Hosoya Polynomials of Steiner Distance of Complete m-partite Graphs and Straight Hexagonal chains(*)

Ali Aziz Ali College of Computer Sciences and Mathematics, Mosul University.

Herish Omer Abdullah College of Sciences, University of Salahaddin.

Received on:13/5/2007 Accepted on:28/6/2007

الملخص

تضمن هذا البحث ايجاد متعددات حدود هوسويا لمسافة ستينر- n لكل من بيانات $n - p$ التجزئة $m - m$ التام، $K(p_1, p_2, ... p_m)$ وبيان سلسلة سداسية مستقيمة \mathbf{G}_m . كما اوجدنا القطر . و دليل وينر $n-$ المسافة ستينر $n-$ لكل من $K(p_1, p_2, ... p_m)$ و K .

ABSTRACT

 The Hosoya polynomials of Steiner distance of complete m-partite graphs $K(p_1, p_2,..., p_m)$ and Straight hexagonal chains \mathbf{G}_m are obtained in this paper. The Steiner n-diameter and Wiener index of Steiner n-distance of $K(p_1, p_2,... p_m)$ and \mathbf{G}_m are also obtained.

Keywords: Steiner distance, Hosoya polynomial, Steiner n-diameter, Wiener index.

1. Introduction

We follow the terminology of [2,3]. For a connected graph $G = (V, E)$ of order p, the *Steiner distance*[8,7] of a non-empty subset $S \subset V(G)$ denoted by $d_G(S)$ or simply $d(S)$, is defined to be the size of the smallest connected subgraph $T(S)$ of G that contains S, $T(S)$ is called a **Steiner tree** of S. If $|S|=2$, then the definition of the Steiner distance of S yields the (ordinary) distance between the two vertices of S. For $2 \le n \le p$ and $|S|=n$, the Steiner distance of S is called **Steiner n-distance** of S in G.

The *Steiner n-diameter* of G (or the diameter of the Steiner *n*distance), denoted by $diam_n^* G$ or $\delta_n^*(G)$, is defined to be the maximum Steiner *n*-distance of all *n*-subsets of $V(G)$, that is

 $diam_n^* G = \max \{d_G(S) : S \subseteq V(G), |S| = n\}.$

Remark 1.1. It is clear that

(1) If $n \ge m$, then $diam_n^* G \ge diam_m^* G$.

(2) If $S' \subseteq S$, then $d_G(S') \leq d_G(S)$.

The *average Steiner n-distance* of a graph G, denoted by $\mu_n^*(G)$, or average *n*-distance of G is the average of the Steiner *n*-distances of all *n*subsets of $V(G)$, that is

$$
\mu_n^*(G) = \binom{p}{n}^{-1} \sum_{\substack{S \subset V \\ |S| = n}} d_G(S).
$$

If G represents a network, then the Steiner *n*-diameter of G indicates the number of communication links needed to connect n processors, and the average n-distance indicates the expected number of communication links needed to connect *n* processors [8].

The *Steiner n-eccentricity* [7] of a vertex $v \in V(G)$, denoted by $e_n^*(v)$, is defined as the maximum of the Steiner n -distances of all n -subsets of $V(G)$ containing v. The Steiner n-radius of G, denoted by $rad_n^*(G)$, is the minimum of Steiner *n*-eccentricities of all vertices in G.

The *Steiner n-distance* of a vertex $v \in V(G)$, denoted by $W_n^*(v, G)$ is the sum of the Steiner *n*-distances of all *n*-subsets of $V(G)$ containing *v*.

The sum of Steiner *n*-distances of all *n*-subsets of $V(G)$ is denoted by $d_n(G)$ or $W_n^*(G)$. Notice that

$$
W_n^*(G) = \sum_{\substack{S \subseteq V(G), \\ |S| = n}} d_G(S) = n^{-1} \sum_{v \in V(G)} W_n^*(v, G) = {p \choose n} \mu_n^*(G) \quad \dots \dots \dots (1.1)
$$

The graph invariant $W_n^*(G)$ is called the Wiener index of the Steiner *n*-distance of the graph G .

Bounds for the average Steiner n-distance of a connected graph G of order p are given by Danklemann, Oellermann and Swart [4].

