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 لكل من بيانات n- تضمن هذا البحث ايجاد متعددات حدود هوسويا لمسافة ستينر

),...,( التام، m-التجزئة 21 mpppK وبيان سلسلة سداسية مستقيمة mG .كما اوجدنا  القطر -n 

),...,( لكل من n- المسافة ستينرn-و دليل وينر 21 mpppK و mG .   

 

ABSTRACT 
 

 The Hosoya polynomials of Steiner distance of complete m-partite 

graphs ),...,( 21 mpppK  and Straight hexagonal chains mG  are obtained in this 

paper. The Steiner n-diameter and Wiener index of Steiner n-distance of  

),...,( 21 mpppK  and  mG  are also obtained. 

 

Keywords: Steiner distance, Hosoya polynomial, Steiner n-diameter, 

Wiener index. 

 

1. Introduction 
We follow the terminology of [2,3]. For a connected graph ),( EVG =  

of order p, the Steiner distance[8,7] of a non-empty subset )(GVS ⊆ denoted 

by )(SdG  or simply )(Sd , is defined to be the size of the smallest connected 

subgraph T(S) of G that contains S, T(S) is called a Steiner tree of S. If 

|S|=2, then the definition of the Steiner distance of S yields the (ordinary) 

distance between the two vertices of S. For pn ≤≤2  and |S|=n, the Steiner 

distance of S is called Steiner n-distance of S in G. 

 The Steiner n-diameter of G (or the diameter of the Steiner n-

distance), denoted by Gdiamn
*  or )(* Gnδ , is defined to be the maximum 

Steiner n-distance of all n-subsets of V(G), that is 

 { }nSGVSSdGdiam Gn =⊆= ||),(:)(max* . 
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Remark 1.1. It is clear that 
(1) If mn ≥ , then GdiamGdiam mn

** ≥ . 

(2) If SS ⊆′ , then )()( SdSd GG ≤′ . 

The average Steiner n-distance of a graph G, denoted by )(* Gnµ , or 

average n-distance of G is the average of the Steiner n-distances of all n-

subsets of V(G), that is 

∑
=
⊆

−









=

nS
VS

Gn Sd
n

p
G

||

1

* )()(µ . 

 

If G represents a network, then the Steiner n-diameter of G indicates 

the number of communication links needed to connect n processors, and the 

average n-distance indicates the expected number of communication links 

needed to connect n processors [8]. 

The Steiner n-eccentricity [7] of a vertex )(GVv∈ , denoted by )(* ven , 

is defined as the maximum of the Steiner n-distances of all n-subsets of 
V(G) containing v. The Steiner n-radius of G, denoted by )(* Gradn , is the 

minimum of Steiner n-eccentricities of all vertices in G. 

The Steiner n-distance of a vertex )(GVv∈ , denoted by ),(* GvWn is the 

sum of the Steiner n-distances of all n-subsets of V(G) containing v. 

The sum of Steiner n-distances of all n-subsets of V(G) is denoted by 

)(Gdn  or )(* GWn . Notice that  

∑∑
∈

−

=
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The graph invariant )(* GWn  is called the Wiener index of the Steiner 

n-distance of the graph G. 

Bounds for the average Steiner n-distance of a connected graph G of 

order p are given by Danklemann, Oellermann and Swart [4]. 

 

Definition 1.2[1] Let ),(* kGCn  be the number of n-subsets of distinct vertices 

of G  with Steiner n-distance k. The graph polynomial defined by 

∑
−=

=

*

1

** ),();(
n

nk

k
nn xkGCxGH

δ

,      ….… (1.2) 

where *
nδ  is the Steiner n-diameter of G; is called the Hosoya polynomial of 

Steiner n-distance of G.[1]. 

Then the n-Wiener index of G, )(* GWn  will be 



Ali Aziz Ali & Herish Omer Abdullah 
  
 

 

 117 

 ∑
−=

=

*

1

** ),()(
n

nk

nn kGkCGW

δ

         ….… (1.3) 

The following proposition summarizes some properties of );(* xGHn . 

Proposition 1.2. For )(2 Gpn ≤≤ , 

(1) );(deg * xGHn  is equal to the Steiner n-diameter of G. 

(2) 







== ∑

−= n

p
kGCGH

n

nk

nn

δ

1

** ),()1;( ,          ….…(1.4) 

(3) 1
** |);()( == xnn xGH

dx

d
GW .                      ….…(1.5) 

(4) For n=2, pxGHxGH −= );();(*2 ,                      ….…(1.6) 

  where H(G;x) is the ordinary Hosoya polynomial of G. 

