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Abstract

Fractional calculus is a mathematical branch inspecting the
attributes of derivatives and integrals of fractional orders known as
fractional derivatives and integrals. In this article, a far-out complex
integral transform known as the Rohit transform (RT) is put into
use for working out general homogeneous and non-homogeneous
differential equations of fractional or non-integral orders of particular
forms entailing the Caputo fractional derivative operator and the
Riemann-Liouville fractional derivative operator. The Rohit transform
(RT) of the Mittag-Leffler function, the Caputo fractional derivative
operator. and the Riemann-Liouville fractional derivative operator are
obtained, and then the solutions of fractional systems characterized by
fractional homogeneous and fractional non-homogeneous differential
equations entailing the Caputo fractional derivative operator and
the Riemann-Liouville fractional derivative operator are obtained by
utilizing the Rohit transform (RT). This article showcases the ability
and efficacy of the Rohit transform (RT) to straighten out fractional
systems characterized by fractional homogeneous and fractional
non-homogeneous differential equations. While other methods, present
in the literature such as the homotopy-perturbation method, Adomian
decomposition method, fractional variational iteration method, Lyapunov
direct method, and generalized Mittag Leffler stability, may also be
capable of solving the examples presented in the paper, the Rohit
transform introduced innovative concepts or methodologies that offer
new insights or perspectives on the problems examined in the paper,
distinguishing itself from existing transforms and potentially opening up
new research directions. The simplicity and ease of implementation of
the Rohit transform make it a preferable choice for practical applications,
requiring fewer computational steps, less complex algorithms, and
simpler parameter tuning.

1. Introduction:
Differential equations of fractional or non-integral orders

characterize the mathematical models in science, economics,
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finance, and engineering [1]. Some notable fields where dif-
ferential equations of fractional or non-integral orders find
utility include: Physics (equipping of anomalous diffusion,
visco-elasticity and systems with memory effects), Biology
(explanation of population dynamics, biological processes,
and complex physiological systems), Engineering (electrical
networks, control theory of dynamical systems, materials with
non-local systems), fluid mechanics, electro-chemistry of cor-
rosion, probability and statistics, signal processing (deducing
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non-local signal behaviors and processing techniques in com-
plex systems), Medicine (equipping biological systems, drug
discharge kinetics, and physiological processes with memory
effects), Economics and Finance (equipping of market be-
havior, price dynamics, and economic systems with memory
effects) [2, 3, 4, 5]. Differential equations of fractional or
non-integral orders provide a way to illustrate phenomena that
entail memory, hereditary attributes, and non-local behaviors
and offer a more precise illustration of various real-life pro-
cesses and systems. Fractional calculus is a mathematical
branch inspecting the attributes of derivatives and integrals
of fractional orders known as fractional derivatives and inte-
grals [6]. In the previous decades, more and more researchers
have paid attention to fractional calculus since they found that
fractional-order derivatives and fractional-order integrals were
more suitable for the description of phenomena in the real
world, such as visco-elastic systems, dielectric polarization,
electromagnetic waves, heat conduction, robotics, biological
systems, and so on, [7, 8, 9, 10, 11]. Owing to the great
efforts of researchers, there have been rapid developments
in the theory of fractional calculus and its applications, in-
cluding well-posedness, stability, bifurcation, and chaos in
fractional differential equations and their control. In general,
this discipline entails the techniques of solving the differen-
tial equations entailing fractional derivatives of the unknown
function called differential equations of fractional or non-
integral orders. There are many ways, such as Laplace trans-
form [12, 13, 14], homotopy perturbation method [15], Ado-
mian decomposition method [16], variational iteration method
[17], differential transform method [18], and others, to solve
these differential equations of fractional or non-integral or-
ders, to which Laplace transform is frequently applied. For
instance, in [19, 20], the authors investigated the stability
of fractional-order nonlinear dynamical systems using the
Laplace transform method and the Lyapunov direct method,
with the introduction of Mittag-Leffler stability and gener-
alized Mittag-Leffler stability concepts. In [21], Deng et al.
studied the stability of n-dimensional linear fractional differ-
ential equations with time delays using the Laplace transform
method. However, the Rohit transform (RT) has not been
sufficiently brought to bear in such differential equations of
fractional or non-integral orders due to its recent appearance.
The author Rohit Gupta has proffered the Rohit transform
(RT) in recent years to expedite the process of solving differ-
ential equations. This transform has been successfully applied
to solve many initial value problems in physical sciences
and engineering [22, 23, 24, 25, 26, 27]. This article puts
forth the Rohit transform (RT) for solving homogeneous and
non-homogeneous differential equations of fractional or non-
integral orders. The Rohit transform (RT) is defined [22, 23]
for a function of exponential order by the integral equations
as follows: Rh(t) = q3 ∫ ∞

0 e−qth(t)dt, t ≥ 0,q1 ≤ q ≤ q2. The
variable q is used to factor the variable t into the argument

of the function h. The Rohit transform (RT) of unidentified
functions is given by

i.R{tn}= q3
∫

∞

0
e−qttndt =

∫
∞

0
e−z
( z

q

)n dz
q
,z = qt

R{tn}= q2

qn

∫
∞

0
e−z(z)ndz =

q2

qn ⌈(n+1) =
q2

qn n! =
n!

qn−2

Hence, R{tn}= n!
qn−2

ii. R{ sinbt}= q3
∫

∞

0
e−qtsinbt dt = q3

∫
∞

0
e−qt

(
eibt − e−ibt

2i

)
dt

R{ sinbt}= q3
∫

∞

0

(
e−(q−ib)t − e−(q+ib)t

2i

)
dt

=− q3

2i(q− ib)
( e−∞ − e−0)+

q3

2i(q+ ib)
( e−∞ − e−0)

