

Volume 2 | Issue 2

Article 9

g-Coatomic Modules

Ahmed H. Alwan Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

Follow this and additional works at: https://bjeps.alkafeel.edu.iq/journal

Part of the Algebra Commons

Recommended Citation

Alwan, Ahmed H. (2023) "g-Coatomic Modules," *Al-Bahir Journal for Engineering and Pure Sciences*: Vol. 2: Iss. 2, Article 9. Available at: https://doi.org/10.55810/2313-0083.1025

This Original Study is brought to you for free and open access by Al-Bahir Journal for Engineering and Pure Sciences. It has been accepted for inclusion in Al-Bahir Journal for Engineering and Pure Sciences by an authorized editor of Al-Bahir Journal for Engineering and Pure Sciences. For more information, please contact bjeps@alkafeel.edu.iq.

original study g-Coatomic Modules

Ahmed H. Alwan

Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

Abstract

Let *R* be a ring and *M* be a left *R*-module. A submodule *N* of *M* is said to be g-small in *M*, if for every submodule $L \le M$, with N + L = M implies that L = M. Then $Rad_g(M) = \sum N \le M | N$ is a g-small submodule of *M*}. We call *M* g-coatomic module whenever $N \le M$ and $M/N = Rad_g(M/N)$ then M/N = 0. Also, *R* is called right (left) g-coatomic ring if the right (left) *R*-module R_R ($_R R$) is g-coatomic. In this work, we study g-coatomic modules and ring. We investigate some properties of these modules. We prove $M = \bigoplus_{i=1}^{n} M_i$ is g-coatomic if and only if each M_i (i = 1, ..., n) is g-coatomic. It is proved that if *R* is a g-semiperfect ring with $Rad_g(R/Rad_g(R)) = 0$, then *R* is g-coatomic ring.

Keywords: g-small submodule, Coatomic module, g-coatomic module, g-semiperfect module

1. Introduction

T hroughout the present paper, all rings are associative rings with identity and all modules are unital right modules.

Let *R* be a ring and let *M* be an *R*-module. We denote a submodule *N* of *M* by $N \leq M$. Let *M* be an *R*-module and let $N \leq M$. A submodule *N* of an *R*-module *M* is called small in *M* (we write $N \ll M$), if for every submodule $L \leq M$, with N + L = M implies that L = M. A submodule L < M is said to be essential in *M*, denoted as $L \leq M$, if $L \cap N = 0$ for every non-zero submodule $N \leq M$. The submodule K is called a generalized small (briefly, g-small) submodule of M if, for every essential submodule T of M such that M = K + T implies that T = M, we can write $K \ll_g M$ (in [12], it is called an e-small submodule of *M* and denoted by $K \ll_e M$). It is clear that every small submodule is a g-small submodule but the converse is not true generally. If T is essential and maximal submodule of M then T is said to be a generalized maximal submodule of M. The intersection of all generalized maximal submodules of M is called the generalized radical of M and denoted by $Rad_{g}(M)$ that also knows as the sum of all g-small submodules in M [6,12]. For any R-module M, we write Rad(M), Soc(M) and Z(M) for the radical, socle and singular submodule of M, respectively. M is said to be singular(or non-singular) if M = Z(M) (or Z(M) = 0). *M* is called coatomic if every submodule N of M, Rad(M/N) = M/N implies M/N = 0, equivalently every proper submodule of M is contained in a maximal submodule of M see ([1], [3,4]). A submodule *N* of a module *M* is called δ -small in *M*, denoted by $N \ll_{\delta} M$, if $N + K \neq M$ for any proper submodule *K* of *M* with M/K singular. Further, for a module *M* the submodule $\delta(M)$ is generated by all δ -small submodules of M [10]. In [5] M is called δ -coatomic if every submodule N of M, $\delta(M/N) =$ M/N implies M/N = 0. The paper deals with gcoatomic modules as a generalization of coatomic modules. We say that a module *M* is g-coatomic, if every submodule of M is contained in a generalized maximal submodule of M or equivalently, for a submodule $N \leq M$, if $Rad_{\mathfrak{g}}(M/N) = M/N$ then M/N = 0. In Section 2, some properties of generalized small submodules are given. In Section 3, several basic properties and characterizations of gcoatomic modules and rings are given.

We will refer to [1,2,9] for all undefined notions used in the text, and also for basic facts concerning coatomic and singular modules.

2. g-small submodule and the functor $Rad_g(M)$

In this section, some important properties of generalized small submodules are presented.