Definition 1.2[1] Let $C_n^*(G,k)$ be the number of *n*-subsets of distinct vertices of G with Steiner *n*-distance k . The graph polynomial defined by

$$
H_n^*(G; x) = \sum_{k=n-1}^{\delta_n^*} C_n^*(G, k) x^k , \qquad \qquad \dots \dots \tag{1.2}
$$

where δ_n^* is the Steiner *n*-diameter of G; is called the **Hosoya polynomial of** Steiner n-distance of G .[1].

Then **the** *n***-Wiener index of G**, $W_n^*(G)$ will be

$$
W_n^*(G) = \sum_{k=n-1}^{\delta_n^*} k C_n^*(G, k) \qquad \qquad \dots \dots \tag{1.3}
$$

The following proposition summarizes some properties of $H_n^*(G; x)$. **Proposition 1.2.** For $2 \le n \le p(G)$,

(1) deg $H_n^*(G; x)$ is equal to the Steiner *n*-diameter of G.

(2)
$$
H_n^*(G;1) = \sum_{k=n-1}^{S_n} C_n^*(G,k) = {p \choose n},
$$
(1.4)

(3)
$$
W_n^*(G) = \frac{d}{dx} H_n^*(G; x)|_{x=1}.
$$
(1.5)

- (4) For $n=2$, $H_2^*(G; x) = H(G; x) p$, ….…(1.6) where $H(G; x)$ is the ordinary Hosoya polynomial of G.
- (5) Each end-vertex of a Steiner tree $T(S)$ must be a vertex of S.

For $1 \le n \le p$, let $C_n^*(u, G, k)$ be the number of *n*-subsets S of distinct vertices of G containing u with Steiner n-distance k . It is clear that

 $C_1^*(u, G, 0) = 1$.

Define

$$
H_n^*(u, G; x) = \sum_{k=n-1}^{S_n^*} C_n^*(u, G, k) x^k
$$
 (1.7)

Obviously, for $2 \le n \le p$

$$
H_n^*(G; x) = \frac{1}{n} \sum_{u \in V(G)} H_n^*(u, G; x) .
$$
 (1.8)

Ali and Saeed [1] were first who studied this distance-based polynomial for Steiner n-distances, and established Hosoya polynomials of Steiner n-distance for some special graphs and graphs having some kind of regularity, and for Gutman's compound graphs $G_1 \bullet G_2$ and $G_1 : G_2$ in terms of Hosova polynomials of G_1 and G_2 .

 In this paper, we obtain the Hosoya polynomial of Steiner n-distance of a complete m-partite graph $K(p_1, p_2, \ldots, p_m)$; and we determine the Hosoya polynomial of Steiner 3-distance of a straight hexagonal chain G_m . Moreover, $diam_n^* K(p_1, p_2,..., p_m)$ and $diam_n^* G_m$ are also determined.

2. Complete m-partite Graphs

A graph G is *m-partite graph* [3], $m \ge 1$, if it is possible to partition $V(G)$ into *m* subsets $V_1, V_2, ..., V_m$ (called *partite sets*) such that every edge *e* of G joins a vertex of V_i to a vertex of V_j , $i \neq j$. A Complete m-partite

graph G is an *m*-partite graph with partite sets $V_1, V_2, ..., V_m$ having the added property that if $u \in V_i$ and $v \in V_j$, $i \neq j$, then $uv \in E(G)$. If $|V_i| = p_i$, then this graph is denoted by $K(p_1, p_2, \ldots, p_m)$.

It is clear that the order, the size and the diameter of $K(p_1, p_2, ..., p_m)$

are $\sum_{i=1} p_i \sum_{i \neq j} p_i p_j$ m i $p_i, \sum p_i p_i$ 1 , and 2, respectively.

The following proposition determines the diameter of Steiner n distance of $K(p_1, p_2, ..., p_m)$.

Proposition 2.1. For $n \ge 2$, $m \ge 2$, let $p' = \max\{p_1, p_2, \ldots, p_m\}$, then

$$
diam_n^* K(p_1, p_2,...p_m) = \begin{cases} n, & \text{if } 2 \le n \le p', \\ n-1, & \text{if } p' < n \le p. \end{cases}
$$

Proof. Let S be any *n*-subset of the vertices of $K(p_1, p_2, ..., p_m)$. If S contains u,v such that $u \in V_i$ and $v \in V_j$, $i \neq j$, then $\langle S \rangle$ is connected, and so $d(S) = n - 1$.

