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ABSTRACT

We are using the operational matrices of the Haar wavelets method
for solving linear parabolic reaction-diffusion system with double
diffusivity. A numerical method based on the Haar wavelets approach which
has the property (H T=H T), we compared this result with the exact
solution for reaction-diffusion system, we found that high accuracy of the
results in this method in the solution double diffusivity system even in the
case of a small number of grid points is used. However, the computation is
simple because consists of the matrices which can be programmed by
Matlab language, thes matrices which we got of the numerical solution are
representing all time steps while the finite difference method and finite
elements method need the iteration to get the needed time step, they are
complicated and time-consuming.
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1.Introduction:

Partial differential equations are at the heart of many, if not most,
computer analysis or simulations of continuous physical systems, such as
fluids, electromagnetic fields, the human body, and so on .It is usually
classified as parabolic hyperbolic or elliptic according to the form of the
equation and the form of the subsidiary conditions which must be assigned
to produce a well-posed problem .

In many engineering applications, the numerical solution of partial
differential equations is required in the design and simulation of new
products. The two most common numerical methods are the finite difference
methods and the finite element methods, they are complicated and time-
consuming [7].

Haar wavelets have become an increasingly popular tool in the
computational sciences. They have had numerous applications in a wide
rang of areas such as signal analysis, data compression and many others[8].

Wu and Chen (2003) [7] studied the numerical solution for partial
differential equations of first order via operational matrices , they used the
Haar wavelets in the solution with constant initial and boundary conditions.

Wu and Chen (2004) [8] are studied the numerical solution for
fractional calculus and the fractional differential equation by using the
operational matrices of orthogonal functions. The fractional derivatives of
the four typical functions and two classical fractional differential equations
solved by the new method and they are compared the results with the exact
solutions, they are found the solutions by this method is simple and
computer oriented.

Lepik and Tamme (2007) [5] are derived the solution of nonlinear
Fredholm integral equations via the Haar wavelet method, they are find that
the main benefits of the Haar wavelet method are sparse representation, fast
transformation, and possibility of implementation of fast algorithms
especially if matrix representation is used.

Many authors have studied the reaction-diffusion systems. These
systems have many applications in physics, chemistry or biology. For
example, chemical reactions, population dynamics or combustion are
modeled by reaction-diffusion equations.

Aggarwala and Nasim (1987) [1] derived the solution of reaction-
diffusion equations with double diffusivity by laplace technique and Fourier
transforms which appear to be simpler and more direct.

Chow Tanya (1996) [4] is studied the derivation of similarity
solutions for one-dimensional coupled systems of reaction-diffusion
equations, these solutions are obtained by means of one-parameter group
methods.
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Antic and Hill (2000) [2] are studied a mathematical model for heat
transfer in grain store microclimates, this model is "double diffusivity" such
that they are used the heat-balance integral method to transform the coupled
partial differential equations to the coupled ordinary differential equations
and solved it numerically by using the Fehlberg fourth-fifth order Range-
kutta method.

Antic and Hill (2003) [3] are studied a Two-stage heat transfer
model for the peripheral layers of a grain store, they are observed that the
predictions of the air and grain temperatures of the two-stage model lag
behind those of the double-diffusivity heat transfer model, but this lag
decreases as time increases.

Polyanin, A. D. (2004) [6] is found the exact solutions of linear and
nonlinear reaction-diffusion equations of different kinds parabolic,
hyperbolic and elliptic systems, he was used some hypothesis to transform
reaction-diffusion systems to equations equivalent to heat equation or wave
equation or laplace equation which have exact solutions.

In this paper, we will study the numerical solution for linear
reaction-diffusion system with double-diffusivity by the operational
matrices of Haar wavelet method and we will compare the results of this
method with exact solutions.