(5) Each end-vertex of a Steiner tree T(S) must be a vertex of S.  

 

For pn ≤≤1 , let ),,(* kGuCn  be the number of n-subsets S of distinct 

vertices of G containing u with Steiner n-distance k. It is clear that 

 1)0,,(*1 =GuC . 

 Define 

∑
−=

=

*

1

** ),,();,(
n

nk

k
nn xkGuCxGuH

δ

.                       ….… (1.7) 

Obviously, for pn ≤≤2   

∑
∈

=
)(

** );,(
1

);(
GVu

nn xGuH
n

xGH .    ….… (1.8) 

Ali and Saeed [1] were first who studied this distance-based 

polynomial for Steiner n-distances, and established Hosoya polynomials of 

Steiner n-distance for some special graphs and graphs having some kind of 

regularity, and for Gutman’s compound graphs 21 GG •  and 21 :GG in terms of 

Hosoya polynomials of G1 and G2. 

 In this paper, we obtain the Hosoya polynomial of Steiner n-distance 

of a complete m-partite graph ),...,( 21 mpppK ; and we determine the Hosoya 

polynomial of Steiner 3-distance of a straight hexagonal chain mG . 

Moreover, ),...,( 21
*

mn pppKdiam  and mndiam G*  are also determined. 

 

2. Complete m-partite Graphs 
A graph G is m-partite graph [3], 1≥m , if it is possible to partition 

)(GV  into m subsets mVVV ,...,, 21  (called partite sets ) such that every edge e 

of G joins a vertex of iV  to a vertex of jV , ji ≠ . A Complete m-partite 
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graph G is an m-partite graph with partite sets mVVV ,...,, 21  having the added 

property that if iVu∈  and jVv∈ , ji ≠ , then )(GEuv∈ . If ii pV = , then this 

graph is denoted by ),...,( 21 mpppK .  

It is clear that the order, the size and the diameter of ),...,,( 21 mpppK  

are ∑∑
≠= ji

ji

m

i

i ppp ,
1

, and 2, respectively.  

The following proposition determines the diameter of Steiner n-

distance of ),...,,( 21 mpppK . 

Proposition 2.1. For 2≥n , 2≥m , let { }mpppp ,...,max 21=′ , then 





≤<′−

′≤≤
=

.,1

,2,
),...,( 21

*

pnpifn

pnifn
pppKdiam mn   

Proof. Let S be any n-subset of the vertices of ),...,,( 21 mpppK . If S contains 

u,v such that iVu∈  and jVv∈ , ji ≠ , then S  is connected, and so 

1)( −= nSd . 

If iVS ⊆ , for mi ≤≤1 , then nSd =)( , namely, the size of )),1(()( nKST ≅ . 

Therefore, taking pVS ′⊆  and pn ′≤≤2 , we get npppKdiam mn =),...,,( 21
* . 

If pn ′> , then S must contain vertices from at least two different partite sets. 

This completes the proof. )),1(()( nKST ≅  

Theorem 2.2. For 2, ≥mn ,  

( ) nn
mn

xCxCxpppKH 2
1

121
*

;),...,,( += − ,  

in which  

  ∑
=









−








=

m

i

i

n

p

n

p
C

1

1 , ∑
=









=

m

i

i

n

p
C

1

2 . 

Proof. From Proposition 2.1, for each n-subset S,  

nSdn ≤≤− )(1 . 

For each n-subset iVS ⊆ , mi ≤≤1 , nSd =)( , thus the numbers of such n-

subset is 2C . Since, the number of all n-subsets is 








n

p
, then 1C  is as given 

in the statement of this theorem. 

The next corollary follows directly from Theorem 2.2. 

Corollary 2.3. For 2, ≥mn ,  

∑
=
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Remark. By combinatorial argument one can easily show that  
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∑
= n

p
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pm
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1

, 2≥m  

Thus for 2≥m ,  

( )( npppK mn <,...,, 21
*µ . 

 

A complete m-partite graph is called a regular compete m-partite 

graph[3], if tpi =  for all i, and it will be denoted by )(tmK . The Hosoya 

polynomial and the Wiener index of Steiner n-distance of )(tmK  are given in 

the following corollary. Its proof follows easily from Theorem 2.2. 

 

Corollary 2.4. For mtpn =≤≤2  

(1) ( )
1* );( −
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3. Straight Hexagonal Chains  
A cycle of length 6 can be drawn as a regular hexagon. A Straight 

Hexagonal Chains mG , 2≥m , is a graph consisting of a chain of m 

hexagons such that every two successive hexagons have exactly one edge in 

common in the form shown in Fig. 3.1. 

