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ABSTRACT 
Loop unrolling is one of the key optimization strategies that compilers employ to enhance the efficiency 

of loop-based programs. The loop unrolling approach aims to minimize the number of iterations carried 

out by the loop, hence reducing the sub-instruction overhead. We divide the current state-of-the-art loop-

opening strategies into two groups in this survey paper: machine learning-based strategies and 

conventional strategies. 

Several conventional techniques are used in unrolling the loop, such as profile-based, heuristic-based, and 

static analysis-based techniques. As a result, the amount of instructions, the loop nesting structure, and the 

number of loops will all be taken into consideration by these approaches when determining whether to 

unroll the loop. Because these techniques are frequently constrained by their presumptions, they might not 

always yield the optimal outcomes. In contrast, loop unrolling can anticipate the ideal loop unrolling 

factor by utilizing machine learning-based techniques such artificial neural networks, k-nearest neighbors, 

decision trees, support vector machines, and random forests. When these techniques were compared to 

other conventional techniques, the outcomes were superior. 

In this paper, we supply a comprehensive review of the existing loop unrolling techniques, which include 

their strengths and limitations. Also, we compare the different machine learning-based approaches and 

debate the potential benefits of using machine learning in loop unrolling optimization. Our goal is to 

provide a comprehensive overview of the field and to provide guidance for future research in this area. 

 

Key words: Loop unroll, Machine Learning, Optimization, compiler, supervised learning. 
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INTRODUCTION 
Loop unrolling is an optimization technique that decreases the overhead of control flow and 

improves the performance of loops in computer programs. Iterating by step u rather than step  1, 

it repeats the body of a loop, known as the unrolling factor u, multiple times. In order to apply 

Instruction  Level Parallelism ILP to architectures such as Very Long Instruction Word VLIM 

and Superscalars, an essential technique for generating efficient instructions is required. Loop 

unrolling can increase speed by lowering loop overhead, boosting instruction level parallelism, 

and enhancing register, data cache, or Task Level Parallelism TLB locality.  The reason for the 

reduction in loop overload is that an extra iteration is carried out before to the test and branching 

occurs at the conclusion of the loop. The first and second assignments can be completed in 

simultaneously, increasing instruction parallelism [1,2]. 

UNROLLING STRATEGY IN A GENERAL CONTEXT 
The typical work of unrolling a loop is to find the key induction variable in the state in 

which the loop will exit. Therefore, the variation in the loop that is increment or decrement by a 

fixed amount on each iteration of the loop is the basic induction variable. Therefore, the constant 

change of the variation is made reference to as a step in the loop, and this is in the case of using a 

basic inductive variable in the case of exiting the loop. When the loop exit condition checks the 

principal induction variable against certain restrictions to see if the loop may continue to run, it is 

possible to modify the preparation phase and eliminate some loop repeats. In order for the basic 

induction variable to be usable in opening the loop, it must meet one requirement: the value 

remained constant through the loop's execution. This means that the value against which it is 

tested when the loop exits must be constant. This is to make sure that iterations are not added or 

removed during unrolling. In this scenario, the unrolling algorithm will be permitted to calculate 

the number of iterations that the loop will execute at runtime. 

Fig. [1.1 a], demonstrates how easily the for loop may satisfy these needs. When the loop 

is about to end, the major inductive variable –i- is employed. After every loop iteration, the loop 

step is to increase this step by 1. Where i exit condition is tested against n iterations, and the 

value of n is fixed in the loop. The next step: Once we find the basic induction variable, we begin 

the process of repeating the loop code within the loop body. After the replication process, the 

reviewer of the basis induction variable in the loop is updated as needed. 
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Fig. [1.1 b] shows an example of this case. The process of copying the loop text is 3 

times because the numerator factor in this example is 4. Then every one reference to i in the 

unwrapped loop is shifted by 1. Finally, we notice that i the variable is converted to 4 in order to 

remove the duplicates covered by the body of the original loop [3]. 

TRADITIONAL APPROACHES TO LOOP UNROLLING 
A well-known optimization technique is loop opening which has been widely used in 

compilers to upgrade the performance of loops in computer programs. Traditionally, loop 

unrolling has been performed using heuristics and cost models. 

Heuristics-based approaches rely on rules of thumb to determine the unroll factor. One 

popular heuristic is to unroll loops by a power of two, four, or eight, for instance. Heuristics can 

produce less-than-ideal solutions and may not be appropriate for loops with intricate control 

flows, despite being simple to apply and requiring little computing overhead [4]. 