If $S \subseteq V_i$, for $1 \le i \le m$, then $d(S) = n$, namely, the size of $T(S) (\cong K(1, n))$. Therefore, taking $S \subseteq V_{p'}$ and $2 \le n \le p'$, we get $diam_n^*K(p_1, p_2, ..., p_m) = n$.

If $n > p'$, then S must contain vertices from at least two different partite sets. This completes the proof. $T(S) (\cong K(1, n))$

Theorem 2.2. For $n,m \geq 2$,

$$
H_n^*(K(p_1, p_2, ..., p_m); x) = C_1 x^{n-1} + C_2 x^n,
$$

in which

$$
C_1 = {p \choose n} - \sum_{i=1}^m {p_i \choose n}, \quad C_2 = \sum_{i=1}^m {p_i \choose n}.
$$

Proof. From Proposition 2.1, for each *n*-subset *S*,

 $n-1 \leq d(S) \leq n$.

For each *n*-subset $S \subseteq V_i$, $1 \le i \le m$, $d(S) = n$, thus the numbers of such *n*subset is C_2 . Since, the number of all *n*-subsets is $\begin{bmatrix} P \\ n \end{bmatrix}$ J \backslash $\overline{}$ \backslash ſ n $\binom{p}{r}$, then C_1 is as given in the statement of this theorem.

The next corollary follows directly from Theorem 2.2. **Corollary 2.3.** For $n, m \geq 2$,

$$
W_n^*(K(p_1, p_2, ..., p_m)) = (n-1) {p \choose n} + \sum_{i=1}^m {p_i \choose n},
$$

$$
\mu_n^*(K(p_1, p_2, ..., p_m)) = n - 1 + \frac{\sum_{i=1}^m {p_i \choose n}} {n \choose n}.
$$

Remark. By combinatorial argument one can easily show that

$$
\sum_{i=1}^{m} {p_i \choose n} < {p \choose n}, \ m \ge 2
$$

Thus for $m \geq 2$,

 $\mu_n^* (K(p_1, p_2, ..., p_m) < n$.

A complete m-partite graph is called a regular compete m-partite *graph*[3], if $p_i = t$ for all i, and it will be denoted by $K_{m(t)}$. The Hosoya polynomial and the Wiener index of Steiner *n*-distance of $K_{m(t)}$ are given in the following corollary. Its proof follows easily from Theorem 2.2.

Corollary 2.4. For $2 \le n \le p = mt$

(1)
$$
H_n^*(K_{m(t)}; x) = m \binom{t}{n} x^n + \left[\binom{mt}{n} - m \binom{t}{n} \right] x^{n-1}.
$$

\n(2) $W_n^*(K_{m(t)}) = (n-1) \binom{mt}{n} + m \binom{t}{n}.$

3. Straight Hexagonal Chains

A cycle of length 6 can be drawn as a regular hexagon. A Straight **Hexagonal Chains G**_m, $m \ge 2$, is a graph consisting of a chain of m hexagons such that every two successive hexagons have exactly one edge in common in the form shown in Fig. 3.1.

It is clear that

 $p(\mathbf{G}_m) = 4m + 2$, $q(\mathbf{G}_m) = 5m + 1$

One can easily show that

 $diam\mathbf{G}_m = 2m + 1.$ (3.1)

E

The graph G_m is known to Chemists [5,6] as benzenoid chain of m hexagonal rings.

We shall find a formula for the diameter of the Steiner *n*-distance of the graph G_m for some values of *n*. The vertices of G_m are labeled as shown in Fig. 3.1.

Proposition 3.1. For $m \ge 1$, $2 \le n \le m+2$, $diam_n^* \mathbf{G}_m = 2m + n - 1$. **Proof.** It is clear that for $n=2$, $diam\mathbf{G}_m = d(u_1, u'_{2m+1}) = 2m+1$. If $n=3$, we find that a 3-subset S' of maximum Steiner distance is $S' = \{u_1, u_{2m+1}, u'_{2m}\}$, and so, $diam_{3}^{*}G_{m} = d_{3}(S') = 2m + 2$. For $n=4$, we notice that a 4-subset S'' of maximum Steiner distance is $S'' = \{u_1, u'_{2m+1}, u_{2m}, v\},\,$

in which

 $v \in \{u'_2, u'_4, \ldots, u'_{2m-2}\}$.