Received 15 March 2023; revised 5 April 2023; accepted 12 April 2023. Available online 11 May 2023 E-mail address: ahmedha_math@utq.edu.iq.

Definition 2.1. [6,12] Let *N* be a submodule of a module *M*. *N* is said to be g-small, denoted by $N \ll_g M$, in *M* if, for every essential submodule *T* of *M* such that M = N + T implies that T = M (in [12], it is called an e-small submodule of *M* and denoted by $K \ll_e M$). If *N* is any small submodule of *M*, then *N* is g-small submodule of *M*. For the reader's convenience, we record here some of the known results which will be used repeatedly in the sequel.

Proposition 2.2. [12, Proposition 2.3] Let *N* be a submodule of a module *M*. The following are equivalent.

(1) $N \ll_{\mathrm{g}} M$,

(2) if M = X + N, then $M = X \oplus Y$ with M/X a semisimple module and $Y \le M$.

Lemma 2.3. Let M be a module. Then

- (1) For submodules N, K, L of M with $K \le N$, we have (a) If $N \ll_g M$, then $K \ll_g M$ and $N/K \ll_g M/K$. (b) $N + L \ll_g M$ if and only if $N \ll_g M$ and $L \ll_g M$.
- (2) If $K \ll_g M$ and $f: M \to N$ is a homomorphism, then $f(K) \ll_g N$. In particular, if $K \ll_g M \le N$, then $K \ll_g N$.
- (3) Let N, K, L, and T be submodules of M. If $K \ll_g L$ and $N \ll_g T$, then $K + N \ll_g L + T$.
- (4) Let $K_1 \leq M_1 \leq M$, $K_2 \leq M_2 \leq M$ and $M = M_1 \oplus M_2$. Then $K_1 \oplus K_2 \ll_g M_1 \oplus M_2$ if and only if $K_1 \ll_g M_1$ and $K_2 \ll_g M_2$.

Proof. See Proposition 2.5 of [12,] or see [6].

Corollary 2.4. [6] Let *M* be an *R*-module, $K \ll_g M$ and $L \leq M$. Then $K + L/L \ll_g M/L$.

Definition 2.5. [12] Let *M* be a module. Define $Rad_{\sigma}(M) = \bigcap\{N \leq M \mid N \text{ is maximal in } M\}.$

For a module M, the intersection of maximal essential submodules of an R-module M is called a generalized radical of M and denoted by $Rad_g(M)$ (in [12], it is denoted by $Rad_e(M)$). If M have no maximal essential submodules, then we denote $Rad_g(M) = M$. Obviously, $Rad(M) \subseteq \delta(M) \subseteq Rad_g(M)$. For an arbitrary ring R, let $Rad_g(R) = Rad_g(R_R)$.

In the following we use g-small submodules to characterize $Rad_g(M)$.

Theorem 2.6. Let M be an R-modules. Then $Rad_{g}(M) = \sum_{N \ll_{\sigma} M} N$.

Proof. [12, Theorem 2.10].

Lemma 2.7. Let *M* and *N* be modules. Then

(1) If $f: M \to N$ is an *R*-homomorphism, then $f(Rad_g(M)) \leq Rad_g(N)$.

(2) If every proper essential submodule of M is contained in a maximal submodule of M, then $Rad_g(M)$ is the unique largest g-small submodule of M.

Proof. [12] Corollary 2.11.

Lemma 2.8. If $M = \bigoplus_{i \in I} M_i$ then $Rad_g(M) = \bigoplus_{i \in I} Rad_g(M_i)$.

Proof. See [6, Lemma 4].

Lemma 2.9. Let *M* be a finitely generated *R*-module. Then $Rad_g(M) \ll_g M$.

Proof. See [8, Lemma 14].

Remark 2.10. It is clear that, in general, $Rad_g(M)$ need not be g-small in M. But if M is a coatomic module, i.e. every proper submodule of M is contained in a maximal submodule of M, then $Rad_g(M)$ is g-small in M by Lemma 2.7(2).

Remark 2.11. Clearly, for a module M, if Rad(M) is small in M then M/Rad(M) has no nonzero small submodule. Also, in [5, Lemma 1.3(2)] If $\delta(M)$ is δ -small in M, then $\delta(M/\delta(M)) = 0$. However this statement cannot be generalized for $Rad_g(M)$, i.e., if $Rad_g(M) \ll_g M$, maybe $Rad_g(M/Rad_g(M)) \neq 0$. As the following example shows.