R{ sinbt} =
q3

2i(q− ib)
− q3

2i(q+ ib)
=

b q3

q2 +b2

Hence, R{sinbt}= b q3

q2+b2

iii. R{ cosbt}= q3
∫

∞

0
e−qtcosbt dt = q3

∫
∞

0
e−qt

(
eibt + e−ibt

2

)
dt

R{ cosbt}= q3
∫

∞

0

(
e−(q−ib)t + e−(q+ib)t

2

)
dt

R{ cosbt}=− q3

2(q− ib)
( e−∞ − e−0)

− q3

2(q+ ib)
( e−∞ − e−0)

=
q3

2(q− ib)
+

q3

2(q+ ib)
=

q4

q2 +b2

Hence, R {cosbt}= q4

q2+b2

iv. R
{

ebt
}
= q3

∫
∞

0
e−qtebt dt

= q3
∫

∞

0

(
e−(q−b)t

)
dt

=− q3

(q−b)
( e−∞ − e−0) =

q3

(q−b)

Hence, R
{

ebt
}
= q3

q−b
The Rohit transform (RT) of some derivatives [24, 25] is

given by: Let g(t) be a piecewise continuous function in some
interval, then the Rohit transform (RT) of g′ (t) is given by

R
{

g′ (t)
}
= q3

∫
∞

0
e−qtg′ (t)dt
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Integrating by parts and applying limits, we have

R
{

g′ (t)
}
= q3

[
g(0)−

∫
∞

0
−qe−qtg(t)dt

]

= q3
[
−g(0)+q

∫
∞

0
e−qtg(t)dt

]

R
{

g′ (t)
}
= qRg(t)− q3g(0)

Hence R {g′ (t)}= qG(q)− q3g(0)

By replacing g(t)by g′ (t) and g′ (t) by g′′ (t), we have

R
{

g′′ (t)
}
= qR

{
g′ (t)

}
− q3g′ (0)

= q
{

qR{g(t)}− q3g(0)
}
− q3g′ (0)

R
{

g′′ (t)
}
= q2R{g(t)}− q4g(0)− q3g′ (0)

= q2G(q)− q4g(0)− q3g′ (0)

Hence, R{g′′ (t)}= q2G(q)− q4g(0)− q3g′ (0)

Similarly, R{g′′′ (t)}= q3G(q)−q5g(0) − q4g′ (0)− q3g′′

(0) .

In general, R{gn (t)}= qnR{g(t)}−∑
n
k=1 qn−k+3gk−1 (0)

The Rohit transform (RT) of convolution,
i.e. R{( f ∗g)(t)}= 1

q3 F(q)G(q).

Proof: Since ( f ∗g)(t) =
∫ t

0 f (t − x)g(x)dx,, therefore,

R{( f ∗g)(t)}= q3
∫

∞

0
e−qt ( f )(t) dt

R{( f ∗g)(t)}= q3
∫

∞

0
e−qt

∫ t

0
f (t − x)g(x) dx dt

R{( f ∗g)(t)}= q3
∫

∞

0

∫ t

0
e−qt f (t − x)g(x) dx dt

By altering the order of integration, the above equation be-
comes

R{( f ∗g)(t)}= q3
∫

∞

0

∫
∞

t
e−qt f (t − x)g(x) dt dx

R{( f ∗g)(t)}= q3
∫

∞

0
e−qxg(x)dx

∫
∞

x
e−q(t−x) f (t − x) dt

Let t-x=y, then the above equation becomes

R{( f ∗g)(t)}= q3
∫

∞

0
e−qxg(x)dx

∫
∞

0
e−qy f (y) dy

R{( f ∗g)(t)}= 1
q3

[
q3
∫

∞

0
e−qxg(x)dx

][
q3
∫

∞

0
e−qy f (y)dy

]

R{( f ∗g)(t)}= 1
q3 G(q)F(q)

The article is organized as follows:

Firstly, brief information on a special function known as
the Mittag-Leffler function and fractional operators such as
the Caputo fractional derivative operator and the Riemann-
Liouville fractional derivative operator and their attributes is
provided.

Secondly, the Rohit transform (RT) of the Mittag-Leffler
function, Caputo fractional derivative operator, and Riemann-
Liouville fractional derivative operator are obtained.

Thirdly, the solutions of fractional systems characterized by
fractional homogeneous and fractional non-homogeneous dif-
ferential equations entailing the Caputo fractional derivative
operator and the Riemann-Liouville fractional derivative op-
erator are obtained by applying the Rohit transform (RT), and
the graphs of some solutions are plotted.

Finally, the conclusions are presented.

2. Special Functions and Their Attributes:
The exponential function ex can be written in the form of a
series as follows:

ex =
∞

∑
n=0

xn

Γ(n+1)

This exponential function ex is very significant in the the-
ory of integer-order differential equations. The modifications
of this function, so-called Mittag-Leffler functions, play a
significant role in the theory of differential equations [4, 5] of
fractional or non-integral orders (FDEs).

The Mittag-Leffler function, with two parameters, is de-
fined as follows:

Ea, b (t) =
∞

∑
n=0

tn

Γ(an+b)

Here t belongs to the complex plane, a > 0, b belongs to
real numbers, and Γ is the gamma function. For the particular
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values of the parameters a and b, we find well-known classical
functions. For example,

• E0, 1 (t) =
∞

∑
n=0

tn =
1

1− t
, |t|< 1

• E1, 1 (t) =
∞

∑
n=0

tn

Γ(n+1)
= et

• E1, 2 (t) =
∞

∑
n=0

tn

Γ(n+2)
=

(et −1)
t

• E2, 1 (−t2) =
∞

∑
n=0

(−t2)
n

Γ(2n+1)
= cost

• E2, 2 (−t2) =
∞

∑
n=0

(−t2)
n

Γ(2n+2)
=

sint
t

• E2, 2 (t2) =
∞

∑
n=0

t2n

Γ(2n+2)
=

sinht
t

• E1, 1 (t2) =
∞

∑
n=0

t2n

Γ(2n+1)
= cosht

• E 1
2 , 1 (t) =

∞

∑
n=0

tn

Γ( 1
2 n+1)