Thus

 $diam_{4}^{*}G_{m} = d_{4}(S'') = 2m + 3$

Hence, in general for an *n*-subset S, $2 \le n \le m+2$, of maximum Steiner n -distance, we have the following cases:

(1) If *n* is even, then *S* consists of the first *n* vertices from the sequence:

$$
u_1, u'_{2m+1}, u_{2m}, u'_{2m-2}, u_{2m-4}, u'_{2m-6}, \dots, \begin{cases} u'_2, & \text{if } m \text{ is even,} \\ u'_4, & \text{if } m \text{ is odd.} \end{cases}
$$

When *m* is even, a Steiner tree, $T(S)$ of such *S* consists of a $(2m+1)$ -path, say, $u_1, u_2, u_3, \dots, u_{2m+1}, u'_{2m+1}$ together with $\frac{n-2}{2}$ $\frac{n-2}{2}$ paths each of length 2, namely $(u_{2m-1}, u'_{2m-1}, u'_{2m-2})$, $(u_{2m-5}, u'_{2m-5}, u'_{2m-6})$,... Therefore, the size of $T(S)$ is $\left(\frac{2}{2}\right)$ = 2m + n - 1 $(2m+1)+2\left(\frac{n-2}{2}\right)=2m+n-$ J $\left(\frac{n-2}{2}\right)$ J $(m+1)+2\left(\frac{n-2}{2}\right)=2m+n-1$.

When *m* is odd $T(S)$ has the same structure as for the case of even *m*, and so have size $2m+n-1$.

(2) If *n* is odd, then *S* consists of the first *n* vertices from sequence:

$$
u_1, u_{2m+1}, u'_{2m}, u_{2m-2}, u'_{2m-4}, u_{2m-6}, u'_{2m-8}, \dots, \begin{cases} u'_2, & \text{if } m \text{ is odd,} \\ u'_4, & \text{if } m \text{ is even.} \end{cases}
$$

When *m* is odd, a Steiner tree *T*(*S*) of such *S* consists of a 2*m*-path, say, $(u_1, u_2, ..., u_{2m}, u_{2m+1})$ together with $\frac{n-1}{2}$ paths each of length 2, namely $(u_{2m+1}, u'_{2m+1}, u'_{2m})$, $(u_{2m-3}, u'_{2m-3}, u'_{2m-4})$, Therefore, the size of *T*(*S*) is $2m+2\left(\frac{n-1}{2}\right) = 2m+n-1$.

When *m* is even, $T(S)$ has the same structure as for odd case of *m*, and so has size $2m+n-1$.

Proposition 3.2. For
$$
m \ge 3
$$
, $m + 3 \le n \le 2m$,

$$
diam_n^* \mathbf{G}_m = 3m + \left\lfloor \frac{n-m}{2} \right\rfloor.
$$

Proof. An *n*-subset S of vertices, $m+3 \le n \le 2m$ which has maximum Steiner *n*-distance consists of $m+2$ vertices described in the proof of Proposition 3.1 together with other $n-m-2$ vertices chosen in pairs, each pair consists of 2 vertices, belonging to a hexagon, one of degree 2 and the other of degree 3. For instance, when *n* and *m* are even, the added $(n-m-2)$ vertices are $u'_{2m}, u_{2m-1}, u_{2m-2}, u'_{2m-3}, \dots$ Each such pair of vertices gives one edge added to the size of $T(S')$, $|S'| = m + 2$. Therefore the Steiner *n*-distance of S is

 \blacksquare

$$
2m + (m+2-1) + \left\lfloor \frac{n-m-2}{2} \right\rfloor.
$$

Remark. For $m \ge 2$, $n=p-2$,

 $diam_n^* \mathbf{G}_m = n = 4m$.

Thus, for
$$
2m+1 \le n \le 4m
$$
,

$$
3m + \left\lfloor \frac{n-m}{2} \right\rfloor \leq diam_n^* \mathbf{G}_m \leq p-2,
$$

and

$$
diam_n^* \mathbf{G}_m = p - 1
$$
, for $n=p-1$ or p .

