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  الملخص

 لحل نظام قصيرة الHaarموجات ل  العوامل مصفوفاتتم في هذا البحث استخدام طريقة  

 الطريقة العددية المستخدمة في هذا إن، التفاعل ثنائي الانتشار الخطي من نوع القطع المكافئ

 للمعكوس  مدورها مساو مصفوفةبأنها التي تتميز Haarالبحث تعتمد على تقريب موجات 

( )THH  هذه الطريقة ذات دقة أن النتائج مع الحل المضبوط للنظام وقد تبين قورنت  و، 1−=

 فضلا عنعالية في حل نظام ثنائي الانتشار حتى في حالة استخدام عدد صغير من نقاط الشبكة 

 Matlab برمجتها بلغة وإمكانية الحسابات فيها ابسط وذلك لسهولة التعامل مع المصفوفات أن

ق الفروقات المنتهية ائوان المصفوفة الناتجة تمثل كل الخطوات الزمنية المطلوبة بعكس طر

الزمنية المطلوبة وهذا يستغرق  الخطوة إلى التكرار للوصول إلىوالعناصر المنتهية التي تحتاج 

  .أطولوقتا 

 
ABSTRACT 

 We are using the operational matrices of the Haar wavelets method 

for solving linear parabolic reaction-diffusion system with double 

diffusivity. A numerical method based on the Haar wavelets approach which 

has the property  ( )THH =−1 , we compared this result with the exact 

solution for reaction-diffusion system, we found that high accuracy of the 

results in this method in the solution double diffusivity system even in the 

case of a small number of grid points is used. However, the computation is 

simple because consists of the matrices which can be programmed by 

Matlab language, thes matrices which we got  of the numerical solution are 

representing all time steps while the finite difference method and finite 

elements method need the iteration to get the needed time step, they are 

complicated and time-consuming.       
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1.Introduction: 

 Partial differential equations are at the heart of many, if not most, 

computer analysis or simulations of continuous physical systems, such as 

fluids, electromagnetic fields, the human body, and so on .It is usually 

classified as parabolic hyperbolic or elliptic according to the form of the 

equation and the form of the subsidiary conditions which must be assigned 

to produce a well-posed problem . 

 In many engineering applications, the numerical solution of partial 

differential equations is required in the design and simulation of new 

products. The two most common numerical methods are the finite difference 

methods and the finite element methods, they are complicated and time-

consuming [7]. 

 Haar wavelets have become an increasingly popular tool in the 

computational sciences. They have had numerous applications in a wide 

rang of areas such as signal analysis, data compression and many others[8]. 

 Wu and Chen (2003) [7] studied the numerical solution for partial 

differential equations of first order via operational matrices , they used the 

Haar wavelets in the solution with constant initial and boundary conditions. 

 Wu and Chen (2004) [8] are studied the numerical solution for 

fractional calculus and the fractional differential equation by using the 

operational matrices of orthogonal functions. The fractional derivatives of 

the four typical functions and two classical fractional differential equations 

solved by the new method and they are compared the results with the exact 

solutions, they are found the solutions by this method is simple and 

computer oriented. 

 Lepik and Tamme (2007) [5] are derived the solution of nonlinear 

Fredholm integral equations via the Haar wavelet method, they are find that 

the main benefits of the Haar wavelet method are sparse representation, fast 

transformation, and possibility of implementation of fast algorithms 

especially if matrix representation is used. 

 Many authors have studied the reaction-diffusion systems. These 

systems have many applications in physics, chemistry or biology. For 

example, chemical reactions, population dynamics or combustion are 

modeled by reaction-diffusion equations. 

 Aggarwala and Nasim (1987) [1] derived the solution of reaction-

diffusion equations with double diffusivity by laplace technique and Fourier 

transforms which appear to be simpler and more direct. 

 Chow Tanya (1996) [4] is studied the derivation of similarity 

solutions for one-dimensional coupled systems of reaction-diffusion 

equations, these solutions are obtained by means of one-parameter group 

methods. 
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 Antic and Hill (2000) [2] are studied a mathematical model for heat 

transfer in grain store microclimates, this model is "double diffusivity" such 

that they are used the heat-balance integral method to transform the coupled 

partial differential equations to the coupled ordinary differential equations 

and solved it numerically by using the Fehlberg fourth-fifth order Range-

kutta method. 