2.Mathematical model:
The one-dimensional case of reaction-diffusion equations with
double-diffusivity is given by [1,2]:

Ou d%u

EZDléx_z_blu(x’ 1)+ cv(x, 1) ...(1a)
2

@zDza—‘z)erzu(x,t)—czv(x,t) ...(1b)

ot Ox

where u(x, t) and V(X, t) denote the air-temperature and a grain-temperature
respectively, the self-diffusivities D,,D,,b,b,,c;and c,are positive

constants.

with initial condition:

u(x,0)= E(x) ...(2a)
Wx,0)= F(x) ...(2b)

such that E(x) and F(x) are prescribed space-dependent for the initial air-
temperature and a grain-temperature respectively.
and mixed boundary conditions:

u(0,1)=G(¢) ...(3a)
v(0,t)=1(t) ...(3b)
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auéo,t) ~ k() ...(4a)
ov(0,1) _ 1) ...(4b)
Ox

G(t), K(t), I(t) and L(t) are prescribed time-dependent for the boundary air-
temperature and a grain-temperature respectively.

Polyanin, A. D. [6] is found the exact solution for (1a) and (1b) with
D, = D, =asuch that:

A waar B ()

Th-a) b)) +(59)
v b fsaadiear 1 (ian)rean .
(=) (=)

such that:

A= ~(h _Cz)_\/(bl +02)2 —4bc, ~ba)
2

B= ~(h _Cz)+\/(b1 +of —4he, —ba)
2

. ~(B+e) (B +e,f ~dlbe, ~ba)
2

)+l e) ~4ae -ba)

? 2

3. The operational matrices and Haar wavelets:

The main characteristic of the operational method is to convert a
differential equation into an algebraic one, and the core is the operational
matrix for integration. The integral property of the basic orthonormal
matrix, d)(t) . we write the following approximation:

ttt t

[[ ]| oeNar) = 0fole) .(6)

where dt)=1a) @) ... ¢,.0)] in which the elements
(I)O(t),(pl(t),...,(T)m_l(t) are the discrete representation of the basis functions

which are orthogonal on the interval [0,1) and Q¢ is the operational matrix

for integration of (I)(t) [7,8].
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The operational matrix Q, of an orthogonal matrix (I)(t) can be expressed
by:

lo,]= 14 [0, ]- ¢ (7
where [QB ]is the operational matrix of the block pulse function:

2 1 .. 1]
o 172 1 .. 1

Os, -1 o 172 ... 1 ...(8)
o 0 1/2 1
0 0 1/2

If the transform matrix [¢] is unitary ,that is [¢]" =[¢]", then the equation
(7) can be rewritten as [7,8]:

[0, -] [05]-[e .09
The Haar functions are an orthogonal family of switched rectangular
waveforms where amplitudes can differ from one function to another. They

are defined in the interval [0,1] by [7,8]:
1

ho(t)=ﬁ
> k-1 k—-1/2
22J 57 <t< 57
Ly k=12 _ k. ...(10)
h,-(t)=ﬁ 97 97
0 otherwise in [0,])

where 1=0,1,2,.....,m-1, m=2" and a is a positive integer. J and k
represent the integer decomposition of the index i,i.e. i=2"+k—1.
Theoretically, this set of functions is complete. h,(t) is called the scaling
function and #,(¢) the mother wavelet, such that from the mother wavelet
h(¢), compression and translation are performed to obtain h,(t) and h,(t).

Any function u(x,r) which is square integrable in the interval
0<t<land 0<x <1can be expanded into Haar series by:

m—1 m-1

u(x,t)zzz%hi(x)hl,(t) ..(11)
i=0 J=0
1 1
where ¢, = j u(x, 1), (x)dx - j u(x, 0k, (6)dt -
0 0
The equation (11) can be written into the discrete form by:
u(x,ty=H" (x)-C-H(r) ...(12)

where
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Coo  Coy v o Com
Co Cuy oo o Cim
[c]= P
Cmfl,O Cmfl,l """ Cmfl,mfl
is the coefficient matrix of u(x,#) calculated by:
[c]=[#] ] [H] ..(13)

For deriving the operational matrix of Haar wavelets, we let [¢]=[#] in the
equation (9), and obtain:

04 1=[1] 05} [H] -..(14)

where [0, ]is the operational matrix for integration of [H].