We now find the Hosoya Polynomial of the Steiner 3-distance of G_m . **Theorem 3.3.** For $m \ge 3$, we have the following reduction formula for $H_3^*({\bf G}_m; x)$,

$$
H_3^*(\mathbf{G}_m; x) = 2H_3^*(\mathbf{G}_{m-1}; x) - H_3^*(\mathbf{G}_{m-2}; x) + F_m(x),
$$

where $F_m(x) = 2x^{2(m-1)}[(2m-3) + (9m-11)x + (13m-9)x^2 + (7m-1)x^3 + mx^4]$

Proof. Let S be any 3-subset of $V(G_m)$. We refer to Fig 3.1, and denote

 $A = \{u_1, u_2, u_1', u_2'\}, \quad A' = \{u_{2m}, u_{2m+1}, u_{2m}', u_{2m+1}'\},\$ $B = {u_3, u_5,...,u_{2m-1}}, B' = {u'_3, u'_5,...,u'_{2m-1}},$ $C = \{u_4, u_6, ..., u_{2m-2}\}\$ and $C' = \{u'_4, u'_6, ..., u'_{2m-2}\}\.$

For all possibilities of $S \subseteq V(G_m) - A$ (or $S \subseteq V(G_m) - A'$), we have the corresponding polynomial $H_3^*(\mathbf{G}_{m-1};x)$. And for all possibilities of $S \subseteq V(\mathbf{G}_m) - \{A \cup A'\},$ the corresponding polynomial is $H_3^*(\mathbf{G}_{m-2}; x)$. Thus

 $H_3^*(\mathbf{G}_m; x) = 2H_3^*(\mathbf{G}_{m-1}; x) - H_3^*(\mathbf{G}_{m-2}; x) + F_m(x)$,

in which $F_m(x)$ is the Hosoya polynomial corresponding to all 3-subsets of vertices that each contains at least one vertex from A and at least one vertex from A'. Therefore $F_m(x)$ can be spilt into two polynomials $F_1(x)$ and $F_2(x)$, where $F_1(x)$ is the Hosoya Polynomial of all 3-subsets S that each contains one vertex from A , one vertex from A' and one vertex from $W = B \cup B' \cup C \cup C'$, and $F_2(x)$ is the Hosoya polynomial corresponding to all 3-subsets S such that $S \subseteq A \cup A'$, $S \cap A \neq \varphi$ and $S \cap A' \neq \varphi$.

(I) Now, to find $F_1(x)$, we consider the following subcases:

(a) If $S = \{u_1, u_{2m}, y\}$ or $\{u'_1, u'_{2m}, y\}$, then

- (1) When $y \in B \cup C$, there are (2m-3) such subsets S each of 3-distance (2m-1).
- (2) When $y \in B'$, there are $(m-1)$ such subsets S, each of 3-distance $2m$.
- (3) When $y \in C'$, there are $(m-2)$ such subsets S, each of 3-distance $2m+1$.

Therefore, for all such possibilities of S, $S = \{u_1, u_{2m}, y\}$ or $\{u'_1, u'_{2m}, y\}$, $y \in W$, the corresponding polynomial is

 $P_1(x) = 2x^{m-1}[(2m-3) + (m-1)x + (m-2)x^2]$

(b) If $S = \{u_1, u_{2m+1}, v\}$ or $\{u'_1, u'_{2m+1}, v\}$, for all $y \in W$, then the corresponding polynomial can be obtained by a similar way of (a) as given below

 $P_2(x) = 2x^m[(2m-3) + (m-1)x + (m-2)x^2]$

(c) If $S = \{u_1, u'_{2m}, y\}$ or $\{u'_1, u_{2m}, y\}$, $y \in W$, then the corresponding polynomial is $P_3(x) = 4(2m-3)x^{2m}$.

(d) If $S = \{u_1, u'_{2m+1}, v\}$ or $\{u'_1, u_{2m+1}, v\}$, $v \in W$, then the corresponding polynomial is

 $P_4(x) = 4(2m-3)x^{2m+1}$.