On the other hand, cost models estimate the loop's performance using mathematical 

models. Usually, these models take into account the costs associated with branching, accessing 

memory, and running the loop [5,6]. Unfortunately, a number of issues can compromise the 

accuracy of cost models, such as the challenge of effectively predicting the performance of loops 

with complicated control flow and the difficulty of estimating the behavior of contemporary 

computer systems [7]. 

Another traditional approach is to use a compiler’s built-in unroll factor or to manually 

specify the unroll factor through compiler flags or pragmas [8]. This approach is simple and 

straightforward, but it may not produce optimal results, particularly for loops with complex 

control flow [9]. 

Compilation and execution time methods were used to study more aggressive loop-

unrolling techniques. Some compilers used the naive unrolling procedure. In practice, work has 
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been done to improve the assembly-level code, although the compile methods and execution time 

are similar regarding concepts [10]. 

Lesson on associating memory references with a static or dynamic clarification with the 

performance benefits of unrolling the loop. Since loop opening is the main focus of this work, 

the advantages of loop opening with dynamic clarification of memory references were examined, 

along with the dynamic interactions between loop optimizations and memory references [11]. 

In this study, new algorithms were created to obtain code that opens nested loops in the 

form of a naive loop. Thus, methods were obtained that can effectively enumerate loop opening 

vectors, as well as code for opening nested loops [12]. Using supervised machine learning 

methods, the suitability of opening different loops was discovered [13]. We also worked on 

iterative methods to repeat the openings to obtain the best code after compilation, where the loop 

is opened once for each loop in the input file. Since the phase ordering at the assembly level is 

more flexible, these studies also focused on the problem of phase ordering at the assembly level 

[14]. 

MACHINE LEARNING-BASED APPROACHES 
Due to the increasing interest in recent years in using machine learning algorithms to 

improve the loop unrolling process. Where Machine Learning algorithms have the ability to 

model the relationship between the loop characteristics and the unroll factor and predict the 

optimal unroll factor for a given loop. Several studies [15]–[20] have used decision trees, 

Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), k-nearest neighbor 

(KNN), and random forest algorithms to the analyze the performance of the loop unrolling in 

compilers. 

 Random Decision Forest 

A classifier called a random decision forest uses several decision trees to train and predict 

samples [21]. The decision trees differ significantly and the over-fitting phenomenon is avoided 

since the nodes of each decision tree are selected at random from the feature vectors of training 

samples throughout the training phase. During the prediction step, each decision tree is able to 

submit a forecast result; the random forest will then vote on all of these results together to 

provide a final prediction [21]. 

A loop unrolling technique based on an improved random choice forest was provided in this 

work  [20]. First, by including a weight value, has been enhanced the conventional random 

choice forest. Second, BSC is suggested as a method for handling unbalanced data sets. SMOTE  

is the foundation of this technique. Where the loop unrolling factor prediction model's training 

set is made up of features chosen from about a thousand loops after they were compared to 

multiple benchmarks. Moreover, the model predicts the unrolling factor with an accuracy of 

81%. While Open64's built-in loop unrolling model can only boost performance by 5%, the 
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weight-balanced decision forest strategy of predicting loop unrolling factors described in their 

research can enhance program performance by 12% on average [20]. 

It has been used in machine learning classification based on Random Forest that can 

precisely forecast unrolling factors for loops in high-level synthesis (HLS) designs.  Breiman 

provides a framework that is automatically included by the low-level virtual machine (LLVM) 

compiler. It first obtains pertinent loop information by looking at the Intermediate 

Representation of the source code before computing directive values for loop unrolling factors. A 

major benefit of HLS implementation for heterogeneous systems mixing accelerators and 

processors is the ability to simply re-target software components to hardware, frequently without 

the need for source code modifications. A reduced average error and a higher prediction score 

were attained by contrasting the suggested approach with the most sophisticated machine 

learning methods. Accurately anticipating loop unrolling variables can lead to good performance, 

as demonstrated by experimental data [22]. 

 Aggressive Loop Unrolling 

Loop unrolling is a well-known code enhancement, and it is said to be one of the issues that 

needs to be resolved in order to carry out loop unrolling more effectively. The initial loop text is 

repeated multiple times and the loop termination code is set when the loop is unrolled. As a 

result, the primary result of unrolling the loop is to minimize the overall number of code that the 

CPU will run during its execution. Consequently, we examine the ring's properties in this work 

since they are crucial for unraveling the loop. 

The significance of handling loops when the loop boundaries are unknown at the time of 

compilation is one of the factors examined. A further aspect examined was the intricacy involved 

in terminating control of the potential loops. As a result, the aggressive compiler must open these 

loops since handling them doesn't needlessly increase the complexity of the loop 

decommissioning techniques or shorten the compile time. According to our measurements, 

aggressive loop opening can improve performance over a basic and naive method by 10 to 20 

percent for some benchmark sets, and for some programs, performance gains of up to 40 to 50 

percent are possible [23]. 