= et2
er f c(−t)

The Riemann-Liouville fractional integral [4] of order α is
put into words as:

α 0Iα

x f (x) =
1

Γ(α)

∫
α

α0

(x− t)α−1 f (t)dt, α > 0

Some of the attributes of the Riemann-Liouville fractional
integral are given by:

• α 0I0
x f (x) = f (x)

• α 0Iα

x

(
α 0Iβ

x f (x)
)
= α 0Iα+β

x f (x)

• 0Iα

x (C) =
C

Γ(α +1)
xα , α > 0

• 0Iα

x (xn) =
Γ(n+1)

Γ(n+α +1)
xn+α , α,(n+1)> 0

• −∞Iα
x

(
ekx
)
=

ekx

kα
, α, k > 0

• −∞Iα
x (sinkx) = kα sin

(
kx− απ

2

)
, α > 0

• −∞Iα
x (coskx) = kα cos

(
kx− απ

2

)
, α,k > 0

The Riemann-Liouville fractional derivative with order α is
put into words as:

α
RL
0 D

α

x f (x) =
(

d
dx

)n

α 0In−α

x f (x)

=
1

Γ(n−α)

(
d
dx

)n ∫ α

α0

(x− t)n−α−1 f (t)dt,

where α > 0 and n−1 < α ≤ n.

Some of the attributes of the Riemann-Liouville fractional
derivative are given by

• RL
0 D

α

x (C) =
x−α

Γ(1−α)
, α > 0

• RL
0 D

α

x (xn) =
Γ(n+1)

Γ(n−α +1)
xn−α , α,(n+1)> 0

• −∞
RLD

α

x

(
ekx
)
= kα ekx, α, k > 0

• −∞
RLD

α

x (sinkx) = kα sin
(

kx+
απ

2

)
, α > 0

• −∞
RLD

α

x (coskx) = kα cos
(

kx+
απ

2

)
, α > 0

The Riemann-Liouville fractional derivative [5] with order α

is put into words as:

α
C
0 D

α

x f (x) =
(

d
dx

)n

α 0In−α

x f (x)

=
1

Γ(n−α)

(
d
dx

)n ∫ α

α0

(x− t)n−α−1 f (t)dt,

whereα > 0 and (n−1)< α ≤ n.

Some of the attributes of the Caputo fractional derivative
are given by:

• C
0 D

α

x (C) = 0 , α > 0

• C
0 D

α

x (xn) =
Γ(n+1)

Γ(n−α +1)
xn−α , α,(n+1)> 0

• C
0 D

α

x

(
ekx
)
= knxn−α E1,n−α+1 (kx), α, k > 0

• C
0 D

α

x (sinkx)=− i
2
(ik)nxn−α [E1,n−α+1 (ikx)−(−1)n

E1,n−α+1 (−ikx)],α > 0

3. Rohit Transform (RT) of Special Func-
tions:

i. R
{

0Iα

x f (x)
}
= R

{
1

Γ(α)

∫
α

0
(x− t)α−1 f (t)dt

}
= R

{
1

Γ(α)
(x)α−1 (x)

}
=

1
Γ(α)

1
q3 R

{
xα−1}R{ f (x)}

=
1

Γ(α)

1
q3

Γ(α)

qα−1−2 F (cq)

= q−α F (q)
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Hence, R0Iα

x f (x) = q−α F (q)

ii. RRL
0 D

α

x f (x) = R
(

d
dx

)n

0In−α

x f (x)

Since R{hn (t)}= qnR{h(t)}−∑
n
k=1 qn−k+3hk−1 (0)

Or R{hn (t)}= qnR{h(t)}−∑
n−1
k=0 qn−k+2hk (0)

Or R{hn (t)}= qnR{h(t)}−∑
n−1
k=0 qk+3hn−k−1 (0) , there f ore,

RRL
0 D

α

x f (x) = R
(

d
dx

)n

0In−α

x f (x)

RRL
0 D

α

x f (x) = qnR
{

0In−α

x f (x)
}

−
n−1

∑
k=0

qk+3(
d
dx

)
n−k−1

0In−α

x f (0)

RRL
0 D

α

x f (x) = qnq−n+α F (q)−
n−1

∑
k=0

qk+3
(

d
dx

)n−k−1

0Dα−n
x f (0) [∵ 0Dα−n

x = 0In−α

x ]

RRL
0 D

α

x f (x) = qα F (q)−
n−1

∑
k=0

qk+3
0Dα−k−1

x f (0)

Hence

R
{

RL
0 D

α

x f (x)
}
= qα F (q)−

n−1

∑
k=0

qk+3RL
0 D

α−k−1
x f (0)

iii. RC
0 D

α

x f (x) = qα F (q)−
n−1

∑
k=0

qα−k+2 f k (0)

Let g(x) =
( d

dx

)n
f (x).

Since R0In−α

x f (x) = q−n+α F (q), therefore,

R0In−α

x g(x) = q−n+α G(q)

R0In−α

x g(x) = q−n+α R
(

d
dx

)n

f (x)

R0In−α

x g(x) = q−n+α [qnR{ f (t)}−
n−1

∑
k=0

qn−k+2 f k (0)]

R0In−α

x g(x) = qα R{ f (t)}−
n−1

∑
k=0

qα−k+2 f k (0)

Now, RC
0 Dα

x f (x) = R
( d

dx

)n
0In−α

x f (x)

RC
0 D

α

x f (x) = R
{

0In−α

x g(x)
}

RC
0 D

α

x f (x) = qα F (q)−
n−1

∑
k=0

qα−k+2 f k (0)

