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ABSTRACT

The Hosoya polynomials of Steiner distance of complete m-partite
graphs K(p,,p,,..p,,) and Straight hexagonal chains G,, are obtained in this

paper. The Steiner n-diameter and Wiener index of Steiner n-distance of
K(p;,py.--p,) and G, are also obtained.

Keywords: Steiner distance, Hosoya polynomial, Steiner n-diameter,
Wiener index.

1. Introduction

We follow the terminology of [2,3]. For a connected graph G=(V,E)
of order p, the Steiner distance[8,7] of a non-empty subset S c ¥ (G) denoted
by dg;(S) or simply d(S), is defined to be the size of the smallest connected
subgraph 7(S) of G that contains S, 7(S) is called a Steiner tree of S. If
|S|=2, then the definition of the Steiner distance of S yields the (ordinary)
distance between the two vertices of S. For 2<n<p and |S|=n, the Steiner
distance of S is called Steiner n-distance of S in G.

The Steiner n-diameter of G (or the diameter of the Steiner n-
distance), denoted by diam,G or 6,(G), is defined to be the maximum
Steiner n-distance of all n-subsets of V(G), that is

diam,, G = max{d;(S):S < V(G),| S |= n}.
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Remark 1.1. It is clear that
@ If n>m, then diam: G2 diam:;7 G.
() If S'c S, then d(S")<d;(S).
The average Steiner n-distance of a graph G, denoted by 4, (G), or

average n-distance of G is the average of the Steiner n-distances of all n-
subsets of V(G), that is

-1
#Z(G)=[f3 3 dg(S).

Scv
S|=n

If G represents a network, then the Steiner n-diameter of G indicates
the number of communication links needed to connect n processors, and the
average n-distance indicates the expected number of communication links
needed to connect n processors [8].

The Steiner n-eccentricity [7] of a vertexveV(G), denoted bye, (v),
is defined as the maximum of the Steiner n-distances of all n-subsets of
V(G) containing v. The Steiner n-radius of G, denoted by rad,(G), is the
minimum of Steiner n-eccentricities of all vertices in G.

The Steiner n-distance of a vertexv eV (G), denoted by W, (v,G) is the
sum of the Steiner n-distances of all n-subsets of V(G) containing v.

The sum of Steiner n-distances of all n-subsets of V(G) is denoted by
d,(G) or W, (G). Notice that

WG = YdgS)=n" Y W;(V,G)z(ij;(G). ....... (1.1)

Scr(G), velV (G)
|S|=n
The graph invariant w, (G) is called the Wiener index of the Steiner

n-distance of the graph G.
Bounds for the average Steiner n-distance of a connected graph G of
order p are given by Danklemann, Oellermann and Swart [4].

Definition 1.2[1] Let C,(G,k) be the number of n-subsets of distinct vertices
of G with Steiner n-distance k. The graph polynomial defined by
5
H,Gx)= Y C,(Ghx*, (1.2)
k=n-1
where &, is the Steiner n-diameter of G; is called the Hosoya polynomial of

Steiner n-distance of G.[1].
Then the n-Wiener index of G, w, (G) will be
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A
w,(G)= Y kC, Gk L (1.3)

k=n—1
The following proposition summarizes some properties of H, (G;x).
Proposition 1.2. For 2<n< p(G),
(1) degH, (G:x) is equal to the Steiner n-diameter of G.

5”
@ H,(G)= ZCZ(G,m:[” J ....... (1.4)
k=n-1 n
@ W@=-SHGO (1.5)
@4 Forn=2, H,(G:x)=H(G;x)-p, ... (1.6)

where H(G,x) is the ordinary Hosoya polynomial of G.
(5) Each end-vertex of a Steiner tree 7(S) must be a vertex of S.

For 1<n<p, let C,(u,G,k) be the number of n-subsets S of distinct
vertices of G containing u with Steiner n-distance k. It is clear that
C, (u,G0)=1.
Define

5,
H,w.Gix)= ) .C,w,G.hx*. (1.7)
k=n-1

Obviously, for 2<n<p

H;(G;x)zl ZH:(M,G;)C). ....... (1.8)
e

Ali and Saeed [1] were first who studied this distance-based
polynomial for Steiner n-distances, and established Hosoya polynomials of
Steiner n-distance for some special graphs and graphs having some kind of
regularity, and for Gutman’s compound graphs G, «G, and G, : G, in terms of
Hosoya polynomials of G and G,.

In this paper, we obtain the Hosoya polynomial of Steiner n-distance
of a complete m-partite graph K(p,,p,,...p,,); and we determine the Hosoya
polynomial of Steiner 3-distance of a straight hexagonal chain G,,.

Moreover, diam,K(p,,p,....p,,) and diam,G,, are also determined.

