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ABSTRACT

In this paper, centrally prime and centrally semiprime rings are
defined and the relations between these two rings and prime (resp.
semiprime) rings are studied. Among the results of the paper some
conditions are given under which prime (resp. semiprime) rings become
centrally prime (resp.centrally semiprime) as in:1-A nonzero prime (resp.
semiprime) ring which has no proper zero divisors is centrally prime
(resp.centrally semiprime).Also we gave some other conditions which make
prime (resp. semiprime) rings and centraly prime (resp.centrally
semiprime) rings equivalent, as in :2-A ring which satisfies the- (BzP) for
multiplicative systems is prime (resp. semiprime) if and only if it is centrally
prime (resp.centrally semiprime).3-A ring with identity in which every
nonzero element of its center is a unit is prime (resp. semiprime) if and only
if it is centrally prime (resp.centrally semiprime).
Keywords. prime rings,semiprime rings,centrally prime rings,centraly
semiprime rings, localization.

47



Adil. K. Jabbar and Abdularahman. H. Majeed

|ntroduction:

Let R be aring .A non-empty subset S of R is said to be a
multiplicative closed set in R if abi s implies that abl S,(Larsen and
McCarthy,1971) and a multiplicative closed set S is called a multiplicative
system if Ol S,(Larsen and McCarthy ,1971).Let S be a multiplicative
sytem in R such that SR ={q where [S,RI={[s,r]:sl ST R,
Define arelation (~) on R™ S asfollows:

If (a,5),(b,t)] R" Sthen (as)~(b,t) if and only if there exists x1 S such that
x(at - bs) =0.Since [S,R]={0}, it can be shown that (~) is an equivalence
relation on R” S.Now denote the equivalence class of (a,s) in R” S by
ag, that is ag={(b)T R S:(as) ~ (b.1)} (this equivalence classis also denoted

by %(Larsen and McCarthy,1971) or by s 1a, and then denote the set of

al equivalence classes determined under this equivalence relation by Rg,
that is let Rg={a.:(as)] R s} .Note that Rg is aso denoted by

s™1r(Larsen and McCarthy, 1971).

On Rg We define addition (#) and multiplication (.) as follows:

a, +b =(at +bs)g and ag.by =(ab)g, for al ag,bt T Rg .

It can be shown that these two operations are well-defined and that (Rg,+,.)
forms a ring which is known as the localization of R a S(Larsen and
McCarthy, 1971).

Let R be aring.Then R is caled a prime ring if whenever a,bl R are
such that aRb={0} then a=0 or b=0, (Ashraf,2005, Jung and Park,
2006), and it is called a semiprime ring if al R, is such that aRa={0} then
a=0,(Vukman, 1999, Argac, Nakgima and Albas, 2004), where
aRb={arb:r| R}.

Before giving the main results of the paper we introduce some definitions .
Let R bearing and S a multiplicative sysem in R. We say S has zero
commutator if [S,R]={0} and wecall S abi-zero multiplicative system if:

i: [S,RI={0} and ii: ann(s)={0}, for al si s, and wesay R satifies the bi-
zero property (BzP) for multiplicative systems inR if every multiplicative
sysem S in R which has the property [S, R] ={0} has also the property that
ann(s) ={0}, for all si s.
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Example 1:
It is easy to show that every multiplicative system in Z is a bi-zero

multiplicative system, that is if S is any multiplicative system in Z then
[S,R]={0} and ann(s)={0}, for all si S.

Now let us take the ring of all 2" 2 matrices over Z, (M22,+ ).t is

o . ool
known that this ring is not commutative.Take S:{Eé O%Ee —} it is not
0 1580 -1y

difficult to show that S is a multiplicative system in M ,,aso we can
show that [S, MZ 2] ={0} .

To show ann(g ) {go O—} = ann(g 0 12'

It Ee‘ g ann(g —) then g 00 Y02 00\ rich implies that
u Vg 0 1,‘2, Vg &0 Og
a&x yo_a® 00 0,_,a 09
0 vi ko o , and hence ann(g ) {go O;a}
Similarly it can be shown that ann(gol —) {Eﬁ 89} .That means it is also
%] a

possible for non commutative rings to have multiplicative systems with
above two properties.

Remark:

Let R bearingand S a multiplicative syssemin R such that [S,R]={0} .If

A isanided of R then it is easy to show that Ag={as:al Asl S} isan
ideal of Rg.