Hence, RC
0 Dα

x f (x) = qα F (q)−∑
n−1
k=0 qα−k+2 f k (0)

iv. R
{

tb−1Ea, b (σta)
}
=

qa−b+3

qα −σ

Proof:
As

R
{

tan+b−1
}
= q3

∫
∞

0
e−qttan+b−1dt

Put x = qt, we have

R
{

tan+b−1
}
= q2

∫
∞

0
e−x
(

x
q

)an+b−1

dx

R
{

tan+b−1
}
= q−an−b+3

∫
∞

0
e−xxan+b−1dx

R
{

tan+b−1
}
= q−an−b+3

Γ(an+b)

Also

∞

∑
n=0

σ
n q−(n+1)a = (qα −σ)

−1

Therefore,

R
{

tb−1Ea, b (σta)
}
= R

{
tb−1

∞

∑
n=0

(σta)n

Γ(an+b)

}

R
{

tb−1Ea, b (σta)
}
=

∞

∑
n=0

σnR
{

tan+b−1
}

Γ(an+b)

R
{

tb−1Ea, b (σta)
}
=

∞

∑
n=0

σn q−an−b+3 Γ(an+b)
Γ(an+b)

R
{

tb−1Ea, b (σta)
}
=

∞

∑
n=0

σ
n q−an−b+3

R
{

tb−1Ea, b (σta)
}
= qa−b+3

∞

∑
n=0

σ
n q−an−a

R
{

tb−1Ea, b (σta)
}
= qa−b+3

∞

∑
n=0

σ
n q−(n+1)a

R
{

tb−1Ea, b (σta)
}
= qa−b+3 (qa −σ)

−1

Hence, R
{

tb−1Ea, b (σta)
}
= qa−b+3

qa−σ
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Solving General Differential Equations of Fractional Orders ...6

4. Material and Method:
In this section, general differential equations of fractional

or non-integral orders involving fractional operators such as
the Caputo fractional derivative operator and the Riemann-
Liouville fractional derivative operator are solved via the Ro-
hit transform (RT).

Consider the fractional system involving the Caputo fractional
derivative of the form:

C
0 D

α

x f (x)+ γ f (x) = 0 (1)

where x > 0 and f k (0) =Ck,k = 1, 2, 3, . . .

Solution: Taking the RT of equation (1), we get:

R
{

C
0 D

α

x f (x)
}
+ γR{ f (x)}= 0 (2)

Since RC
0 Dα

x f (x) = qα F (q)−∑
n−1
k=0 qα−k+2 f k (0) and (n−

1)< α < n, therefore,

equation (2) becomes

qaF (q)−
n−1

∑
k=0

qα−k+2Ck+γ F (q) = 0

F (q) =
∑

n−1
k=0 qα−k+2Ck

qa + γ
(3)

As R−1
{

qa−b+3

qa−σ

}
= xb−1Ea, b (σxa) , applying inverse RT

to equation (3), we get

f (x) =Ck xk+1−1Eα, k+1 (−γxα), where b = k+1

f (x) =
n−1

∑
k=0

Ckxk Eα, k+1 (−γxα) (4)

The equation (4) illustrates the solution to equation (1).

Consider the fractional system involving the Caputo fractional
derivative of the form:

C
0 D

α

x f (x)+ γ f (x) = 0 (5)

where x¿0, f (0) =C, and 0 < α < 1.

Solution:
Taking the RT of equation (5), we get

R
{

C
0 D

α

x f (x)
}
+ γR{ f (x)}= 0 (6)

Since RC
0 Dα

x f (x) = qα F (q)−∑
n−1
k=0 qα−k+2 f k (0)

and (n−1)< α < n, therefore, equation (6) becomes

qaF (q)−
n−1

∑
k=0

qα−k+2 f k (0)+ γ F (q) = 0

For n = 1,

qα F (q)−
0

∑
k=0

qα−k+2 f k (0)+ γ F (q) = 0

qα F (q)−qα+2C+ γ F (q) = 0

F (q) =
Cqα+2

qa + γ
(7)

As R−1
{

qa−b+3

qa−σ

}
= xb−1Ea, b (σxa), applying inverse RT to

equation (7), we get

f (x) =C x1−1Eα, 1 (−γxα), where b =1

f (x) =C Eα, 1 (−γxα) (8)

The equation (8) illustrates the solution to equation (5).

For α = 1
2 ,γ = 1, and C=1, equation (8) becomes

f (x) = E 1
2 , 1

(
−x

1
2

)
= ex er f c

(
x

1
2

)
f (x) = ex[ er f

(
−x

1
2

)
+1] (9)

The graphs of equation (9) for different ranges of x are
shown in Figures 1a to 1f.
Consider the fractional system involving the Caputo fractional
derivative of the form:

C
0 D

1
2
x f (x)− γ f (x) = 0 (10)

where x¿0 and f (0) =C.

Solution:
Taking the RT of equation (10), we get

R
{

C
0 D

1
2
x f (x)

}
− γR{ f (x)}= 0 (11)

Since RC
0 Dα

x f (x) = qα F (q)−∑
n−1
k=0 qα−k+2 f k (0)

and (n−1)< α < n, therefore, equation (11) becomes
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Figure 1a. The numerical solution of equation (5) for x
ranges from 0.00 to 37.00.

Figure 1b. The numerical solution of equation (5) for x
ranges from 0.00 to 27.00.

Figure 1c. The numerical solution of equation (5) for x
ranges from 27.00 to 27.01.

Figure 1d. The numerical solution of equation (5) for x
ranges from 28.01 to 28.10.

Figure 1e. The numerical solution of equation (5) for x
ranges from 29.50 to 30.00.