For example, the operational matrix of the Haar wavelet in the case of m=2
is given by:

[QH]: [H]z*z '[QB]'[HE*Z

1 1 1 1 1
vz 2 Y|V 2
R TP R
NP NG
11
_12 4
Ly
L 4

4.Numerical solution:

We will use the operational matrices of the Haar wavelets to solve
the equations (1a) and (1b) numerically.
By using the equation (6) and the integration of equation (12) with respect
to variable t yields [7]:

ju(x,t)dz =jHT(x).Cu-H(r) di=HT »Cu-jH(t) dt (15)

0 0 0 o
=[H] -[cu] [oy]-[H]

Further integration with respect to variable x gives:

X

ju(x,:)dx - jHT(x) -Cu-H(t) dx = jHT(x) dx-Cu-[H] (16)
J J

0
=[H] [0,] -[cu]-[H]
The double integration, we obtain:
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ﬁu(x,t) dx dt =ﬁHT(x)-Cu -H(t) dx dt
00 00

:IHT(x) dx-cu-jH(t) dt (17)
0 0
=[H] [0, ] -[cu]-[oy]-[H]
also
j”u(x,t)dxdxdt:”jHT(x)-cu-H(t)dxdxdt
000 000

IIHT(x)dxdx-Cu~IH(t)dt ..(18)
00 0
=[7 o[ el o, ]
Now integrate equations (la) and (1b) with respect to t, we get:
J'a”(x D 4y Dlj'a LE blju(x f) dr+c1J'v(x ) dt ...(19a)
0 0
I% dt:Dzja G dt+b2'[u(x ) di— czjv(x ) dt ...(19b)

0
we shall use the initial and boundary conditions which Polyanin was used in
find the exact solutions with the case of the diffusion coefficients
D, =D, =a(see [6]).
By using the initial condition (2a) and (2b) we get:

u(x,t)— E( ) a‘[a ;t(x 2 dt—b Iu(x 1) dt+c1jv(x t) dt ...(203)
0 X 0

v(x,1)~ F(x afa av(x 1) dt+bzfu(x 1) di—c, v, dr ...(20b)
0 0 0

Now, the double integrate for equations (20a) and (20b) with respect to x,
we get:

X X . , - X X , ’ dx dt
J‘J. (x,t) dx dx J.J.E(x) dedy=a ou  ou(0 t):|
0o 00

oo .(21a)

jiu(x t) dx dx dt +c1j.j.j£v(x t) dx dx dt
0

000
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v(x,t)dx dx—| | Flx dxdx— v dx dt
H<> H HF -000]

...(21b)
+b2”J'u(x,t) dx dx dt —czj.j.]iv(x,t) dx dx dt
000 000
by using the boundary conditions (4a) and (4b), we get:
Ilu(x,t) dx dx —IIE(x) dx dx = a_:[[u(x,t) —u(0,0)] dt - aIEK(t}ix dt 29)
—bljj‘j.u(x,t) dx dx dt +clj.j£j£v(x,t) dx dx dt
000 000
IIv(x,t) dx dx— IIF(}C) dx dx = a.:[[v(x,z) —v(0,1)] dt - a_(i;j;L(t)Jx dt 22b)
+b2j‘jijiu(x,t) dx dx dt —czjjjv(x,t) dx dx dt
000 000

by using the boundary conditions (3a) and (3b) and rearranging, we get:

Iju(x t) dx dx — aJ.u(x 1) dt+b1J-J-J.u(x t) dx dx dt _cl.([.!‘.([v(x ,t) dx dx dt - (233)

=IIEx dxdx—aIGt dt—aIIKt dx dt

”v(x 1) dx dx— ajv(x £ dt—b, Iju(x,t)dxdxdthjj

0 00 00
)

:JIF(x)dxdx aJ. a’t aJJL(t dx dt

ot_,N
S C— 2

v(x,t) dx dx dt

o

...(23b)

we transform the equations (23a) and (23b) into the matrices form by using
the equation (12), we get:

];I[H(x)]f [cu]-[H(¢)] dx dx - aj [ -[cul-[H(e)) de
+b1IIJ- ]T [Cu] [H ]dx dx dt_cl.”"“H ]T [Cv] [H( )]dx dv dt (243_)