2. Complete m-partite Graphs

A graph G is m-partite graph [3], m>1, if it is possible to partition
V(G) into m subsets 1,,V,,...,V,, (called partite sets ) such that every edge e
of G joins a vertex of V; to a vertex of v;, i=;. A Complete m-partite
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graph G is an m-partite graph with partite sets V;,V,,....V,, having the added
property that if ue¥; and veV,, i, then uve E(G). If [V;|=p,, then this
graph is denoted by K(p,,p,,...0,,) -

It is clear that the order, the size and the diameter of K(p,,p,,.... p,,)
are » p;,» p;p;»and 2, respectively.

i=1 i#]

The following proposition determines the diameter of Steiner n-

distance of K(p;,py,..0 P)y) -

Proposition 2.1. For n>2, m>2, let p'=max{p,,p,....p, }, then

n, if 2<n<p,

n=1, if p'<n<p.

Proof. Let S be any n-subset of the vertices of K(p,,p,,...p,,) . If S contains
u,v such that ueV;, and veV;, i=j, then (S) is connected, and so
d(S)=n-1.

Ifscv, for 1<i<m, then d(S)=n, namely, the size of T(S)(z K(l,n)).
Therefore, taking Sc ¥, and 2<n < p', we get diam, K(py, Pyres Ppy) =11

diam:K(pDPZr"pm) ={

If n> p’, then S must contain vertices from at least two different partite sets.
This completes the proof. 7(S) (= K (1, r)) L
Theorem 2.2. For n,m=>2,

H:(K(Plapza---apm) x)= Cx"™ + Gy,
in which

a7 5l0) e =50)

Proof. From Proposition 2.1, for each n-subset S,
n—1<d(S)<n.

For each n-subset Sc/V;, 1<i<m, d(S)=n, thus the numbers of such n-

p

subset is C,. Since, the number of all n-subsets is (
n

j, then C, is as given

in the statement of this theorem. [ |
The next corollary follows directly from Theorem 2.2.
Corollary 2.3. For n,m>2,

Wn*(K(Plopz,...,pm)) =(n- 1)(2} " Z(I:;] ,

i=1
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M=

(%)

Hn (K(Py, Pyoees P)) =1 =1+ 5

Remark. By combinatorial argument one can easily show that

S0

Thus form=>2,
,U;(K(Plapz,-u,pm)<n .

A complete m-partite graph is called a regular compete m-partite
graph[3], if p; =t for all i, and it will be denoted by X, . The Hosoya

polynomial and the Wiener index of Steiner n-distance of X, are given in

the following corollary. Its proof follows easily from Theorem 2.2.

Corollary 2.4. For 2<n< p=mt

* ; mt t -1
a H (Km(l);x) = m( Jx” + |:( J_m( HM .
n n "
(2) W:(Km(t)) = (n—l{mtj+m[tj .
n n

3. Straight Hexagonal Chains
A cycle of length 6 can be drawn as a regular hexagon. A Straight
Hexagonal Chains G,, m>2, is a graph consisting of a chain of m

hexagons such that every two successive hexagons have exactly one edge in
common in the form shown in Fig. 3.1.
It is clear that

pG,)=4m+2, q(G,)=55m+1
One can easily show that

diamG,, =2m+1. e (31)

The graph G,, is known to Chemists [5,6] as benzenoid chain of m
hexagonal rings.

We shall find a formula for the diameter of the Steiner n-distance of
the graph G,, for some values of n. The vertices of G,, are labeled as shown
in Fig. 3.1.
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Fig. 3.1 G,

Proposition 3.1. Form>1, 2<n<m+2,
diam,G, =2m+n—1.
Proof. 1t is clear that for n=2,
diamG,, = d(u,u5,,,,) =2m+1.
If n= 3, we find that a 3-subset S’ of maximum Steiner distance is
S'= {”1:“2m+1:“'2m }»
and so,
diam;G,, = d; (S") =2m+2.
For n=4, we notice that a 4-subset S” of maximum Steiner distance is
S"= {“17“'2m+1»”2m="} >
in which
velub,ul,uh, o).
Thus
diamyG,, = d,(S") = 2m +3

Hence, in general for an n-subset S, 2<n<m+2, of maximum
Steiner n-distance, we have the following cases:
(1) If n is even, then S consists of the first n vertices from the sequence:
, , , uy, if mis even,
UL U5 Uop s Uom 2 s U5 U6 ;. p .
DA 2m+1>%2m>%2m-2>%2m—4>%2m—-6 M4,ljmlS0dd.
When m is even, a Steiner tree, 7(S) of such S consists of a (2m+1)-path,
SAY, Up,Us,Usyerliy Usyy together with % paths each of length 2, namely

(gt sttt s Uym b U mss s s st oo . Therefore, the size of T(S) is
n-2

(2m+1)+2[ ]:2m+n—l.