Figure 1f. The numerical solution of equation (5) for x
ranges from 30.00 to 36.00.
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Figure 2. The numerical solution of equation (10).

q
1
2 F (q)−∑

n−1
k=0 q

1
2 −k+2 f k (0)− γ F (q) = 0

q
1
2 F (q)−∑

0
k=0 q

1
2−k+2 f k (0)− γ F (q) = 0,

where n = 1

q
1
2 F (q)−q

5
2 C− γ F (q) = 0

F (q) =
Cq

5
2

q
1
2 − γ

(12)

As R−1
{

qa−b+3

qa−σ

}
= xb−1Ea, b (σxa), applying inverse RT to

equation (12), we get

f (x) =C x1−1E 1
2 , 1

(
γx

1
2

)
, where a = 1

2 and b=1

f (x) =C E 1
2 , 1

(
γx

1
2

)
(13)

The equation (13) illustrates the solution to equation (10). The
graph of equation (13) is shown in Figure 2.
Consider the fractional system involving the Caputo fractional
derivative of the form:

C
0 D

α

x f (x)− γ f (x) = h(x) (14)

where x¿0 and f k (0) =Ck, k = 1, 2, 3, . . .

Solution:
Taking the RT of equation (14), we get

R
{

C
0 D

α

x f (x)
}
− γR{ f (x)}= h(x) (15)

Since RC
0 Dα

x f (x) = qα F (q)−∑
n−1
k=0 qα−k+2 f k (0)

and (n−1)< α < n, therefore, equation (15) becomes
qaF (q)−∑

n−1
k=0 qα−k+2Ck−γ F (q) = H(q)

F (q) =
∑

n−1
k=0 qα−k+2Ck

qa − γ
+

H (q)
qa − γ

(16)

As R−1
{

qa−b+3

qn−σ

}
= xb−1Ea, b (σxa), applying inverse RT to

equation (16), we get

f (x) = R−1

{
∑

n−1
k=0 qα−k+2Ck

qa − γ

}
+ R−1

{
H (q)
qa − γ

}

f (x) = R−1

{
∑

n−1
k=0 qα−k+2Ck

qa − γ

}
+ R−1

{
q3H (q)

q3(qa − γ)

}

f (x) = R−1

{
∑

n−1
k=0 qα−k+2Ck

qa − γ

}
+ R−1

{
1
q3 H (q) .G(s)

}
(17)

where G(s) = q3

qa−γ

As R−1
{

qa−b+3

qa−σ

}
= xb−1Ea, b (σxa), therefore,

R−1 {G(s)}= g(x)=
{

q3

qa−γ

}
= xa−1Ea, a (γxa)= xa−1Ea, a (γxa),

where b = a

And R−1
{

∑
n−1
k=0 qα−k+2Ck

qa−γ

}
= ∑

n−1
k=0 Ck xk+1−1Eα, k+1 (γxα) =

∑
n−1
k=0 Ck xkEα, k+1 (γxα), where b = k + 1

Hence equation (17) becomes

f (x) =
n−1

∑
k=0

Ck xkEα, k+1 (γxα)+ R−1
{

H (q) G(s)
q3

}

f (x) =
n−1

∑
k=0

Ckxk Eα, k+1 (γxα)+h(x)∗g(x) (18)

Since g(x)∗h(x) =
∫ x

0 g(x− t)h (t)dt =
∫ x

0 (x− t)α−1

Ea, a (γ (x− t)a)h(t)dt, therefore, equation (18) becomes

f (x) =
n−1

∑
k=0

Ckxk Eα, k+1 (γxα)

+
∫ x

0
(x− t)α−1 Ea, a (γ (x− t)a)h(t)dt (19)

The equation (19) illustrates the solution to equation (14).
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Solving General Differential Equations of Fractional Orders ... 9

Consider the fractional system involving the Caputo fractional
derivative of the form:

C
0 D

1
2
x f (x)− γ f (x) = x2, x > 0 (20)

Solution:
Taking the RT of equation (20), we get

R
{

C
0 D

1
2
x f (x)

}
− γR{ f (x)}= Rx2 (21)

Since RC
0 Dα

x f (x)= qα F (q)−∑
n−1
k=0 qα−k+2 f k (0) and(n−1)<

α < n, therefore, equation (21) becomes

q
1
2 F (q)−∑

n−1
k=0 q

1
2 −k+2 f k (0)− γ F (q) = 2

q
1
2 F (q)−∑

0
k=0 q

1
2 −k+2 f k (0)− γ F (q) = 2

where α = 1/2 and n = 1
q

1
2 F (q)−q

5
2 C− γ F (q) = 2

F (q) =
Cq

5
2

q
1
2 − γ

+
2q0

q
1
2 − γ

(22)

As R−1
{

qa−b+3

qa−σ

}
= xb−1Ea, b (σxa), applying inverse RT to

equation (22), we get

f (x) =C x1−1E 1
2 , 1

(
γx

1
2

)
+2x

1
2+3−1E 1

2 , 1
2+3

(
γx

1
2

)

f (x) =C E 1
2 , 1

(
γx

1
2

)
+2x

5
2 E 1

2 , 7
2

(
γx

1
2

)
(23)

The equation (23) illustrates the solution to equation (20).
The graph of equation (23) is shown in Figure 3.

C
0 D

1
2
x f (x)+ γ f (x) = x2, x > 0 (24)

Solution:
Taking the RT of equation (24), we get

R
{

C
0 D

1
2
x f (x)

}
+ γR{ f (x)}= Rx2 (25)

Since RC
0 Dα

x f (x) = qα F (q)− ∑
n−1
k=0 qα−k+2 f k (0) and (n −

1)< α < n, therefore, equation (25) becomes
q

1
2 F (q)−∑

n−1
k=0 q

1
2 −k+2 f k (0)+ γ F (q) = 2

q
1
2 F (q)−∑

0
k=0 q

1
2 −k+2 f k (0)+ γ F (q) = 2

where α = 1/2and n = 1
q

1
2 F (q)−q

5
2 C+ γ F (q) = 2

Figure 3. The numerical solution of equation (20).