 Artificial Neural Networks (ANNs) 

Because they can accurately predict and simulate complex non-linear connections, ANNs are 

frequently employed in loop unrolling optimization. They can recognize patterns and correlations 

between inputs and outputs because they are made up of interconnected nodes arranged in layers 

[24]. When using machine learning techniques, selecting the optimal input features is an 

important step. Since our contribution focuses on the local optimization of loop unrolling, we are 

using a technique that automatically extracts features for each loop nest (TIRAMISU 

calculation). To forecast the ideal unrolling factor for TIRAMISUs algorithms,  deep neural 

network model is presented in this paper that addresses loop unrolling optimization. A 
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polyhedral framework called TIRAMISU [25] is intended to produce high-performance code for 

a variety of platforms, such as distributed machines, GPUs, and multicores. TIRAMISU 

specifically manages the complications that arise when addressing these systems by introducing 

a scheduling language with unique instructions [26]. 

 Support vector machines (SVMs) 

 A type of supervised machine learning algorithms that are often used in loop unrolling 

optimization. This is due to the high accuracy and robustness of the SVM model, which makes it 

well-suited to address complex optimization problems. 

Antoine, one of the machine learning techniques, Support Vector Machine SVM, was used to 

predict the automatic routing profitability of the Intel compiler basic block. The SVM is a 

standard set made of 151 simple loops, which are spread by factors ranging from 1 to 20. The 

work made three contributions: the first is correctly predicting the profitability of routing, and it 

achieved correct prediction accuracy for 70% of programs, even before opening the loops. 

Second, a collection of firmware properties are proposed that characterize the standards that were 

developed. The choice of software feature set is crucial and is determined by the benchmark and 

the problem we are attempting to solve. Third, with a 2.2-times speedup, the results shown that 

applying machine learning approaches may greatly improve the Intel compiler's code quality 

[27]. 

In addition, there are many ways to solve the loop unrolling problem in literature. In 2013, 

the idea of loop unrolling and superscalar architecture was discussed, which is a way to exploit 

ILP (Instruction-level parallelism) for devices with multiple functional modules. parallelism, 

performance improvements were achieved. In addition to the use of measurement techniques 

associated with simulation technology [28]. 

In the year 2017, a different technique was used, because most of the previous loop unrolling 

techniques worked on loops with fixed execution counts. The code prediction method, which 

aims to reduce the worst-case time (WCET), was used, as well as the use of If-conversion to 

explore code predictions, as If-conversion is a standard compiler optimizer that converts control 

dependencies into data dependencies, which leads to the removing branches. In addition, this 

technique has been combined with other standard deployment methods based on data and fixed-

execution counts, so it can be decided at the level of each ring which method should be used to 

activate the ring. The results demonstrated that this combination resulted in a strong reduction in 

WCET when compared to the original code [29]. 

In 2018, work was done to improve the method of unrolling non-counted loops, in which the 

numerical of repetitions cannot be determined at runtime or compile time. Additionally, the loop 

exit condition is frequently repeated when non-counted loops are opened. The unrolling of non-

counted loops was opened using a novel technique that relies on code repetition based on 

simulation. where, based on the suggested fast-path loop design, utilize a technique for partially 

mailto:info@journalofbabylon.com
mailto:jub@itnet.uobabylon.edu.iq
mailto:jub@itnet.uobabylon.edu.iq
https://www.journalofbabylon.com/index.php/JUB/issue/archive
https://www.journalofbabylon.com/index.php/JUB/issue/archive


Article 
JOURNAL OF UNIVERSITY OF BABYLON 

For Pure and Applied Sciences (JUBPAS)  
Vol.32; No.1.| 2024  

 

Page | 114 

in
fo

@
jo

u
rn

al
o

fb
ab

yl
o

n
.c

o
m

   
|  

 ju
b

@
it

n
e

t.
u

o
b

ab
yl

o
n

.e
d

u
.iq

 | 
w

w
w

.jo
u

rn
al

o
fb

ab
yl

o
n

.c
o

m
   

   
   

   
   