 Antic and Hill (2003) [3] are studied a Two-stage heat transfer 

model for the peripheral layers of a grain store, they are observed that the 

predictions of the air and grain temperatures of the two-stage model lag 

behind those of the double-diffusivity heat transfer model, but this lag 

decreases as time increases. 

 Polyanin, A. D. (2004) [6] is found the exact solutions of linear and 

nonlinear reaction-diffusion equations of different kinds parabolic, 

hyperbolic and elliptic systems, he was used some hypothesis to transform 

reaction-diffusion systems to equations equivalent to heat equation or wave 

equation or laplace equation which have exact solutions. 

 In this paper, we will study the numerical solution for linear 

reaction-diffusion system with double-diffusivity by the operational 

matrices of Haar wavelet method and we will compare the results of this 

method with exact solutions. 

 

2.Mathematical model: 

 The one-dimensional case of reaction-diffusion equations with 

double-diffusivity is given by [1,2]: 
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where ( )t,xu and ( )t,xv denote the air-temperature and a grain-temperature 

respectively, the self-diffusivities 12121 ,,,, cbbDD and 2c are positive 

constants. 

with initial condition: 

( ) ( )xExu =0,         …(2a) 

( ) ( )xFxv =0,         …(2b) 

such that E(x) and F(x) are prescribed space-dependent for the initial air-

temperature and a grain-temperature respectively. 

and mixed boundary conditions: 

( ) ( )tGtu =,0               ...(3a) 

( ) ( )tIt,0v =         ...(3b) 
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( )tK
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tu
=

∂

∂ ),0(         …(4a) 

( )tL
x
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=

∂

∂ ),0(         …(4b) 

G(t), K(t), I(t) and L(t) are prescribed time-dependent for the boundary air-

temperature and a grain-temperature respectively. 

 Polyanin, A. D. [6] is found the exact solution for (1a) and (1b) with 

aDD == 21 such that: 
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such that: 
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3. The operational matrices and Haar wavelets: 

 The main characteristic of the operational method is to convert a 

differential equation into an algebraic one, and the core is the operational 

matrix for integration. The integral property of the basic orthonormal 

matrix, ( )tφ  . we write the following approximation: 

( )( ) ( )tQdtt kk

timesk

t t t t

φφ φ≅

−

∫ ∫ ∫ ∫
0 0 0 0

......                        …(6) 

where ( ) ( ) ( ) ( )[ ]Tm tttt 110 −= ϕϕϕφ
r

K
rr

in which the elements 

( ) ( ) ( )t,,t,t 1m10 −ϕϕϕ
r

K
rr

 are the discrete representation of the basis functions 

which are orthogonal on the interval [0,1) and φQ is the operational matrix 

for integration of ( )tφ  [7,8]. 
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The operational matrix φQ  of an orthogonal matrix ( )tφ  can be expressed 

by: 

[ ] [ ] [ ] [ ] 1−⋅⋅= φφφ BQQ        …(7) 

where [ ]BQ is the operational matrix of the block pulse function: 
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If the transform matrix [ ]φ  is unitary ,that is [ ] [ ]Tφφ =−1
, then the equation 

(7) can be rewritten as [7,8]: 

[ ] [ ] [ ] [ ]TBQQ φφφ ⋅⋅=          …(9) 

 The Haar functions are an orthogonal family of switched rectangular 

waveforms where amplitudes can differ from one function to another. They 

are defined in the interval [0,1] by [7,8]: 
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where i=0,1,2,…..,m-1, α= 2m  and α  is a positive integer. J and k 

represent the integer decomposition of the index i , i.e. 1k2i J −+= . 

Theoretically, this set of functions is complete. ( )th0
 is called the scaling 

function and ( )th1  the mother wavelet, such that from the mother wavelet 

( )th1 , compression and translation are performed to obtain ( )th2  and ( )th3 . 

 Any function ),( txu  which is square integrable in the interval 

1t0 <≤ and 1x0 <≤ can be expanded into Haar series by: 
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where ∫ ∫⋅=
1

0

1

0

)(),()(),( dtthtxudxxhtxuc JiiJ
. 