Converdly, if Kisanidea in Rg then there exists an ideal Jin R such that
K =Jg,(Jabbar,2004).1t is necessary to mention that if A B are idedsof R
such that A=B then Ag=Bgbut in general the converse is not true and we

give below an example to establish this fact.

Example 2:
Consider thering (Z15.+15, 15).S={1248 isamultiplicative systemin

Z,, .By simple computation we can get:

(Z12) 5 ={01.05.0,4.05. 4 1514 15,2125 ,24,2g,...11; 115,11, 115} .

Note that

0,=0,=04=0g=3) =3,=3,=35=6,=6,=6, =6g=9; =9, =9, =9,
1y=14=2,=2g=4) =4, =5, =55=7 =7, =8, =85 =10, =10, =11, =115 and
2 =1y =1g=2, =4, =45 =5/=5,=7, =7g =8 =8, =10, =10g =11; =11,

49



Adil. K. Jabbar and Abdularahman. H. Majeed

Now | ={0,24,6810 and J ={0,48 are two ideds in z;, so that I1g,Jq are
idealsin
(Z15) 5 -By the same technique as we used above we can get that
and also we will show that this existence becomes unique under certain
conditions as we see latter(see Theorem 2 and Theorem 3).Now we
mention the following two results the proof of which could be found in
(Jabbar,2004).
Let R bearingand S is amultiplicative system in Rsuch that [S,R] ={0} .If
| and J areidedsof R then:
L (1)g=1gJdg, and 2 (1Mg=(1g)", foral ni 27,
The Main Results:

First we prove a lemma which will play the basic role ,as we see latter,
in the proof
of the main results of the paper.

Lemma 1:
Let R be aring and S a bi-zero multiplicative system inR.If

a,bl Rand S,tl S then arb={0} if and only if agRgb; ={0} .
Proof :

Now let aRo={0}.Then if ry1 Rg(is any element), where ri Rand
xI S,wehave agryb; =(arb) g =04 =0,(SiNce arbl aRb={0}, SO arb=0).
Hence agryby =0,for dl ry1 Rg, thus agRgbt ={0} , which proves the “only
if < part.
To prove the “if’part, let agRght ={0} , where a,bl R and sti s, then for
any ri R we have rgl Rg, and hence agrghti agRgh, which gives
agfshy =0 Or (arb)sg =0, then there exists t1 S(t depends on rysuch that
t(arb)=0, thus arbl annt) and S bieng a bi-zero multiplicative system so
ann(t) =0 and hence we get arb=0, thislast result istrue for al r1 R, which
impliesthat aRb={0}, and this completes the proof ~ .

Remark:
If R isaringand S isamultiplicative system in R such that [S,R] ={0} .If

|, J are idedls in R such that | =Jthen Ig=Jg.But in genera the

converse is not true (see Example 2). Now we give some conditions under
which 15 =Jg implies 1 =J.
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Theorem 2:

Let R be a ring and suppose that Sis a multiplicative system
inRsuchthat [S,R] ={0} .

If | and J are prime ideals of R suchthat 1¢s=f =J¢s, then 1 =J if and
onlyif 1g=1Jg .
Proof:

For the proof of the “only if” part see the last remark so we prove only
the “if”’part.

Let Ig=Jg.Toshow I =J.Let al I.Since s*f sotakesi s.Thenagl Ig
andhence agl Jg, and SO ag=h for somebl J,t1' S, so that
(a,8) ~ (b,t) which implies that there exists ul S such that u(at- bs)=0, then
uat =ubsi Jor utal J but u,tT S implies uti S and J¢Ss=f thusuti J and
J being a prime ideal so al J.Hence 11 J.By the same technique we can
showthat Ji | andhence 1=J3" .

Theorem 3:

Let R be aring with identity 1,. is a multiplicative system in R
such that [S,R1={0}and I,Jare idedls in R.If every non-zero element of
CentR isaunitin R, then 1 =y ifand onlyif 1g=Jg.