Consider the fractional system involving the Caputo fractional
derivative of the form:

F (q) =
Cq

5
2

q
1
2 + γ

+
2q0

q
1
2 + γ

(26)

As R−1
{

qa−b+3

qa−σ

}
= xb−1Ea, b (σxa), applying inverse RT to

equation (26), we get

f (x)=C x1−1E 1
2 , 1

(
−γx

1
2

)
+2x

1
2+3−1E 1

2 , 1
2+3

(
−γx

1
2

)

f (x) =C E 1
2 , 1

(
−γx

1
2

)
+2x

5
2 E 1

2 , 7
2

(
−γx

1
2

)
(27)

The equation (27) illustrates the solution to equation (24).
For C = 1 andγ = 1, the graphs of equation (27) for different
ranges of x are shown in Figures 4a to 4c.

f ′′ (x)+d C
0 D

α

x f (x)+b f (x) = 0 (28)

where 1 < α < 2, x > 0, f (0) =C1 and′ (0) =C2

Solution:
Taking the RT of equation (28), we have
q2F (q)− q4 f (0)− q3 f ′ (0)+ d

[
qα F (q)− sumn−1

k=0qα−k+2

f k (0)
]
+bF (q) = 0(

q2 +dqα +b
)

F (q)− q4C1 − 3C2 −d ∑
1
k=0 qα−k+2 f k (0) =

0(
q2 +dq3+α +b

)
F (q)− q4C1−3C2−dqα+2C1−dqα+1C2 =

0
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Figure 4a. The numerical solution of equation (24) for x
ranges from 0.00 to 50.00.

Figure 4b. The numerical solution of equation (1) for x
ranges from 38.00 to 40.00.

Consider the fractional system involving the Caputo fractional
derivative of the form:

F (q) =
q4C1 + q3C2 +dqα+2C1 +dqα+1C2

(q2 +dqα +b)
(29)

Now, let us simplify the term: 1
(q2+dq3+α+b)

as follows:

1
(q2 +dq3+α +b)

=
q−α

(q2−α +d +bq−α)

1
(q2 +dqα +b)

=
q−α

(q2−α +d)
(

1+ bq−α

q2−α+d

)
1

(q2 +dqα +b)
=

q−α

(q2−α +d)
1(

1− −bq−α

q2−α+d

)
1

(q2 +dqα +b)
=

q−α

(q2−α +d)

∞

∑
k=0

(
−bq−α

q2−α +d

)k

Figure 4c. The numerical solution of equation (1) for x
ranges from 40.45 to 40.50.

1
(q2 +dqα +b)

=
∞

∑
k=0

(−b)k q−αk−α

(q2−α +d)
k+1

1
(q2 +dqα +b)

=
∞

∑
k=0

(−b)k q−αk−α

(q2−α)
k+1

(1+dqα−2)
k+1

1
(q2 +dqα +b)

=
∞

∑
k=0

(−b)k q−αk−α(q2−α)
−k−1

(1+dqα−2)
k+1

1
(q2 +dqα +b)

=
∞

∑
k=0

(−b)k q−αk−α q−2k+αk−2+α

(1+dqα−2)
k+1

1
(q2 +dqα +b)

=
∞

∑
k=0

(−b)k q−2k−2

(1+dqα−2)
k+1

1
(q2 +dqα +b)

=
∞

∑
k=0

(−b)k q−2k−2
∞

∑
r=0

(
k+1+ r−1

r

)
(−dqα−2)

r

1
(q2 +dqα +b)

=
∞

∑
k=0

(−b)k
∞

∑
r=0

(
k+ r

r

)
(−d)r(qαr−2r−2k−2)

(30)

Using equation (30) in (29), we get

F (q) =
∞

∑
k=0

(−b)k
∞

∑
r=0

(
k+ r

r

)
(−d)r

(qαr−2r−2k−2)( q4C1 +q3C2 +dqα+2C1 +dqα+1C2)

F (q) =
∞

∑
k=0

(−b)k
∞

∑
r=0

(
k+ r

r

)
(−d)r)(qαr−2r−2k+2)C1

+(qαr−2r−2k+1)C2 +d(qαr+α−2r−2k)C1

+d(qαr+α−2r−2k−1)C2 (31)
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As R−1
(

1
qn−2

)
= R−1

(
q2−n

)
= xn

Γ(n+1) , or R−1 (qz) = x2−z

Γ(3−z) ,
applying inverse RT to equation (??), we have

f (x)=
∞

∑
k=0

(−b)k
∞

∑
r=0

(
k+ r

r

)
(−d)r

( x2r−αr+2k

Γ(2r−αr+2k+1)
C1

+
x2r−αr+2k+1

Γ(2r−αr+2k+2)
C2+

dx2r−αr−α+2k+2

Γ(2r−αr−α +2k+3)
C1

+
dx2r−αr−α+2k+3

Γ(2r−αr−α +2k+4)
C2

)
f (x) =

∞

∑
k=0

(−b)k
∞

∑
r=0

(k+ r)!
r!k!

(−d)r
( x2r−αr+2k

Γ(2r−αr+2k+1)
C1

+
dx2r−αr−α+2k+2

Γ(2r−αr−α +2k+3)
C1+

x2r−αr+2k+1

Γ(2r−αr+2k+2)
C2

+
dx2r−αr−α+2k+3

Γ(2r−αr−α +2k+4)
C2

)
(32)

The equation (32) illustrates the solution to equation (28).

Consider the fractional system involving the Caputo fractional
derivative of the form:

C
0 D

α

x f (x)+C
0 D

β

x f (x) = h(x) (33)

where x > 0, 0 < α < β < 1 and f (0) =C.