The equation (11) can be written into the discrete form by: 

)()(),( tHCxHtxu T ⋅⋅=       …(12) 

where  
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 is the coefficient matrix of ),( txu  calculated by: 

[ ] [ ] [ ] [ ]THuHC ⋅⋅=        …(13) 

For deriving the operational matrix of Haar wavelets, we let [ ] [ ]H=φ  in the 

equation (9), and obtain: 

[ ] [ ] [ ] [ ]TBH HQHQ ⋅⋅=         …(14) 

where [ ]HQ is the operational matrix for integration of [ ]H . 

For example, the operational matrix of the Haar wavelet in the case of m=2 

is given by: 
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4.Numerical solution: 

 We will use the operational matrices of the Haar wavelets to solve 

the equations (1a) and (1b) numerically. 

By using the equation (6) and the integration of equation (12) with respect 

to variable t yields [7]: 
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H
T

t t t

TT
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     …(15) 

Further integration with respect to variable x gives: 

[ ]
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The double integration, we obtain: 
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also 
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Now integrate equations (1a) and (1b) with respect to t, we get: 
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we shall use the initial and boundary conditions which Polyanin was used in 

find the exact solutions with the case of the diffusion coefficients 

aDD == 21 (see [6]). 

By using the initial condition (2a) and (2b), we get: 
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Now, the double integrate for equations (20a) and (20b) with respect to x, 

we get: 
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 by using the boundary conditions (4a) and (4b), we get: 
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by using the boundary conditions (3a) and (3b) and rearranging, we get: 
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we transform the equations (23a) and (23b) into the matrices form by using 

the equation (12), we get: 
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Now, by using the integrations (15),(16),(17) and (18), the equations (24a) 

and (24b) becomes: 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]HQJQHa

HQJHaHJQHHQCvQHc

HQCuQHbHQCuHaHCuQH

H
T

H
T

H
TT

H
T

H

T

H
T

H

T

H
T

H
TT

H
T

⋅⋅⋅⋅⋅−

⋅⋅⋅⋅−⋅⋅⋅⋅=⋅⋅⋅⋅⋅−

⋅⋅⋅⋅⋅+⋅⋅⋅⋅−⋅⋅⋅

3

21
22

1

2
1

2

…(31a) 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]HQJQHa

HQJHaHJQHHQCvQHc

HQCuQHbHQCvHaHCvQH

H
T

H
T

H
TT

H
T

H

T

H
T

H

T

H
T

H
TT

H
T

⋅⋅⋅⋅⋅−

⋅⋅⋅⋅−⋅⋅⋅⋅=⋅⋅⋅⋅⋅+

⋅⋅⋅⋅⋅−⋅⋅⋅⋅−⋅⋅⋅

6

54
22

2

2
2

2

…(31b) 

such that the dimension for all matrices are mm× , [ ]H  is Haar wavelets 

matrix, [ ]HQ  is the operational matrix of the Haar wavelet, [ ]Cu  is the 

coefficient matrix of u(x,t) and [ ]Cv  is the coefficient matrix of v(x,t): 

[ ]

mmmmmm

m

m

CuCuCu

CuCuCu

CuCuCu

Cu

×−−−−

−

−























=

1,11,10,1

1,11,10,1

1,01,00,0

KK

MMMMM

MMMMM

KK

KK
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[ ]

mmmmmm

m

m

CvCvCv

CvCvCv

CvCvCv

Cv

×−−−−

−

−























=

1,11,10,1

1,11,10,1

1,01,00,0

KK

MMMMM

MMMMM

KK

KK

 

by multiplying [ ]TH  to the right hand side and [ ]H  to the left hand side of 

each term in equations (31a) and (31b), we get: 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ]H

T
HH

T

H

H

T

HH

T

HH

T

H

QJQaQJaJQ

QCvQcQCuQbQCuaCuQ

⋅⋅⋅−⋅⋅−⋅⋅=

⋅⋅⋅−⋅⋅⋅+⋅⋅−⋅

321
2

2
1

2
1

2

  …(32a) 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ]H

T
HH

T

H

H

T

HH

T

HH

T

H

QJQaQJaJQ

QCvQcQCuQbQCvaCvQ

⋅⋅⋅−⋅⋅−⋅⋅=

⋅⋅⋅+⋅⋅⋅−⋅⋅−⋅

654
2

2
2

2
2

2

 …(32b) 

 