When m is odd 7(S) has the same structure as for the case of even m, and so
have size 2m+n-1.
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(2) If n 1s odd, then S consists of the first n vertices from sequence:
uy, if misodd,

’ ’ ’
UL U s U s Uom—2 s Udm—a s Udm—6>UDm—8o--5) , . .
uy, if mis even.

When m is odd, a Steiner tree 7(S) of such S consists of a 2m-path, say,

(Uy Uy sy Unpy ) tOgether with nT_l paths each of length 2, namely

(a1 s tsmsr > Uam )5 (UnpzsUymz-Um-s)» ---. Therefore, the size of 7(S) is
2m+2(n7_1j:2m+n—1.

When m is even, 7(S) has the same structure as for odd case of m, and so
has size 2m+n-1.

|
Proposition 3.2. Form>3, m+3<n<2m,

diam,G,, :3m+Ln;mJ .

Proof. An n-subset S of vertices, m+3<n<2m which has maximum Steiner
n-distance consists of m+2 vertices described in the proof of Proposition 3.1
together with other n-m-2 vertices chosen in pairs, each pair consists of 2
vertices, belonging to a hexagon, one of degree 2 and the other of degree 3.
For instance, when n and m are even, the added (n-m-2) vertices are
Uh > Us 13 Uamn-Uams:--- Each such pair of vertices gives one edge added to

the size of 7(S"),
2m+(m+2—1)+{w2_2J. |

Remark. For m>2, n=p-2,
diam,G,, = n=4m.

Thus, for 2m+1<n<4m,

S'| =m+2 . Therefore the Steiner n-distance of S is

n m —

3m+{n_2mJSdiam*G <p-2,
and

diam:Gm =p-1, for n=p-1 or p.

We now find the Hosoya Polynomial of the Steiner 3-distance of G,, .
Theorem 3.3. For m=>3, we have the following reduction formula for
H3(G,5%),

H3(G,,3x) = 2H3(G,,_y;x) ~ H3 (G, _53%) + F,, (%)
where F, (x)=2x*""Y[2m-3)+ Om—11)x+(13m - 9)x* + (Tm —1)x> + mx"]

Proof. Let S be any 3-subset of V(G,,) . We refer to Fig 3.1, and denote
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’ ’ ’ ’ ’
A= {”1:”2»”1»”2} , A'= {u2m7u2m+19u2m9u2m+l} >
’ ’ ! r
B= {u3’u5 """ qunfl}J B :{u3’u5""’u2m—1}7
C

={ugstlgrrting, o} and C' = {uly,ufy,.. o5, 5}

For all possibilities of Sc¥V(G,)-4 (or ScV(G,)-4" ), we have
the corresponding polynomial H;(G,_;;x). And for all possibilities of
S cV(G,,)-{4U 4}, the corresponding polynomial is H3(G,,_,;x).

Thus
H3(G,,:x) = 2H3(G,, 1:3) = Hy(G,, 5:2) + F, (%),

m—1»>
in which F,,(x) is the Hosoya polynomial corresponding to all 3-subsets of
vertices that each contains at least one vertex from A and at least one vertex
from 4'. Therefore F,,(x) can be spilt into two polynomials F (x) and F,(x),

where F(x) is the Hosoya Polynomial of all 3-subsets S that each contains
one vertex from A, one vertex from 4 and one vertex from
w=BUB'UCUC', and F,(x) is the Hosoya polynomial corresponding to all
3-subsets SsuchthatSc 4U4', SNA4=z¢p and SNA z¢.
(I) Now, to find F, (x), we consider the following subcases:
(a) If S ={u,,u,,,.y} or {uj,uj,,v}, then
(1) When y e BUC, there are (2m-3) such subsets S each of 3-distance (2m-1).
(2) When y € B', there are (m-1) such subsets S, each of 3-distance 2m.
(3) When y e C’, there are (m-2) such subsets S, each of 3-distance 2m+1.

Therefore, for all such possibilities of S, S = {u;,u,,,,y} or {uj,uj,,v}, yew,
the corresponding polynomial is
B(x)=2x"""[(2m =3) + (m —1)x + (m - 2)x*]
(b) If S =1{uy,uzp,1.y} o {uj,us,..,v}, for all yew, then the corresponding
polynomial can be obtained by a similar way of (a) as given below
Py(x) = 2x"[(2m = 3) + (m —)x + (m — 2)x*]
(c) If S = {u,,ul,,,y}or{u],u,,.y}, v W , then the corresponding polynomial is
Py(x) = 4(2m - 3)x*" .
(d) If §={u,u5,..y} or {uu,,..v}, yew, then the corresponding
polynomial is
Py(x) = 42m = 3)x*™ .
(e) If §={uy,u,,,y} or fus.us,.y}, for all yew, then the corresponding
polynomial is
Py(x) = 2x>"2[(2m = 3) + (m = Dx + (m - 2)x°] .
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(H It S={uy,uy,,, v orfus,ul,.,. v, for allyew, then the corresponding
polynomial is