Proof:
The “only if “ part has been proved.So it remains to prove the

converse part.
Let 1g=Jg.If xI | thenthereexists si s, (since s* f ) and then

xsl I'g=Jg, and hence there exists

atl Jg, for someal J and t1 S such that xg =a; Which gives (x,s) ~ (at) ,hence
there exists vi S such that v(xt- as)=0 Or vxt=vasi Jthen vixi J .Nowv,ti S
implies vtT s, thus vt * 0(since 01 S). But then since [S,R] ={0} SO

[vt, R ={0} which meansthat vt1 CentR, hence 0t wt1 CentR and thus by the
given assumption vt isaunitin R, that is (v)~ 11 R and then vixi J
implies (vt)” Ivixi J that is 1.xT J which meansthat xi J and hence

i J.Similarly it can beshownthat Ji | .Hence 1 =J" .
Now we introduce the following definition:
Definition:
LetR be a ring.We say that R is centrally prime (resp. centraly
semiprime) if Rg is prime (resp. semiprime) for al multiplicative systems

S in R which have zero commutators.
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Example 3:
As we have mentioned in Example 1, that every multiplicative system S in

Z is a bi-zero multiplicative system, that is Z satisfies the -(BzP)
property.Now we will show that Zg is a prime (resp. semiprime) ring.Now
let for abl Z and sti S we have asZgh ={0}, but S being a bi-zero
multiplicative system so by Lemma 1, we get that azb={0}, and hence as
especial case  a.lb=0 or a.b=0, which implies a=0or b=0, thus
ag=0g=0o0r by =0t =0, SO Zg is a prime ring , and S being arbitrary
multiplicative system with zero commutator , so we get that Z is a centrally
prime ring .Since every prime ring is a semiprime ring so every centrally
prime ring is centrally semiprime and thus Zis also a centraly semiprime
ring.

Next we apply the result of Lemma 1, to prove some theorems which
determine the relations between prime (resp. semiprime) and centrally
prime(resp.centrally semiprime) rings, in each of the following two
theorems (Theorem 4 and Theorem 5) a condition is given which makes
prime (resp. semiprime) rings and centrally prime (resp. centrally
semiprime) rings equivalent.

Theorem 4:

Let R be aring. If R satisfies the-(BzP) for multiplicative systems,
then R is prime (resp. semiprime) if and only if R is centrally prime (resp.
centrally semiprime).

Proof :

Let R be a prime ring and S be any multiplicative system in R
which has zero commutator, that is [S,R]={0}, to show R is a centrally
prime ring it is enough to show that Rg is a prime ring.Since R satisfies
the-(BzP) so  ann(s)={0}, for al si s, that is S is a bi-zero multiplicative
system . Now let for ag, by T Rg we have agRgbt ={0} , (where a,bl R and
s tl S).Thenby Lemma 1, we get arb={0} and R being a prime ring we
get a=0 or b=0.If a=0 then ag=05=0 and if b=0 thenb; =0; =0 and
hence Rg is a prime ring and since S is arbitrarily choosen we get that Rg
is prime for each multiplicative sysem S in R which has zero commutator
and hence R is centrally prime .

Conversely, let R be centrally prime ring, we will show that R is prime.
So let for a,bi R we have arRb={0}, if S is any multiplicative sysemin R

with zero commutator then Rg is a prime ring and since R satisfies (BzP)
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for multiplicative systems so S has the property that ann(s)={}, for all
s s, that is S is a bi-zero multiplicative system. Now since S f , so there
exists an si S, then ag,bs1 Rg, and since arRb={¢ and S is a hi-zero
multiplicative system so by Lemma 1, we get agRgbs ={0}, but Rg being a
prime ring we get ag =0,0r bs=0. If ag=0, thenthere exists ul s such that
ua=0, thus al ann(u)and since R satisfies (BzP) for multiplicative systems
S0 ann(u) ={0} and hence a=0.If bg =0, by the same technique we get b=0.
Hence R is a prime ring which completes the proof of the case when R is
prime and for the case when R is semiprime the same technique is
applicable to get the result ™ .
Remark:
In the Example 3, we have proved directly that Z is a centraly prime as
well as a centrally semiprime ring, here we can use Theorem 4, to show this
fact asfollows:
It is known that a non-zero ring which has no zero divisors are prime as well
as semiprime and since Z has no zero divisors o it is prime and hence
semiprime,on the other hand Z satisfies the (BzP) for multiplicative
systems as we have mention in Example 3, thus by applying Theorem 4,
Z becomes centrally prime and hence centrally semiprime .
Theorem 5:

Let R bearing.If R hastheidentity 1 and every nonzero element of
CentR isaunit in R then R is a prime (resp. semiprime) ring if and only if
it is centrally prime (resp. centrally semiprime).
Proof:

We will show that R satisfies the- (BzP) for multiplicative systems in
R, let S be any multiplicative system in R with zero commutator.|f
sl S is any element then since [S,R]={0} O [s,r]=0,for al ri R, that is
g-rs=0,for dl rT R, and thus s =rs,for al ri R which means that
sl CentR, and then 0 Sand s S implies st 0, hence 0t si CentR which
means that S is a unit , the next step is to show that ann(s) ={0}, SO let
xi ann(s) then x=0 and S being a unit ,s" 11 R thus sx=0 implies that
s"lx=s"1o=0, hence x=0 which means ann(s)={0}, and S being arbitrary
in S so we get that ann(s) ={0}, for all si s, and hence every multiplicative
sytem S in R with zero commutator satisfies also the property
ann(s)={0}, for alsi s, and thus R satisfies (BzP) for multiplicative
systems.Hence by Theorem 4, Ris prime (resp. semiprime) if and only if it
is centrally prime (resp.centrally semiprime) which completes the proof ~ .
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Now, in each of the following two theorems we give a condition which
makes prime (resp. semiprime) rings centrally prime (resp. centrally
semiprime),we see below that nonzero prime (resp. semiprime) rings which
have no zero divisors are centrally prime (resp. centrally semiprime), which
means , in some sense , that centrally prime (resp. centraly semiprime)
rings are generalizations of those non-zero rings which have no proper zero
divisors.
Theorem 6 :

If R isanon-zero prime (resp. semiprime) ring which has no proper
zero divisors then it is centrally Prime (resp. centrally semiprime).
Proof:

Suppose R has no proper zero divisorsWe will show that R is
centrally prime , so let S be any multiplicative system in R with zero
commutator , to show that Rg is a prime ring, let for ag,bt T Rg we have

asRght ={0}, where abl R and sti S. Since R* {0}, so there exists
0t ri R. Then rgT Rg and hence agrght I agRght Which gives agrgby =0 or
(arb)g =0, and hence we get that there exists t1 s such that t(arb)=0 or

tarb=0, but R has no proper zero divisors so t=0 or a=0 or r=0 or
b=0.But 0f Sandtl S implies that t: 0.Also rt o(since r is choosen

non-zero in R) thus we get a=0 or b=0. If a=0 then ag =0 =0 and if
b=0 then b; =0; =0.

Hence Rg isaprimering and S being arbitrary multiplicative systemin R
with zero commutator we get Rg which is a prime ring for all multiplicative

systems S in R with zero commutators and hence R is a centrally prime
ring.The proof of semiprimeness case is exactly as the proof of primeness
case but we just take agRgas ={0} instead of agRgby ={0} and repeating the

same outlines of the above proof ~ .
Next we give another condition under which prime (resp. semiprime) rings
are centrally
prime (resp. centrally semiprime) and that condition provides R to be a
finite ring and this can regarded as a corollary to Theorem 6.
Corollary 7:

A finite prime (resp.semiprime) ring R is centrally prime (resp.
centrally semiprime).
Proof:

We will show only the case when R is a prime ring and the case when
R is semiprime can be done by the same technique. So let R={ry,r5,....m}

and S be any multiplicative system in R with zero commutator, we must
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show that Rg is aprime ring.Now let ag,by I Rg are such that agRgby ={0},
where a,bT R and s,tT S.

For each i (1£i £n) wehave (r;)sT Rg and thus ag(rj)sby =0, for all i, or
(ar;b)sg =0, for all | ,and thus we get that for each i (L£i £ n), there exists
tj T S suchthat t;(arjb) =0.Now let x=t;t,..ty. Sincefor al i, ;T S so that
x=tito.tn1 S. But since [S,R]={0} and for &l I, wehave ;T S, 0

titj =tjt;, for al i, j .Hence for each | we get

x(arjb) =tity..tn(arb) =tit,. 4 gt 42t @nb) =ttt gt 4.1,.0=0,
which givesthat (xa)rib=0,for all I, that is (xa)r;b=0, for all r; 1 R and this
means (xa)Rb={0}, but R being aprimeringweget xa=0or b=0.

If xa=0 then ag =xyag =(xa)xs =0xg =0, and if b=0 then b; =0; =0.

Hence Rg is aprime ring which provesthat R is centrally prime ™ .

In fact, Corollary 7, tells us that centrally prime (resp.centrally semiprime)
rings are, in some sense, generalizations of finite prime (resp. semiprime)
rings.
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