 To find the coefficient matrices [Cu] and [Cv] which have m2  of the 

elements respectively, we solve the system (32a) and (32b) which given 

linear system of the equations such that the variables number are 1m2 +  and 

we can be solved them by Gauss-Jordan method, after this we find the 

matrices [u] and [v] by using the equation (12) such that: 

[ ] [ ] [ ] [ ]HCuHu
T ⋅⋅=  

 

[ ] [ ] [ ] [ ]HCvHv
T ⋅⋅=  

 

5.Numerical results: 

 In this section, we have solved the system (32a) and (32b) with the 

initial condition for the exact solution (5a) and (5b), such that: 

( )
( ) ( )
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e
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xExu 21
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λλλλ −
−
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λλλλ −
−

−
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and mixed boundary conditions: 
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( )
( )

( )
( )

( ) tata
eetL

x

tv
2211 1

21

21

21

1),0( λλλλ

λλ
λ

λλ
λ ++

−
−

−
==

∂

∂
     

with 1cand1b,1c,1b,1a 2211 ===== then: 

1Band1A,0,2 21 =−==λ−=λ . 

When m=4 then, from the equation (10),we get: 

[ ]





























−

−

−−
=

2

1

2

1
00

00
2

1

2

1
2

1

2

1

2

1

2

1
2

1

2

1

2

1

2

1

H  

from the equation (14), we get: 

[ ]


















−

−

−−−

=

0008838835.008838835.0

0008838835.008838835.0

08838835.008838835.0025.0

08838835.008838835.025.05.0

HQ  

from the equations (25),(26),(27),(28),(29) and (30), we get: 

[ ] [ ]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

[ ]TH

eeee

eeee
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HJ ⋅




















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⋅=

−−−−

−−−−

−−−−

−−−−

)2/1()2/1()2/1()2/1()2/1()2/1()2/1()2/1(

)2/1()2/1()2/1()2/1()2/1()2/1()2/1()2/1(

)2/1()2/1()2/1()2/1()2/1()2/1()2/1()2/1(

)2/1(2/1)2/1(2/1)2/1(2/1)2/1(2/1

8/728/728/728/72

8/528/528/528/52

8/328/328/328/32

8/128/128/128/12

1  

where 
m

i

m
xi

1

2

1 −
+=  then 8/7x,8/5x,8/3x,8/1x 4321 ==== . 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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m

i

m
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1
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[ ] [ ]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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)2/1()2/1()2/1()2/1()2/1()2/1()2/1()2/1(
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)2/1()2/1()2/1()2/1()2/1()2/1()2/1()2/1(

)2/1(2/1)2/1(2/1)2/1(2/1)2/1(2/1

8/728/528/328/12

8/728/528/328/12

8/728/528/328/12

8/728/528/328/12

5  

 

[ ] [ ]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

[ ]TH

eeee

eeee

eeee

eeee

HJ ⋅








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
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


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Now, by substitute the matrices [ ] [ ] [ ] [ ] [ ] [ ] [ ]654321 ,,,,, JandJJJJJQH  in the 

system (32a) and (32b), and solve this system we get to the linear system 

consist of 32 equations and 32 variables represents the matrices element 

[Cu] and [Cv] and by solving this system by Gauss-Jordan method, we get: 

 

[ ]


















−−−

−−−

−−−

−−−

=

05562179.00227508.011736944.025182561.0

17323139.006437899.031767206.068638424.0

30609930.011438408.057992536.025003806.1

69254928.025494609.024645913.170440769.4

Cu  

  

[ ]


















−

−

−

−

=

05710914.002329369.011702954.025195852.0

17333552.006449492.031751944.068633486.0

30752743.011517825.057917255.024996062.1

69204078.025400126.024746491.170483702.0

Cv  

 

Now, by using the equation (12), we get: 

[ ] [ ] [ ] [ ]



















⋅⋅=

00851549.179087588.068774231.061110075.0

32519761.199631441.080556797.068342483.0

85667995.132376015.100004431.180326743.0

73988636.286050378.132514218.199960733.0

HCuHu
T
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[ ] [ ] [ ] [ ]



















−

−

−−

−−−

⋅⋅=

00772664.020705623.031362409.038849309.0

32574974.000325140.019492120.031637759.0

85717565.032370972.000007869.019663310.0

74034336.186020638.032520812.000033614.0

HCvHv
T

 

 

Table (1). A comparison between the operational matrix of the Haar 

wavelets method with exact solution for the air-temperature u(x,t) in 

the system (1a) and (1b) with: m=4 

11,1,1,1 221121 ======= candbcbaDD .   