000

[ [T -0 e e[ T -} - aj j[H (I s} e
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UG o)l - a[ Y (o]

b [ UG fcul T vt e | [EGF -fool- o) v e a -+-(24b)
[ [ ) 0 v a[ O 0] [ - [T ) T
such that:
E(xl) E(xl) """ E(xl)
E(Xz) E(Xz) """ E(xz)
1= S, 29)
E('xm ) E('xm ) ...... E('xm ) o
where
X; = L + i i=1,23,..........
2m m
m is the dimension of the matrix.
[Gle) Gley) - - Glt,,)
G(t,) Glty) - - Glt,,)
2 72 P T O 8 (26)
6lt) Gler) - Gy,
K(tl) K(t2) """ K(Zm)
Klt) Kley) - - K(z,,)
K(t) Klty) - - K(t,,) e
where
=t 47t i =1,23,0
2m m
and also for the equation (24b):
_F(xl) F(xl) """ F(xl)
F(xz) F(xz) """ F(xz)
a1=[H], - : [Hl ...(28)
F(xm) F(xm) ...... F(xm )_ .

where
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xi=ﬁ+% P=123 .
[1(6) 1) - 1(t,,)
1) 1) - - 1t,)

sl=lt]| 22 L, ...(29)
) 1) ),
L) L) - - 1,
L) L) - - )

A P [ ...(30)
Ue) 1) e ),

where

=L =123

2m m

Now, by using the integrations (15),(16),(17) and (18), the equations (24a)
and (24b) becomes:

() o3 | feul [)-a- (] -fcul lon el by (1] -0 | -feulfon ] 11]
O 24 1 o o A 2 1 o 2 A W Y g o 24 L W oV M 73 IO D B
—a[H] [0, ] 1) [on 1]

Y 03 ] [ )= a- [T -[ev) [ou )] b [T [0 | -[cu] fon ][]

vor [T i ] 1okl 1= {T o3 ] - - o [F (o) [y (e - (B1D)
—a-[H] -0y ] U] (0] [H]

such that the dimension for all matrices are mxm,[H] is Haar wavelets

matrix, [Q,] is the operational matrix of the Haar wavelet, [Cu] is the

coefficient matrix of u(x,t) and [CV] is the coefficient matrix of v(x,t):

Cuyy  Cupy oo . Cuty
Cuy Cupy e Cuy
[Cu] - : : o :
Cipyo Clyyy oor o Ctyy gy on
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o Owy v oe CVo
Cviy Cviyp e e CVy g
[Cv] — : : oo :
o Vg - e Cvm_l’m_l_mxm

by multiplying [H]T to the right hand side and [H] to the left hand side of
each term in equations (31a) and (31b), we get:

03 I leul-a-leullon 5, 03 [ -leul oy - loi | -levl ey ..(32a)
=] -l-a b} ou)-alou ) 1] ox]

[QI%I]T [ev]-a-[ev]-[0y]-b, '[Qé]T ‘[cu]- [0y ]+ ¢, '[szz]T [ev]-oy] ...(32b)
:'[QfZI]T [yl-a-sloy]-a- [0, ] Vel [0n]

To find the coefficient matrices [Cu] and [Cv] which have 2™ of the
elements respectively, we solve the system (32a) and (32b) which given
linear system of the equations such that the variables number are 2™ and
we can be solved them by Gauss-Jordan method, after this we find the
matrices [u] and [v] by using the equation (12) such that:

lu]=[]" - [Cu] [1]

pl=[a]"-lov]- 7]

5.Numerical results:
In this section, we have solved the system (32a) and (32b) with the
initial condition for the exact solution (5a) and (5b), such that:

A B

u(x,0) = Elx)= e e

( ) E( ) bZ(A’l _2’2) bZ(ﬂ’l _2’2)

1 1

(x.0)=Flx)= - &
R P L P L
and mixed boundary conditions:

A B

04)=Glr)= Jraila Jrrak)it

= )
=L rarae 1 (an)a

0,¢)=1lt)= Y
= A
a0y _ Kfo)= A fwai)y BB (wahi

& b(A~2) A1)
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on0,7) _ L(t): A Slrak it _ A lrah)ht
o (4 -%) (4 -%)
with a=1b, =Lc, =1L,b, =land ¢, =1then:
A =-2,A,=0,A=-1land B=1.
When m=4 then, from the equation (10),we get:

1 1 1 1]
2 2 2 2
ot 1
e T
NP o
RN
from the equation (14), we get:
0.5 -0.25 —0.08838835 —0.08838835
[ ]_ 0.25 0 —0.08838835 0.08838835
"3710.08838835  0.08838835 0 0
0.08838835 —0.08838835 0 0

from the equations (25),(26),(27),(28),(29) and (30), we get:
212 (122 WY+ (1V2e?Y+1/2)
nEIES 28 1 172) 12 +172) 12112 112 11/2) [
W22 1112 12 1172 12V 11/2) W2 1(1/2)
29112 W2 +12) W2 +12) W22 +/2)

where x, =——+ =1 then x, =1/8,x, =3/8,x, =5/8,x, =7/8.

m m

>

+(112) (11227 +(1/2)
+1/2) 1727 (1/2) [
+1/2) /22" +(1/2)
1112 1278 (1/2)

+(172) (1122
+1/2) /28
+(1/2) (1/22®
+H1/2) (/2

(122 +172) (1122
a2 @2
oIl W22 1(1/2) (122
W22 1 1/2) (1728

where 7, =+ =1 then t, =1/8,t, =3/8,t, =5/8,t, =7/8.

>

X

N

2m m
[ 2(1/8) _62(3/8) e2(5/8) _62(7/8)_
2(1/8) 2(3/8) 2(5/8) 2(7/8)
—€ —€ —e T
[J3]: [H] _2(1/8) _62(3/8) 2(5/8) _62(7/8) [H]
2(1/8) _62(3/8) 2(5/8) _62(7/8)
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{1229 102 (1/2)52“/8 +1/) 1269412 {1722 +(1/2)
—W2eP 1172 —1/2e®Y 1 12) 122V 11/2) —1/2e ™Y 1112

[a]={) 5/ 518 5/ A5/ [’
—12e 412 —2e V1172 122V +1/2) —1/2e28 1112
—W2e 1) —2e 11/2) 12XV 112 —1/2e 28 +1/2)

—2AY+1/2) (122 +1/2) (1122 +1/2) —(1/227Y +(1/2)

U=l —12 112~ +12) —12AY 1172 —2AY +1/2) [

: —12& 1172~ +12) WA 1172 —W2A +(1/2)
—12& 112 — 2P 12— 1172 —2A +(1/2)
62(1/8) 62(3/8) 62(5/8) 62(7/8)
62(1/8) 62(3/8) 62(5/8) 62(7/8)
[6]=[H] Q218) 2008)  20si8)  L2(708) [H]
62(1/8) 62(3/8) e2(5/8) 62(7/8)

Now, by substitute the matrices [0, ].[/,].[75].[73].[V.].[/5s]and [74] in the
system (32a) and (32b), and solve this system we get to the linear system
consist of 32 equations and 32 variables represents the matrices element

[Cu] and [Cv] and by solving this system by Gauss-Jordan method, we get:

4.70440769
1.25003806
0.68638424
0.25182561

[cu]=

—0.70483702
—1.24996062
—0.68633486
—0.25195852

[Cv] =

—1.24645913
—0.57992536
—0.31767206
—0.11736944

1.24746491
0.57917255
0.31751944
0.11702954

—0.25494609 —0.69254928
—0.11438408 —0.30609930
—0.06437899 —0.17323139

—-0.0227508

0.25400126
0.11517825
0.06449492
0.02329369

Now, by using the equation (12), we get:

] =[a]"[Cu] - [H]

0.99960733
0.80326743
0.68342483
0.61110075

1.32514218
1.00004431
0.80556797
0.68774231

1.86050378
1.32376015
0.99631441
0.79087588
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0.05710914

2.73988636
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V=[#]"[ov] [H]
0.00033614
0.19663310
0.31637759
0.38849309

—0.32520812
0.00007869
0.19492120
0.31362409

—0.86020638
—-0.32370972
0.00325140
0.20705623

—1.74034336
—-0.85717565
—0.32574974
—0.00772664

Table (1). A comparison between the operational matrix of the Haar
wavelets method with exact solution for the air-temperature u(x,t) in
the system (1a) and (1b) with: m=4

D =D, =a=1b =lc,=1,b,=1land c, =1.