It is clear that  

24)( += mp mG , 15)( += mq mG  

One can easily show that  

12 += mdiam mG .       ..… (3.1) 

The graph mG  is known to Chemists [5,6] as benzenoid chain of m 

hexagonal rings. 

We shall find a formula for the diameter of the Steiner n-distance of 

the graph mG  for some values of n. The vertices of mG  are labeled as shown 

in Fig. 3.1.  
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Fig. 3.1 mG  

 

Proposition 3.1. For 1≥m , 22 +≤≤ mn ,  

12* −+= nmdiam mnG .  

Proof. It is clear that for n=2,  

12),( 121 +=′= + muuddiam mmG . 

If n= 3, we find that a 3-subset S ′  of maximum Steiner distance is  

  { }mm uuuS 2121 ,, ′=′ + ,  

and so,  

  22)(3
*
3 +=′= mSddiam mG .  

For n=4, we notice that a 4-subset S ′′  of maximum Steiner distance is  
{ }vuuuS mm ,,, 2121 +′=′′ , 

in which  

{ }2242 ,...,, −′′′∈ muuuv . 

Thus  

  32)(4
*
4 +=′′= mSddiam mG  

 

Hence, in general for an n-subset S, 22 +≤≤ mn , of maximum 

Steiner n-distance, we have the following cases:  

(1) If n is even, then S consists of the first n vertices from the sequence: 

  




′

′
′′′ −−−+

.,

,,
,...,,,,,,

4

2
6242222121

oddismifu

evenismifu
uuuuuu mmmmm   

When m is even, a Steiner tree, )(ST  of such S consists of a (2m+1)-path, 

say, 1212321 ,,...,,, ++ ′mm uuuuu  together with 
2

2−n
 paths each of length 2, namely 

( ) ( ),...,,,,, 625252221212 −−−−−− ′′′′ mmmmmm uuuuuu . Therefore, the size of )(ST  is 

12
2

2
2)12( −+=







 −
++ nm

n
m . 

When m is odd )(ST  has the same structure as for the case of even m, and so 

have size 2m+n-1. 

1u′  

1u  

12 +′mu

 

12 +mu  

12 −′mu

 

12 −mu  

32 −′mu  

32 −mu  

52 −′mu

 

52 −mu

 

7u′

 

7u

 

5u′  

5u  

3u′

 

3u  

mu2′  22 −′mu

 
42 −′mu

 

6u′

 
4u′

 

2u′

 

mu2

 

22 −mu

 

42 −mu  
6u

 

4u

 

2u

 

…
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(2) If n is odd, then S consists of the first n vertices from sequence:  

 




′

′
′′′ −−−−+

.,

,,
,...,,,,,,,

4

2
826242222121

evenismifu

oddismifu
uuuuuuu mmmmmm   

When m is odd, a Steiner tree )(ST  of such S consists of a 2m-path, say, 

),,...,,( 12221 +mm uuuu  together with 
2

1−n
 paths each of length 2, namely 

( )mmm uuu 21212 ,, ′′ ++ , ( )423232 ,, −−− ′′ mmm uuu , …. Therefore, the size of )(ST  is  

12
2

1
22 −+=







 −
+ nm

n
m .  

When m is even, )(ST  has the same structure as for odd case of m, and so 

has size 2m+n-1. 
 

Proposition 3.2. For 3≥m , mnm 23 ≤≤+ ,  






 −
+=

2
3* mn
mdiam mnG . 

Proof. An n-subset S of vertices, mnm 23 ≤≤+  which has maximum Steiner 

n-distance consists of m+2 vertices described in the proof of Proposition 3.1 

together with other n-m-2 vertices chosen in pairs, each pair consists of 2 

vertices, belonging to a hexagon, one of degree 2 and the other of degree 3. 

For instance, when n and m are even, the added (n-m-2) vertices are 

;...,;, 3222122 −−− ′′ mmmm uuuu . Each such pair of vertices gives one edge added to 

the size of )(ST ′ , 2+=′ mS . Therefore the Steiner n-distance of S is  

   




 −−
+−++

2

2
)12(2

mn
mm . 

Remark. For 2≥m , n=p-2,  

mndiam mn 4* ==G .  

Thus, for mnm 412 ≤≤+ ,  

2
2

3 * −≤≤




 −
+ pdiam

mn
m mnG ,    

and  

1* −= pdiam mnG , for n=p-1 or  p.  

 

        We now find the Hosoya Polynomial of the Steiner 3-distance of mG . 