The value of (x) The value of (t) The numerical 

solution of u(x,t) 

The exact solution 

of u(x,t) 

0.125 0.125 0.99960733 1.00000000 

0.125 0.375 1.32514218 1.32436064 

0.125 0.625 1.86050378 1.85914091 

0.125 0.875 2.73988636 2.74084454 

0.375 0.125 0.80326743 0.80326533 

0.375 0.375 1.00004431 1.00000000 

0.375 0.625 1.32376015 1.32436064 

0.375 0.875 1.85667995 1.85914091 

0.625 0.125 0.68342483 0.68393972 

0.625 0.375 0.80556797 0.80326533 

0.625 0.625 0.99631441 1.00000000 

0.625 0.875 1.32519761 1.32436064 

0.875 0.125 0.61110075 0.61156508 

0.875 0.375 0.68774231 0.68393972 

0.875 0.625 0.79087588 0.80326533 

0.875 0.875 1.00851549 1.00000000 
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Table (2). A comparison between the operational matrix of the Haar 

wavelets method with exact solution for the grain-temperature v(x,t) in 

the system (1a) and (1b) with: m=4 

11,1,1,1 221121 ======= candbcbaDD .   

The value of (x) The value of (t) The numerical 

solution of v(x,t) 

The exact solution 

of v(x,t) 

0.125 0.125 0.00033614 0.00000000 

0.125 0.375 -0.32520812 -0.32436064 

0.125 0.625 -0.86020638 -0.85914091 

0.125 0.875 -1.74034336 -1.74084454 

0.375 0.125 0.19663310 0.19673467 

0.375 0.375 0.00007869 0.00000000 

0.375 0.625 -0.32370972 -0.32436064 

0.375 0.875 -0.85717565 -0.85914091 

0.625 0.125 0.31637759 0.31606028 

0.625 0.375 0.19492120 0.19673467 

0.625 0.625 0.00325140 0.00000000 

0.625 0.875 -0.32574974 -0.32436064 

0.875 0.125 0.38849309 0.38843492 

0.875 0.375 0.31362409 0.31606028 

0.875 0.625 0.20705623 0.19673467 

0.875 0.875 -0.00772664 0.00000000 
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Figure (1). An illustration the numerical solution for the air-temperature u(x,t) in the system 

(1a) and (1b) by the operational matrix of the Haar wavelets method with: m=4 

1cand1b,1c,1b,1aDD 221121 ======= .        

  
Figure (2). An illustration the exact solution for the air-temperature u(x,t) in the system (1a) 

and(1b)with: 1cand1b,1c,1b,1aDD 221121 ======= .       
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Figure (3). An illustration the numerical solution for the grain-temperature v(x,t) in the 

system (1a) and (1b) by the operational matrix of the Haar wavelets method with: m=4 

1cand1b,1c,1b,1aDD 221121 =======  

 
Figure (4). An illustration the exact solution for the grain-temperature v(x,t) in the system 

(1a) and (1b) with: 1cand1b,1c,1b,1aDD 221121 =======  
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6.Conclusions: 

 In this paper, We are using the operational matrices of the Haar 

wavelets method for solving linear parabolic reaction-diffusion system with 

double diffusivity, A numerical method based on the Haar wavelets 

approach which have the property  ( )THH =−1 , we compared this results 

with the exact solution for this system, we found that the operational 

matrices of the Haar wavelets method is simple in the computation, 

However,  we note that high accuracy of the results in this method in the 

solution double diffusivity system even in the case of a small number of grid 

points is using, as shown in the table (1) and (2) and figures (1),(2),(3) and 

(4) such that the number of grid points (the dimensions of the matrices) are 

4x4, but when the dimension of the matrices are increase then the numerical 

solution converges towards the exact solution. 

  The matrices which we got it of the numerical solution are 

representing of all time steps in the interval [0,1), while in the finite 

difference method and finite elements method are need to the iteration to get 

the needed time step, they are complicated and time-consuming. Matlab 

language is using in find the results and figures draw, it's characteristic of 

high accuracy and large speed. 
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