(e) If $S = \{u_2, u_{2m}, y\}$ or $\{u'_2, u'_{2m}, y\}$, for all $y \in W$, then the corresponding polynomial is

$$
P_5(x) = 2x^{2m-2}[(2m-3) + (m-1)x + (m-2)x^2].
$$

(f) If $S = \{u_2, u_{2m+1}, y\}$ or $\{u'_2, u'_{2m+1}, y\}$, for all $y \in W$, then the corresponding polynomial is

 $P_6(x) = 2x^{2m-1}[(2m-3) + (m-1)x + (m-2)x^2]$.

(g) If $S = \{u_2, u'_{2m}, y\}$ or $\{u'_2, u_{2m}, y\}$, for all $y \in W$, then the corresponding polynomial is

 $P_7(x) = 4(2m-3)x^{2m-1}.$

(h) If $S = \{u_2, u'_{2m+1}, y\}$ or $\{u'_2, u_{2m+1}, y\}$, for all $y \in W$, then the corresponding polynomial is

$$
P_8(x) = 4(2m - 3)x^{2m}
$$
. Therefore
\n
$$
F_1(x) = \sum_{i=1}^{8} P_i(x)
$$
\n
$$
= 2x^{2m-2}[(2m-3) + (2m-13)x + (13m-19)x^2 + (7m-11)x^3
$$

 $+(m-2)x^4$].

(II) To find $F_2(x)$, let S consists of two vertices from A and one vertex from A' , or one vertex from A and two vertices from A' . Thus we have

 $2\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ = 2(24) possibilities for the 3-subsets S, 24 of them give the same 1 4 2 4 $\overline{}$ J Ì l I \backslash ſ $\overline{}$ $\overline{}$ J \backslash I I $\overline{\mathcal{L}}$ ſ

Hosoya polynomials for the other 24 cases. These 24 cases are listed in the following table with their Steiner 3-distances:

Therefore, there are 4 subsets S of 3-distance $(2m-1)$, 20 of 3distance $2m$, 20 subsets of 3-distance $(2m+1)$ and 4 subsets of 3-distance $(2m+2)$. Thus,

 $F_2(x) = 4x^{2m-1}(1+5x+5x^2+x^3)$.

Adding $F_1(x)$ to $F_2(x)$ we get $F_m(x)$ as given in the statement of the theorem.

Remark. Hosoya Polynomials of Steiner 3-distance of G_1 and G_2 are obtained by direct calculation as shown below:

 $H_3^*(\mathbf{G}_1; x) = 6x^2 + 12x^3 + 2x^4$,

and

 $H_3^*(\mathbf{G}_2; x) = 15x^2 + 36x^3 + 38x^4 + 27x^5 + 4x^6$.

The reduction formula given in Theorem 3.3 can be solved to obtain the following useful formula.

Corollary 3.4. For $m \geq 3$

$$
H_3^*(\mathbf{G}_m; x) = 3(3m - 1)x^2 + 12(2m - 1)x^3 + 2(18m - 17)x^4
$$

+27(m-1)x⁵ + 4(m-1)x⁶ + $\sum_{k=0}^{m-3}$ (k+1)F_{m-k}(x),

where

 $F_{m-k}(x) = 2x^{2(m-k-1)}[(2m-2k-3)+(9m-9k-11)x+(13m-13k-9)x^2$ $+(7m-7k-1)x^3 + (m-k)x^4$].

Proof. From Theorem 3.3,

$$
H_{3}^{*}(\mathbf{G}_{m};x) = 2H_{3}^{*}(\mathbf{G}_{m-1};x) - H_{3}^{*}(\mathbf{G}_{m-2};x) + F_{m}(x)
$$

\n
$$
= 2[2H_{3}^{*}(\mathbf{G}_{m-2};x) - H_{3}^{*}(\mathbf{G}_{m-3};x) + F_{m-1}(x)] - H_{3}^{*}(\mathbf{G}_{m-2};x) + F_{m}(x)
$$

\n
$$
= 3H_{3}^{*}(\mathbf{G}_{m-2};x) - 2H_{3}^{*}(\mathbf{G}_{m-3};x) + F_{m}(x) + 2F_{m-1}(x)
$$

\n
$$
= 3[2H_{3}^{*}(\mathbf{G}_{m-3};x) - H_{3}^{*}(\mathbf{G}_{m-4};x) + F_{m-2}(x)]
$$