Theorem 3.3. For 3≥m , we have the following reduction formula for 

);(*3 xH mG ,  

)();();(2);( 2
*
31

*
3

*
3 xFxHxHxH mmmm +−= −− GGG ,  

where ])17()913()119()32[(2)( 432)1(2 mxxmxmxmmxxF m
m +−+−+−+−= −  

 

Proof. Let S be any 3-subset of )( mV G . We refer to Fig 3.1, and denote  
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  { }2121 ,,, uuuuA ′′= , { }122122 ,,, ++ ′′=′ mmmm uuuuA , 

{ }1253 ,...,, −= muuuB , { }1253 ,...,, −′′′=′ muuuB , 

{ }2264 ,...,, −= muuuC  and { }2264 ,...,, −′′′=′ muuuC . 

 

For all possibilities of AVS m −⊆ )(G  (or AVS m ′−⊆ )(G  ), we have 

the corresponding polynomial );( 1
*
3 xH m−G . And for all possibilities of 

{ }AAVS m ′−⊆ U)(G , the corresponding polynomial is ( )xH m ;2
*
3 −G . 

 Thus 

)();();(2);( 2
*
31

*
3

*
3 xFxHxHxH mmmm +−= −− GGG ,  

in which Fm(x) is the Hosoya polynomial corresponding to all 3-subsets of 

vertices that each contains at least one vertex from A and at least one vertex 

from A′ . Therefore Fm(x) can be spilt into two polynomials )(1 xF  and )(2 xF , 

where )(1 xF  is the Hosoya Polynomial of all 3-subsets  S that each contains 

one vertex from A, one vertex from A′  and one vertex from 
CCBBW ′′= UUU , and )(2 xF  is the Hosoya polynomial corresponding to all 

3-subsets S such that AAS ′⊆ U , ϕ≠AS I  and ϕ≠′AS I . 

(I) Now, to find )(1 xF , we consider the following subcases: 

(a) If { }yuuS m ,, 21=  or { }yuu m ,, 21 ′′ , then  

(1) When CBy U∈ , there are (2m-3) such subsets S each of 3-distance (2m-1). 

(2) When By ′∈ , there are (m-1) such subsets S, each of 3-distance 2m. 

(3) When Cy ′∈ , there are (m-2) such subsets S, each of 3-distance 2m+1. 
 

Therefore, for all such possibilities of S, { }yuuS m ,, 21=  or { }yuu m ,, 21 ′′ , Wy∈ , 

the corresponding polynomial is  

])2()1()32[(2)( 21
1 xmxmmxxP m −+−+−= −  

(b) If { }yuuS m ,, 121 +=  or { }yuu m ,, 121 +′′ , for all Wy∈ , then the corresponding 

polynomial can be obtained by a similar way of (a) as given below  

])2()1()32[(2)( 2
2 xmxmmxxP m −+−+−=  

 (c) If { }yuuS m ,, 21 ′= or{ }yuu m ,, 21′ , Wy∈ , then the corresponding polynomial is 
mxmxP 2

3 )32(4)( −= . 

(d) If { }yuuS m ,, 121 +′=  or { }yuu m ,, 121 +′ , Wy∈ , then the corresponding 

polynomial is 
12

4 )32(4)( +−= mxmxP  . 

(e) If { }yuuS m ,, 22=  or { }yuu m ,, 22 ′′ , for all Wy∈ , then the corresponding 

polynomial is  

])2()1()32[(2)( 222
5 xmxmmxxP m −+−+−= − . 
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(f) If { }yuuS m ,, 122 += or{ }yuu m ,, 122 +′′ , for all Wy∈ , then the corresponding 

polynomial is  

])2()1()32[(2)( 212
6 xmxmmxxP m −+−+−= − . 

(g) If { }yuuS m ,, 22 ′=  or { }yuu m ,, 22′ , for all Wy∈ ,then the corresponding 

polynomial is  
12

7 )32(4)( −−= mxmxP . 

(h) If { }yuuS m ,, 122 +′=  or { }yuu m ,, 122 +′ , for all Wy∈ ,then the corresponding 

polynomial is  
mxmxP 2

8 )32(4)( −= . Therefore  

∑
=

=
8

1

1 )()(
i

i xPxF  

 3222 )117()1913()132()32[(2 xmxmxmmx m −+−+−+−= −  

 

 ])2( 4xm −+ . 