Solution:
Taking the RT of C

0 Dα

x f (x)+C
0 Dβ

x f (x) = h(x), we get

R
{

C
0 D

α

x f (x)
}
+R

{
C
0 D

β

x f (x)
}
= Rh(x) (34)

Since RC
0 Dα

x f (x) = qα F (q)−∑
n−1
k=0 qα−k+2 f k (0)

and (n−1)< α < n, therefore, equation (34) becomes

qaF (q)−∑
n−1
k=0 qα−k+2 f k (0)+qβ F (q)−∑

n−1
k=0 qβ−k+2 f k (0)=

H(q)

qaF (q)−∑
0
k=0 qα−k+2 f k (0)+qβ F (q)−∑

0
k=0 qβ−k+2 f k (0)=

H(q)

qaF (q)−qα+2C+qβ F (q)−qβ+2C = H(q)

F (q) =
(qα+2 +qβ+2)C

qa +qβ
+

H (q)
qa +qβ

F (q) = q2C+
H (q)

qa +qβ
(35)

As R−1
{

qa−b+3

qa−σ

}
= xb−1Ea, b (σxa), applying inverse RT to

equation (35), we get

f (x) = R−1{q2C
}
+ R−1

{
H (q)

qa +qβ

}

f (x) =C+ R−1
{

1
q3 H (q) .G(s)

}
(36)

where G(s) = q3

qa+qβ
= q3−a

qβ−a+1

Since:
R−1 {G(s)}= g(x) =

{
q3−β

qa−β−1

}
= xβ−1Eβ−a,β

(
−xβ−a

)
and g(x)∗h(x) =

∫ x
0 g(x− t)h (t)dt =

∫ x
0 (x− t)β−1 Eβ−a,

β

(
−(x− t)β−a

)
h(t)dt,

therefore, equation (??) becomes

f (x) =C+
∫ x

0
(x− t)β−1 Eβ−a, β

(
−(x− t)β−a

)
h(t)dt

(37)

The equation (37) illustrates the solution to equation (33).

Consider the general fractional system involving the Riemann-
Liouville fractional derivative of the form:

RL
0 D

α

x f (x)− γ f (x) = 0 (38)

where x > 0 and RL
0 Dα−k−1

x f (0) =Ck, k = 1, 2, 3, . . . ..
Solution:
Taking the RT of equation (38), we get

R
{

RL
0 D

α

x f (x)
}
− γR{ f (x)}= 0 (39)

Since RRL
0 Dα

x f (x) = qα F (q)−∑
n−1
k=0 qk+3RL

0 Dα−k−1
x f (0)

and (n−1)< α < n, therefore, equation (39) becomes

qaF (q)−∑
n−1
k=0 qk+3Ck − γ F (q) = 0

F (q) =
∑

n−1
k=0 qk+3Ck

qa − γ
(40)
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As R−1
{

qa−b+3

qa−σ

}
= xb−1Ea, b (σxa) , applying inverse RT

to equation (40), we get

f (x) =
n−1

∑
k=0

Ckxa−k−1Eα, a−k (γtα) (41)

where b = a-k

The equation (41) illustrates the solution to equation (38).

Consider the general fractional system involving the Riemann-
Liouville fractional derivative of the form:

RL
0 D

α

x f (x)− γ f (x) = 0 (42)

where x > 0, α belongs to (0, 1) and RL
0 Dα−1

x f (0) =C.

Solution:
Taking the RT of equation (42), we get

R
{

RL
0 D

α

x f (x)
}
− γR{ f (x)}= 0 (43)

Since RRL
0 Dα

x f (x) = qα F (q)−∑
n−1
k=0 qk+3RL

0 Dα−k−1
x f (0) and

(n−1)< α < n, therefore, equation (43) becomes

qaF (q)−∑
n−1
k=0 qk+3RL

0 Dα−k−1
x f (0)− γ F (q) = 0

Since n = 1, therefore,

q3F (q)−∑
0
k=0 qk+3RL

0 Dα−k−1
x f (0)− γ F (q) = 0

qaF (q)− q3 RL
0 Dα−1

x f (0)− γ F (q) = 0 qaF (q)− q3 C −
γ F (q) = 0

F (q) =
q3 C

qa − γ
(44)

As R−1
{

qa−b+3

qa−σ

}
= xb−1Ea, b (σxa), applying inverse RT to

equation (44), we get

f (x) =Cxa−1Eα, a (γtα) (45)

where b = a

The equation (45) illustrates the solution to equation (42).

Consider the fractional system involving the Riemann-Liouville
fractional derivative of the form:

RL
0 D

1
2
x f (x)− γ f (x) = 0 (46)

where x > 0 and RL
0 D− 1

2
x f (0) =C.

Solution:
Taking the RT of equation (46), we get

R
{

RL
0 D

1
2
x f (x)

}
− γR{ f (x)}= 0 (47)

Since RRL
0 Dα

x f (x) = qα F (q)−∑
n−1
k=0 qk+3RL

0 Dα−k−1
x f (0)

and (n−1)< α < n, therefore, to equation (47), we get

q
1
2 F (q)−q3RL

0 D− 1
2

x f (0)− γ F (q) = 0

q
1
2 F (q)−q3C− γ F (q) = 0

F (q) =
q3C

q
1
2 − γ

(48)

As R−1
{

qa−b+3

qa−σ

}
= tb−1Ea, b (σta), applying inverse RT to

equation (48), we get

f (x) =C t−
1
2 E 1

2 , 1
2

(
γt

1
2

)
(49)

The equation (49) illustrates the solution to equation (46).

Consider the general fractional system involving the Riemann-
Liouville fractional derivative of the form:

RL
0 D

α

x f (x)− γ f (x) = h(x) (50)

where x > 0 and RL
0 Dα−k−1

x f (0) =Ck, k = 1, 2, 3, . . .