Py(x) =2x*""[(2m =3) + (m = D)x + (m = 2)x*].
(g) If §={u,uy,,v} or {uy.u,,,y}, for all yew then the corresponding
polynomial is

Py (x) = 42m-3)x*"" .
(h) If S ={uy,ub,,,y} or {us,u,,..y}, for all yew then the corresponding
polynomial is

By (x) = 4(2m - 3)x*™ . Therefore

8
Fi(x)=Y B(x)

i=1

=2x""2[(2m=3)+ 2m —13)x + (13m = 19)x> + (Tm —11)x*

+(m-2)x"].
(II) To find F,(x), let S consists of two vertices from A and one vertex
from 4', or one vertex from 4 and two vertices from 4'. Thus we have

2@}(?) =2(24) possibilities for the 3-subsets S, 24 of them give the same

Hosoya polynomials for the other 24 cases. These 24 cases are listed in the
following table with their Steiner 3-distances:
Table 3.1

! ’
suzauzm} suzauzm}

B
{

U Uy Ut }

!

1

r r

1>U2 U241 }
’

1

’

1

fu
|

03,13 |
lu
s

’ !
{u17u17u2m} 2’u27u2m}

1
1

{”1:“29”’2m+l} ,u’z,uémﬂ}
1

{“ ’u{’u2m+1} . {u2 ’u'Z’MZmH}

fog.uf. 143, ) | o}

{ulaul,fu,2m+1} . »”é:“lzmﬂ}

1.
2.
3.
4.
3.
6.
7.
8.
9.

’
{u17u2’u2m} . 5”27u2m}

{ul’ué’MZmH} . sUy ’u2m+l}

{ul’u’2$u'2m} . ’uZ’uém}

— | —
—

{ulauéﬂuémﬂ} . s“2»”§m+1}

,_
D
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Therefore, there are 4 subsets S of 3-distance (2m-1), 20 of 3-
distance 2m, 20 subsets of 3-distance (2Zm+1) and 4 subsets of 3-distance
(2m+2). Thus,

Fy(x) = 4x*" (14 5x +5x% +x°).

Adding F(x) to F,(x) we get Fj,,(x) as given in the statement of the theorem. |l

Remark. Hosoya Polynomials of Steiner 3-distance of G, and G,are
obtained by direct calculation as shown below:

H;(G;x) = 6x> +12x° +2x*,
and

H;(Gy:x) =15x% +36x° +38x* +27x° +4x°.

The reduction formula given in Theorem 3.3 can be solved to obtain
the following useful formula.

Corollary 3.4. For m>3
H3i(G,;x)=303m-1)x*+122m - 1)x> +2(18m —17)x*
m-3
+27(m=1)x* + 4m =Dx® + Y (k+DF,,_,(x),
k=0

where
F, o (x)=2x2 "D [2m =2k —3) + (9m — 9k —11)x + (13m — 13k —9)x?
+(Tm =Tk =1)x> +(m—k)x*].

Proof. From Theorem 3.3,

H3(G,,;x) =2H;(G,, ;x)— H3(G,, ;) + F,, (%)
= 2[2H; (Gm—Z;x) - H;(Gm—S;x) + Fm—l (x)] - H;(Gm—z;x) + Fm ()C)
=3H3(G,, ;%) — 2H;(G,, 3:x) + F,, (x) + 2F,,_, (x)
=3[2H;(G,,_3;x)—H3(G,_4;X)+ F,_, (x)]

—2H;(G,, 3:x) + E, (x) + 2F,_,(x)

m=3°

2
=4H;(G,, 3;x) = 3H;(G,, 4;x)+ Y (k+DF,_; (x)

k=0
m—3

=(m-DH;(Gy:x)— (m—-2)H3(G;x)+ Y (k+DF, ,(x)  ...(3.1)
k=0

From the remark above, we have
H;(Gy;x) =15x% +36x" +38x* +27x° +4x°,
and
H;(Gy;x) = 6x2 +12x° +2x*
Substituting in (3.1) and simplifying, we get the required result. H
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The 3-Wiener index of G,, is given in the following corollary.
Corollary 3.5. For m>3,

w5 (G,,) :ém(m —2)8m?* +35m+83)+225m -1

Proof. 1t is known that

* d *
W3 (Gm)z_Hfi (Gmax)|
dx

x=1

m-3
Hence 5 (G,,) =393m—337+2) [64k> + (116 —128m)k” + (64m> —180m + 68)k
k=0

+8(16m* —13m +4)]
Now, using the fact that

§k=%(m—3)(m—2),’:20k2 :é(m—3)(m—2)(2m—5) Zk3 ={%(M—3)(m—2)} ’

and simplifying we get the required result. [ |
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