89.24 20.3 1.32 

RBF 100 100 88.93 21.71 0.55 

a. Precision= 83.1%, Recall= 98.7%, F1-score= 90.2%. 
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TABLE II.  COMPARISON BETWEEN POLY AND RBF KERNEL WITH STANDARDIZATION FEATURES. 

kernel C gamma 
Accuracy 

(%) 

FAR 

(%) 

FRR 

(%) 

poly 1 - 52.42 7.22 87.38 

poly 10 - 63.14 34.58 39.08 

poly 100 - 68.02 28.46 35.43 

RBF 1 1 85.32 14.8 14.54 

RBF 1 10 80.13 23.44 16.33 

RBF 1 100 72.48 42.73 12.5 

RBF 10 1 92.94 7.98 6.13 

RBF 10 10 86.59 17.27 9.58 

RBF 10 100 73.97 40.48 11.75 

RBFb 100 1 95.42 6.39 2.78 

RBF 100 10 86.85 17.11 9.22 

RBF 100 100 73.97 40.51 11.73 

b. Precision= 93.9%, Recall= 97.2%, F1-score= 95.5%. 

 

In the second experiment we studied same parameters as in the first experiment with one difference, the dataset is 

divided into training and testing using 5-fold cross-validation technique. The k-fold technique is used to prevent bias 

in the selection of both training and testing data, to estimate the model performance on unseen data, also due to 

computational cost. The comparison between poly and RBF kernels with (normalization and standardization) is shown 

in Tables III and IV. In the normalization case, the highest accuracy value obtained for Poly kernel is 75.47%, with C 

parameter equals 10. However, the accuracy is raised to 88.91% when RBF kernel is used, with the value of C=100 

and gamma=10. For the case of standardization (Table IV) the accuracy was 61.04% with Poly kernel with value of 

C=10, and 94.07% for RBF kernel, with the value of C=100 and gamma=1. 

 

TABLE III.  RESULTS OF MODEL WITH 5-FOLD CROSS VALIDATION AND NORMALIZATION FEATURES. 

kernel C gamma 
Accuracy 

(%) 

FAR 

(%) 

FRR 

(%) 

poly 1 - 72.64 8.32 46.39 

poly 10 - 75.47 8.33 40.73 

RBF 1 1 85.55 26.96 1.92 

RBF 1 10 87.24 22.67 2.84 

RBF 1 100 86.71 23.49 3.08 

RBF 10 1 87.68 22.7 1.93 

RBF 10 10 88.37 21.27 1.98 

RBF 10 100 87.56 23.2 1.68 

RBF 100 1 88.74 21.09 1.42 

RBFc 100 10 88.91 20.81 1.36 

RBF 100 100 88.05 22.6 1.3 

c. Precision= 82.6%, Recall= 98.6%, F1-score= 89.9%. 

 

 

TABLE IV.  RESULTS OF MODEL WITH 5-FOLD CROSS VALIDATION AND STANDARDIZATION FEATURES. 

kernel C gamma 
Accuracy 

(%) 

FAR 

(%) 

FRR 

(%) 

poly 1 - 51.22 11.2 86.35 

poly 10 - 61.04 40.69 37.22 

RBF 1 1 81.57 18.24 18.61 

RBF 1 10 78.33 25.05 18.28 

RBF 1 100 71.64 41.95 14.75 

RBF 10 1 90.93 9.91 8.23 

RBF 10 10 86.01 17.53 10.43 

RBF 10 100 73.09 39.97 13.83 

RBFd 100 1 94.07 7.45 4.41 

RBF 100 10 86.38 17.08 10.15 

RBF 100 100 73.09 39.99 13.82 

d. Precision= 92.8%, Recall= 95.6%, F1-score= 94.2%. 
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From Tables I-IV, it can be seen that standardization is superior to normalization (also confirmed by the literature). 

The RBF kernel provided better results than Poly kernel which is due to its complexity and efficiency. Using 

standardization with the values of 100, 10 for C and gamma parameters, respectively provided the best results among 

other values. The 5-fold is more accurate than 80%-20% division ratio, although the former gets lower accuracy than 

the latter.  

In the first and second experiments (Tables I-IV), all the ten features are used. However, some features are more 

important than others. Hence, in the next section, a third experiment is performed to find the most important features 

out of the ten features used in this study.  

In experiment 3, the permutation feature importance algorithm is used to reveal the most important feature among the 

ten used features. Table V summarizes the results of using 10, 8, 7, 6, 5, and 4 features (best results shown in bold type 

face). It was shown from Table V that five out of the ten featured are the most important in signature classification of 

images into original and forged. These features are the mean, standard deviation, perimeter, the number of connected 

components, and the number of end points. 