\n
$$
- 2H_{3}^{*}(\mathbf{G}_{m-3};x) + F_{m}(x) + 2F_{m-1}(x)
$$

\n
$$
= 4H_{3}^{*}(\mathbf{G}_{m-3};x) - 3H_{3}^{*}(\mathbf{G}_{m-4};x) + \sum_{k=0}^{2} (k+1)F_{m-k}(x)
$$

\n
$$
= (m-1)H_{3}^{*}(\mathbf{G}_{2};x) - (m-2)H_{3}^{*}(\mathbf{G}_{1};x) + \sum_{k=0}^{m-3} (k+1)F_{m-k}(x) \qquad ...(3.1)
$$

From the remark above, we have

 $H_3^*(\mathbf{G}_2; x) = 15x^2 + 36x^3 + 38x^4 + 27x^5 + 4x^6$,

and

 $H_3^*(\mathbf{G}_1; x) = 6x^2 + 12x^3 + 2x^4$

Substituting in (3.1) and simplifying, we get the required result.

▅

The 3-Wiener index of \mathbf{G}_m is given in the following corollary.

Corollary 3.5. For $m \geq 3$,

$$
W_3^*(\mathbf{G}_m) = \frac{4}{3}m(m-2)(8m^2 + 35m + 83) + 225m - 1
$$

Proof. It is known that

$$
W_{3}^{*}(\mathbf{G}_{m}) = \frac{d}{dx} H_{3}^{*}(\mathbf{G}_{m}; x)\big|_{x=1}
$$

Hence $W_3^*(\mathbf{G}_m) = 393m - 337 + 2 \sum_{m=1}^{m=3}$ = $= 393m - 337 + 2\sum [64k^3 + (116 - 128m)k^2 + (64m^2 - 180m +$ 3 0 $x_3^*(G_m) = 393m - 337 + 2\sum [64k^3 + (116-128m)k^2 + (64m^2 - 180m + 68)$ m k $W_3^*(\mathbf{G}_m) = 393m - 337 + 2\sum [64k^3 + (116-128m)k^2 + (64m^2 - 180m + 68)k]$

 $+8(16m^2 - 13m + 4)]$

Now, using the fact that

$$
\sum_{k=0}^{m-3} k = \frac{1}{2}(m-3)(m-2), \sum_{k=0}^{m-3} k^2 = \frac{1}{6}(m-3)(m-2)(2m-5) \qquad \sum_{k=0}^{m-3} k^3 = \left\{ \frac{1}{2}(m-3)(m-2) \right\}^2,
$$

and simplifying we get the required result.

and simplifying we get the required result.

REFERENCES

- [1] Ali, A.A. and Saeed, W.A. (2006), "Wiener polynomials of Steiner distance of graphs", J. of Applied Sciences, Vol.8, No.2.
- [2] Buckly, F. and Harary, F.(1990). Distance in Graphs, Addison-Wesley, Redwood, California.
- [3] Chartrand, G. and Lesniak, L. (1986), Graphs and Digraphs, 2nd ed., Wadsworth and Brooks/ Cole, California.
- [4] Danklemann, P. Oellermann, O. R. and Swart, H.C. (1996), " The average Steiner distance of a graph", J. Graph Theory, Vol.22, No.1, pp.15-22.
- [5] Dobrynin, A.A. (1999), "A simple formula for calculation of the Wiener index of hexagonal chains", Computers and Chemistry, Pergamon, Vol. 23, pp.43-48.
- [6] Dobrynin, A.A. (2003), "On the Wiener index decomposition for catacondesed benzenoid graphs", Indian J. of Chemistry, Vol.42 A, pp. 1270-1271.
- [7] Henning, M.A. Oellermann, O.R., and Swart, H.C.;(1991), "On vertices with maximum Steiner eccentricity in graphs", Graph Theory, Combinatorics, Algorithms and Applications (eds. Y. Alavi, F.R.K. Chung, R.L. Graham, and D.F. Hsu.), SIAM publication, Philadelphia, pp.393-403.
- [8] Hernando, C.; Jiang, T.; Mora, M.; Pelayo, I. M., and Seara, C., (2005), "On the Steiner, geodetic and hull numbers of graphs", Discrete Maths., ELSEVIER, Vol. 293, pp.139-154.