Solution:
Taking the RT of equation (50), we get

R
{

RL
0 D

α

x f (x)
}
− γR{ f (x)}= Rh(x) (51)

Since RRL
0 Dα

x f (x) = qα F (q)−∑
n−1
k=0 qk+3RL

0 Dα−k−1
x f (0)

and (n−1)< α < n, therefore, equation (??) becomes

qaF (q)−∑
n−1
k=0 qk+3RL

0 Dα−k−1
x f (0)− γ F (q) = H(q)

qaF (q)−∑
n−1
k=0 qk+3Ck − γ F (q) = H(q)

F (q) = ∑
n−1
k=0 qk+3Ck

qa−γ
+ H(q)

qa−γ
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F (q) = ∑
n−1
k=0 qk+3Ck

qa−γ
+ q3H(q)

q3(qa−γ)

F (q) =
∑

n−1
k=0 qk+3Ck

qa − γ
+

G(q)H (q)
q3 (52)

Taking inverse RT of equation (52), we get

f (x) = R−1

{
∑

n−1
k=0 qk+3Ck

qa − γ

}
+ R−1

{
G(q)H (q)

q3

}
(53)

WhereH (q) = q3

qa−γ
= q3

qa−γ

Since R−1
{

qa−b+3

qa−σ

}
= xb−1Ea, b (σxa) , therefore,

R−1 {H(q)}= g(x) = xa−1Ea, a (γxa) = xa−1Ea, a (γxa)

And R−1
{

∑
n−1
k=0 qk+3Ck

qa−γ

}
= ∑

n−1
k=0 Ckxa−k−1Eα, a−k (γtα).

Hence, equation (53) becomes

f (x) =
n−1

∑
k=0

Ckxa−k−1Eα, a−k (γtα)+g(x)∗h(x) (54)

Since g(x)∗h(x) =
∫ x

0 g(x− t)h (t)dt =
∫ x

0 (x− t)α−1 Ea,

a
(
γ
(
x− t

)a )h(t)dt, therefore, equation (54) becomes

f (x) =
n−1

∑
k=0

Ckxa−k−1Eα, a−k (γtα)+
∫ x

0
(x− t)α−1 Ea,

a (γ (x− t)a)h(t)dt (55)

The equation (55) illustrates the solution to equation (50).

Consider the fractional system involving the Riemann-Liouville
fractional derivative of the form:

RL
0 D

1
2
x f (x)− γ f (x) = x2 (56)

where x > 0 and RL
0 D− 1

2
x f (0) =C.

Solution:
Taking the RT of equation (56), we get

R
{

RL
0 D

1
2
x f (x)

}
− γR{ f (x)}= Rx2 (57)

Since RRL
0 Dα

x f (x) = qα F (q)−∑
n−1
k=0 qk+3RL

0 Dα−k−1
x f (0) and

(n−1)< α < n, therefore, equation (57) becomes

q
1
2 F (q)−q3RL

0 D− 1
2

x f (0)− γ F (q) = 2,

where α = 1
2 and n = 1q

1
2 F (q)−q3C− γ F (q) = 2q0

F (q) =
q3C

q
1
2 − γ

+
2q0

q
1
2 − γ

(58)

As R−1
{

qa−b+3

qa−σ

}
= xb−1Ea, b (σxa), applying inverse RT to

equation (58), we get

f (x) =C x
1
2 −1E 1

2 , 1
2

(
γx

1
2

)
+2 x

1
2+3−1E 1

2 , 1
2+3

(
γx

1
2

)
f (x) =C x−

1
2 E 1

2 , 1
2

(
γx

1
2

)
+2 x

5
2 E 1

2 , 7
2

(
γx

1
2

)
(59)

The equation (59) illustrates the solution to equation (56).

5. Conclusions:
In this article, the operation of the Rohit transform (RT)
technique has been extended to obtain the solutions of frac-
tional systems described by general homogeneous and non-
homogeneous differential equations of fractional or non-integral
orders. The solutions of fractional systems are derived in the
form of the Mittag-Leffler function.

This article has validated the ability and efficacy of the
Rohit transform method for solving the differential equations
of fractional or non-integral orders within the framework of
the Caputo fractional derivative operator, and the Riemann-
Liouville fractional derivative operator. Consequently, the
Rohit transform is proved to be valid for solving the differ-
ential equations of fractional or non-integral orders under
general conditions. So, the validity of the Rohit transform
(RT) for solving the differential equations of fractional or non-
integral orders is justified. There is no doubt that the models
submitted are simplified examples rather than models of real
physical settings.

However, it is hoped that the examples submitted help
to elucidate the general ideas that trussed possible physical
administrations of fractional time derivatives. While other
methods, present in the literature may also be capable of solv-
ing the examples presented in the paper, the Rohit transform
introduced innovative concepts or methodologies that offer
new insights or perspectives on the problems examined in the
paper, distinguishing itself from existing methods and poten-
tially opening up new research directions.

The simplicity and ease of implementation of the Rohit
transform make it a preferable choice for practical applica-
tions, requiring fewer computational steps, less complex al-
gorithms, and simpler parameter tuning. The uniqueness of
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the Rohit transform lies in its ability to solve fractional sys-
tems more facilely and effectively compared to other methods
present in the literature, such as the homotopy-perturbation
method [15], the Adomian decomposition method [16], the
fractional variational iteration method [17], the Lyapunov di-
rect method, and generalized Mittag Leffler stability [19, 20].

Future Scope of Rohit Transform: The future scope of the
Rohit transform (RT) holds promise across various domains,
including signal processing, image processing, data compres-
sion, and cryptography. Here are some potential avenues for
its development and application:Further Research and Refine-
ment: Continuous research efforts can refine and enhance
the Rohit transform, exploring its mathematical properties,
optimizing its algorithms, and extending its capabilities to
address a broader range of problems.

Integration into Existing Systems: The Rohit transform can
be integrated into existing signal and image processing sys-
tems to improve their performance, efficiency, and accuracy.
Its simplicity and computational advantages make it a viable
option for real-time applications and resource-constrained en-
vironments.

Multimedia Compression: The Rohit transform’s ability to
efficiently represent and process signals and images can be
leveraged for multimedia compression techniques, enabling
higher compression ratios with minimal loss of information.

Security and Cryptography: The Rohit transform’s cryp-
tographic properties can be explored for developing secure
communication protocols, encryption algorithms, and stegano-
graphic techniques, ensuring data confidentiality and integrity
in sensitive applications.

Overall, the future of the Rohit transform is bright, with
ample opportunities for innovation, collaboration, and practi-
cal application across various disciplines. Continued explo-
ration and development of its capabilities are likely to yield
valuable contributions to the advancement of science and tech-
nology.
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