(II) To find )(2 xF , let S consists of two vertices from A and one vertex 

from A′ , or one vertex from A and two vertices from A′ . Thus we have  

 ( )242
1

4

2

4
2 =
















 possibilities for the 3-subsets S, 24 of them give the same 

Hosoya polynomials for the other 24 cases. These 24 cases are listed in the 

following table with their Steiner 3-distances: 

Table 3.1 

no. 3-subsets S 
Steiner 

distances 
no. 3-subsets S 

Steiner 

distances 

1. { }muuu 221 ,,  2m-1 13. { }muuu 221 ,, ′′′  2m-1 

2. { }1221 ,, +muuu  2m 14. { }1221 ,, +′′ muuu  2m 

3. { }muuu 221 ,, ′  2m 15. { }muuu 221 ,, ′′′  2m 

4. { }1221 ,, +′muuu  2m+1 16. { }1221 ,, +′′′ muuu  2m+1 

5. { }muuu 211 ,, ′  2m 17. { }muuu 222 ,, ′  2m 

6. { }1211 ,, +′ muuu  2m+1 18. { }1222 ,, +′ muuu  2m+1 

7. { }muuu 211 ,, ′′  2m 19. { }muuu 222 ,, ′′  2m 

8. { }1211 ,, +′′ muuu  2m+1 20. { }1222 ,, +′′ muuu  2m+1 

9. { }muuu 221 ,, ′  2m+1 21. { }muuu 221 ,,′  2m+1 

10. { }1221 ,, +′ muuu  2m+2 22. { }1221 ,, +′ muuu  2m+2 

11. { }muuu 221 ,, ′′  2m 23. { }muuu 221 ,, ′′  2m 

12. { }1221 ,, +′′ muuu  2m+1 24. { }1221 ,, +′′ muuu  2m+1 
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Therefore, there are 4 subsets S of 3-distance (2m-1), 20 of 3- 

distance 2m, 20 subsets of 3-distance (2m+1) and 4 subsets of 3-distance 

(2m+2). Thus,  

)551(4)( 3212
2 xxxxxF m +++= − . 

Adding )(1 xF  to )(2 xF  we get Fm(x) as given in the statement of the theorem. 
 

Remark. Hosoya Polynomials of Steiner 3-distance of 1G  and 2G are 

obtained by direct calculation as shown below:  

  432
1

*
3 2126);( xxxxH ++=G ,  

 and 
65432

2
*
3 427383615);( xxxxxxH ++++=G .  

The reduction formula given in Theorem 3.3 can be solved to obtain 

the following useful formula. 
 

Corollary 3.4. For 3≥m  
432*

3 )1718(2)12(12)13(3);( xmxmxmxH m −+−+−=G  

     )()1()1(4)1(27
3

0

65 xFkxmxm km

m

k

−

−

=
∑ ++−+−+ , 

where  
2)1(2 )91313()1199()322[(2)( xkmxkmkmxxF km

km −−+−−+−−= −−
−       

            ])()177( 43 xkmxkm −+−−+ . 
 

Proof. From Theorem 3.3, 
  

)();();(2);( 2
*
31

*
3

*
3 xFxHxHxH mmmm +−= −− GGG  

     )();()]();();(2[2 2
*
313

*
32

*
3 xFxHxFxHxH mmmmm +−+−= −−−− GGG  

       )(2)();(2);(3 13
*
32

*
3 xFxFxHxH mmmm −−− ++−= GG   

                 )]();();(2[3 24
*
33

*
3 xFxHxH mmm −−− +−= GG  

                 )(2)();(2 13
*
3 xFxFxH mmm −− ++− G  

       ∑
=

−−− ++−=
2

0

4
*
33

*
3 )()1();(3);(4

k

kmmm xFkxHxH GG  

     ∑
−

=
−++−−−=

3

0

1
*
32

*
3 )()1();()2();()1(

m

k

km xFkxHmxHm GG      …(3.1) 

From the remark above, we have 
65432

2
*
3 427383615);( xxxxxxH ++++=G , 

and  

  432
1

*
3 2126);( xxxxH ++=G  

Substituting in (3.1) and simplifying, we get the required result. 
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The 3-Wiener index of mG  is given in the following corollary. 

Corollary 3.5. For 3≥m ,  

1225)83358)(2(
3

4
)( 2*

3 −+++−= mmmmmW mG  

Proof. It is known that  
 

1

*
3

*
3 );()(

=
=

xmm xH
dx

d
W GG  

 Hence ∑
−

=

+−+−++−=
3

0

223*
3 )6818064()128116(64[2337393)(

m

k

m kmmkmkmW G  

                       )]41316(8 2 +−+ mm  

Now, using the fact that  

( )( )23
2

1
3

0

−−=∑
−

=

mmk
m

k

, ( )( )( )5223
6

1
3

0

2 −−−=∑
−

=

mmmk
m

k

   ( )( )∑
−

= 





 −−=

3

0

2
3 23

2

1
m

k

mmk , 

and simplifying we get the required result. 
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