Table VI shows a comparison between different works on offline signature verification. The experiments are quite 

different in the sense of method, dataset, and classification approach whether WD or WI. Our method showed better 

FRR than that of Sharif et al. [9] and Batool et al. [10], although our algorithm has lower performance of 5.82% for 

FAR compared to 4.67% of Sharif et al. and 3.34% for Batool et al. Our algorithm shows better results than that of 

Shekar et al. [11] and Kumar and Puhan [12] in both FRR and FAR. 

 

 

 

TABLE V.  A 5-FOLD EXPERIMENT ON STANDARDIZED FEATURES AFTER REVEALING IMPORTANCE FEATURES. 

Accuracye (%) Precision (%) Recall (%) F1-score (%) FAR (%) FRR (%) 

all 10 features used: area, mean, standard deviation, perimeter, number of connected components, number of vertical edges, number of 

horizontal edges, number of end points, number of branch points, and number of lines 

94.07 92.78 95.59 94.16 7.45 4.41 

8 features used, mean, standard deviation, perimeter, number of connected components, number of vertical edges, number of end points, 

number of branch points, and number of lines 

93.98 93.06 95.05 94.04 7.09 4.95 

7 features used, standard deviation, perimeter, number of connected components number of end points, number of branch points, and 

number of lines 

94.12 93.43 94.92 94.17 6.68 5.07 

6 features used, mean, standard deviation, perimeter, number of connected components, number of end points, and number of lines 

94.15 93.81 94.53 94.17 6.23 5.46 

5 features used, mean, standard deviation, perimeter, number of connected components, number of end points 

95.65 94.37 97.12 95.72 5.82 2.88 

4 features used, end, mean, standard deviation, perimeter, number of connected components 

95.96 93.96 98.28 96.06 6.36 1.72 

e. RBF kernel, C=100, gamma= 1. 
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TABLE VI.  COMPARISON OF PROPOSED METHOD WITH THE RESULTS OF CEDAR DATASET OF EXISTING METHODS. 

Author(s) WD/WI Dataset Features extracted / Method FARf (%) FRRf (%) Accuracyf(%) 

Sharif et al. 

[9] 
WD CEDAR 

Global features contain aspect ratio, area of 

signature, pure width, pure height and 

normalized actual signature height, area of 

black pixels. The local features comprise of 

the centroid, slope, angle, and distance of 

signature image 

5 samplesg 

8.33, 

10 samples  

4.17, 

12 samples 

4.67 

5 samplesg 

12.5, 

10 samples 

8.33, 

12 samples  

4.67 

- 

Batool et al. 

[10] 
- CEDAR  

GLCM and Geometric features (area, 

orientation, solidity, perimeter) 
3.34 3.75 - 

Shekar et al. 

[11] 
WD CEDAR 

The pre-processed signature image is 

vertically partitioned into 8 grids and 

corresponding grid structured morphological 

pattern spectrum is obtained for each grid 

7.9 8.33 91.67 

 Kumar and 

Puhan [12]  
WD CEDAR 

Partial Invariant Chord Oriented Gap 

(PICOG) feature which captures both intra-

class and inter-class variations among the 

signatures with a writer 

17.50 17.95 82.27 

Proposed 

method 
WI 

CEDAR,  

5-fold 

Mean, standard deviation, perimeter, number 

of connected components, number of end 

points 

5.82 2.88 95.65 

f. When multiple datasets are being used, only CEDAR results are reported in this work 

g. Number of genuine signature samples for training. 

 

 

 

 

Additionally, our study is more practical because it is a WI based that does not need retraining when a new data is 

added to the systems. While all the other similar studies in Table VI are WD based that needs retraining after adding 

new user to the system. This work faced many challenges such as fine tuning the parameters of SVM and finding the 

best features among many available features used in the literature. The first issue is solved empirically by using many 

values for the C and gamma parameters as shown in Tables I-IV. Finding the best features for training and classification 

is solved through a permutation importance algorithm explained in Section 4.  

 

6. CONCLUSIONS 

In conclusion, our study introduced an offline signature verification approach employing geometric global and local 

features. Through experimental findings, it was established that standardization outperforms normalization in the 

context of offline signature verification. Additionally, when employed with the SVM classifier, the RBF kernel 

demonstrated superior performance compared to polynomial kernels. The highest accuracy achieved in this study was 

95.65% based on a 5-fold validation. Importantly, our investigation highlighted the significance of five features—

mean, standard deviation, perimeter, number of connected components, and number of end points—in influencing 

classification accuracy, underscoring their pivotal role in the offline signature verification process.  
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