IS
S

N
: 2

31
2-

8
13

5 
 | 

 P
ri

n
t 

IS
S

N
: 1

9
9

2-
0

6
52

 
ــم

ج
جلــة 

ــــ
امعة ب
ـ

ل للعلــ
ـابــ

ــــــ
ص

وم ال
ـــ

رفــة 
ط

والت
ــ

بيقي
ــ

 ة
ــم

ج
جلــة 

ـــــ
امعة بـ

ــ
ل للعلـ

ـابــ
ـ

ص
وم ال

ـــ
ط

رفــة والت
ــ

بيقي
ــ

 ة
ـم

ج
جلــة 

ـــ
امعة بـ
ـ

ل للعلـ
ـابــ

ــ
ص

وم ال
ـ

ط
رفــة والت

ـــــــ
بيقي

ــ
 ة

 

uncomputed fast-track loop opening. The results demonstrated that opening the loop based on the 

simulation with a 25% increase in running time improved the performance unroll of uncounted 

loops [30]. In 2018 the loop Learner approach was used to forecast which loop will be write, 

which in turn leads to efficient compiled code. The solution to the issue of compiler instability is 

loop Learner, it is a learning-based methodology that forecasts semantics-preserving loop 

modifications while enhancing program performance. This is accomplished by training a neural 

network to identify source-level changes for loops that are semantically coherent and aid the 

compiler in producing more effective code [31]. 

In 2023, the prediction operator was used to improve the non-uniform optimization 

capabilities of the compiler's loop. It uses a number of different parameters to estimate which 

loop-canceling agent would be best. The program totals were computed using the following four 

loop pass factors: 2, 4, 6, and 8. Following a reorganization of the programs based on their 

potential benefits from the loop factor, we determine the ideal loop opening factor that can 

shorten the execution time of the majority of similar programs. The suggested approach showed 

positive outcomes in quickening the program's execution [32]. 

CONCLUSION 
In conclusion, the use of machine learning in loop unrolling optimization has shown 

promising results in recent years. Machine learning algorithms can model the relationship 

between the loop characteristics and the unroll factor, and predict the optimal unroll factor for a 

given loop. While more work is needed to validate the robustness and generalizability of 

machine learning-based approaches, they have the potential to upgrade the accuracy and 

performance of loop unrolling in compilers. This survey paper provides a comprehensive 

overview of the recent developments in the field of using machine learning in loop unroll 

optimization and highlights the potential of machine learning-based approaches for loop 

unrolling optimization. 
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 الخلاصة
أسلوب  ت. يهدفيعد فتح الحلقات أحد إستراتيجيات التحسين الرئيسية التي يستخدمها المجمعون لتعزيز كفاءة البرامج المستندة إلى الحلقا

تيجيات فتح يم استراالتي تنفذها الحلقة، وبالتالي تقليل الحمل الإضافي للتعليمات الفرعية. نقوم بتقسالحلقة إلى تقليل عدد التكرارات  فتح
 .الحلقة الحالية إلى مجموعتين في ورقة المسح هذه: الاستراتيجيات القائمة على التعلم الآلي والاستراتيجيات التقليدية

ستدلال، على الا الحلقة، مثل التقنيات القائمة على الملف الشخصي، والتقنيات القائمةيتم استخدام العديد من التقنيات التقليدية في فتح 
ن خلال معتبار والتقنيات القائمة على التحليل الثابت. ونتيجة لذلك، سيتم أخذ كمية التعليمات وبنية تداخل الحلقة وعدد الحلقات في الا

ا  تؤدي دائمً لاا، فقد أم لا. ونظرًا لأن هذه التقنيات غالبًا ما تكون مقيدة بافتراضاته هذه الأساليب عند تحديد ما إذا كان سيتم فتح الحلقة
لى التعلم علقائمة اإلى النتائج المثلى. في المقابل، يمكن أن تتوقع عملية فتح الحلقة عامل فتح الحلقة المثالي من خلال استخدام التقنيات 

قارنة ا تمت مقرب الجيران، وأشجار القرار، وآلات ناقلات الدعم، والغابات العشوائية. عندمالآلي مثل الشبكات العصبية الاصطناعية، وأ
 .هذه التقنيات مع التقنيات التقليدية الأخرى، كانت النتائج متفوقة

ارن بين قارن ونقنأيضًا الحلقة الحالية، والتي تشمل نقاط القوة والقيود الخاصة بها. نحن  فتحفي هذه الورقة، نقدم مراجعة شاملة لتقنيات 
لمحة شاملة  و تقديمهالأساليب المختلفة القائمة على التعلم الآلي ونناقش الفوائد المحتملة لاستخدام التعلم الآلي في تحسين الحلقة. هدفنا 

 .عن هذا المجال وتقديم التوجيه للبحث المستقبلي في هذا المجال
 

 الآلي، التحسين، المترجم، التعلم الخاضع للإشراف.فتح الحلقة، التعلم  الكلمات المفتاحية:
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