The value of (x) | The value of (t) The numerical | The exact solution
solution of u(x,t) of u(x,t)
0.125 0.125 0.99960733 1.00000000
0.125 0.375 1.32514218 1.32436064
0.125 0.625 1.86050378 1.85914091
0.125 0.875 2.73988636 2.74084454
0.375 0.125 0.80326743 0.80326533
0.375 0.375 1.00004431 1.00000000
0.375 0.625 1.32376015 1.32436064
0.375 0.875 1.85667995 1.85914091
0.625 0.125 0.68342483 0.68393972
0.625 0.375 0.80556797 0.80326533
0.625 0.625 0.99631441 1.00000000
0.625 0.875 1.32519761 1.32436064
0.875 0.125 0.61110075 0.61156508
0.875 0.375 0.68774231 0.68393972
0.875 0.625 0.79087588 0.80326533
0.875 0.875 1.00851549 1.00000000
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Table (2). A comparison between the operational matrix of the Haar
wavelets method with exact solution for the grain-temperature v(x,t) in
the system (1a) and (1b) with: m=4

Dy =D, =a=1b =1c;=1b, =1land c, =1.

The value of (x) | The value of (t) The numerical | The exact solution
solution of v(x,t) of v(x,t)
0.125 0.125 0.00033614 0.00000000
0.125 0.375 -0.32520812 -0.32436064
0.125 0.625 -0.86020638 -0.85914091
0.125 0.875 -1.74034336 -1.74084454
0.375 0.125 0.19663310 0.19673467
0.375 0.375 0.00007869 0.00000000
0.375 0.625 -0.32370972 -0.32436064
0.375 0.875 -0.85717565 -0.85914091
0.625 0.125 0.31637759 0.31606028
0.625 0.375 0.19492120 0.19673467
0.625 0.625 0.00325140 0.00000000
0.625 0.875 -0.32574974 -0.32436064
0.875 0.125 0.38849309 0.38843492
0.875 0.375 0.31362409 0.31606028
0.875 0.625 0.20705623 0.19673467
0.875 0.875 -0.00772664 0.00000000
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X

Figure (1). An illustration the numerical solution for the air-temperature u(x,t) in the system
(1a) and (1b) by the operational matrix of the Haar wavelets method with: m=4

D, =D, =a=1b, =Lc¢, =1,b,=1andc, =1.

b

Figure (2). An illustration the exact solution for the air-temperature u(x,t) in the system (1a)
and(1bywith: D, =D, =a=1b, =1,¢c, =1,b, =land ¢, =1.
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Figure (3). An illustration the numerical solution for the grain-temperature v(x,t) in the
system (1a) and (1b) by the operational matrix of the Haar wavelets method with: m=4

D, =D, =a=1b,=L¢c,=1b,=1landc, =1

Figure (4). An illustration the exact solution for the grain-temperature v(x,t) in the system
(la)and (1b) with: D, =D, =a=1Lb, =1,¢, =LLb, =landc, =1
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6.Conclusions:

In this paper, We are using the operational matrices of the Haar
wavelets method for solving linear parabolic reaction-diffusion system with
double diffusivity, A numerical method based on the Haar wavelets

approach which have the property (H T=H T), we compared this results

with the exact solution for this system, we found that the operational
matrices of the Haar wavelets method is simple in the computation,
However, we note that high accuracy of the results in this method in the
solution double diffusivity system even in the case of a small number of grid
points is using, as shown in the table (1) and (2) and figures (1),(2),(3) and
(4) such that the number of grid points (the dimensions of the matrices) are
4x4, but when the dimension of the matrices are increase then the numerical
solution converges towards the exact solution.

The matrices which we got it of the numerical solution are
representing of all time steps in the interval [0,1), while in the finite
difference method and finite elements method are need to the iteration to get
the needed time step, they are complicated and time-consuming. Matlab
language is using in find the results and figures draw, it's characteristic of
high accuracy and large speed.
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