Example 2.12. Let M be the \mathbb{Z} -module \mathbb{Z}_{24} . $Rad_{g}(M) = 2\mathbb{Z}_{24} \ll_{g} M$. But $\frac{\mathbb{Z}_{24}}{2\mathbb{Z}_{24}} \cong \mathbb{Z}_{2}$ and $\mathbb{Z}_{2} \ll_{g} \mathbb{Z}_{2}$.

Lemma 2.13. Let *M* be a nonsingular module. If $Rad_g(M)$ is g-small in *M* and $K/Rad_g(M)$ is also g-small in $M/Rad_g(M)$ where $K \le M$, then *K* is g-small in *M*.

Proof. Let $K/Rad_g(M)$ be a g-small submodule of $M/Rad_{\mathfrak{g}}(M)$ and M = K + L with $L \leq M$. So, L + M $Rad_{\sigma}(M) \leq M.$ By [2, Proposition 1.21], $M/(L+Rad_g(M))$ is singular, SO $M/Rad_{g}(M)/(L+Rad_{g}(M))/Rad_{g}(M)$ is singular. By [2, Proposition 1.21], $(L + Rad_g(M))/Rad_g(M)$ is essential submodule of $M/Rad_g(M)$, and since $M/Rad_{\mathfrak{g}}(M) = K/Rad_{\mathfrak{g}}(M) + (L+Rad_{\mathfrak{g}}(M))/Rad_{\mathfrak{g}}(M)$ and $K/Rad_g(M)$ is g-small submodule of $M/Rad_{\mathfrak{g}}(M), M = L + Rad_{\mathfrak{g}}(M)$. Being $Rad_{\mathfrak{g}}(M)$ is gsmall in *M* and $L \trianglelefteq M$, we then have M = L and so *K* is g-small in M.

Now we give a characterization of $M/Rad_g(M)$.

Proposition 2.14. Let *M* be an *R*-module.

(1) If, for any submodule *N* of *M*, there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq N$ and $N \cap M_2 \ll_g M_2$, then $M / Rad_g(M)$ is semisimple.

(2) If, for every submodule A of M, there exists a submodule B of M such that M = A + B and A∩ B≪_g M, then M/ Rad_g(M) is semisimple.

Proof:

- (1) Let $Rad_{g}(M) \leq N \leq M$. Then $N/Rad_{g}(M) \leq M/Rad_{g}(M)$. By assumption, there exists a submodule A of N such that $M = A \oplus B$ and $N \cap B \ll_{g} B$ for some submodules B of M. So $M/Rad_{g}(M) = N/Rad_{g}(M) \oplus ((B + Rad_{g}(M) / Rad_{g}(M)))$.
- (2) Let Rad_g(M) ≤ N ≤ M. By hypothesis, there exists a submodule K of M such that M = N + K and N∩K≪_g M. Then N∩K ≤ Rad_g(M). Hence M/ Rad_g(M) is semisimple by [7, Proposition 2.1].

3. g-Coatomic modules and rings

In this section, we define g-coatomic modules and g-semiperfect modules. We study properties and characterizations of g-coatomic and g-semiperfect modules. In [5] the authors defined δ -coatomic modules in this vein, we introduce g-coatomic modules.

Definition 3.1. An *R*-module *M* is said to be a gcoatomic if every submodule *N* of *M*, $Rad_g(M/N) = M/N$ implies M/N = 0. In The ring *R* is called right (or left) g-coatomic if the right (or left) *R*-module R_R (or $_R R$) is g-coatomic.

We can give another definition of g-coatomic module.

Lemma 3.2. Let *M* be a module. The following are equivalent.

- (1) M is g-coatomic.
- (2) Every proper submodule *K* of *M* is contained in a generalized maximal submodule.

Proof

1⇒2: Let *K* be any proper submodule of *M*. By (1), $Rad_g(M/K) \neq M/K$. Hence there exists a singular simple module *S* and homomorphism $f : M/K \rightarrow S$. Let Ker(f) = N/K. Then *N* is an essential and maximal submodule in *M*. 2⇒1: Let *K* be a proper submodule of *M*. Assume

The proper submodule of *M*. Assume that $Rad_g(M/K) = M/K$. We prove M/K = 0. By (2) there exists an essential and maximal submodule *N* of *M* such that $K \le N$. Let *p* denote the canonical epimorphism from M/K onto M/N. Since Ker(p) = N/K, $Rad_g(M/K) \le N/K$. By assumption M/K = N/K, and so M = N. This contradiction completes the proof.

Theorem 3.3. Let *M* be an *R*-module with $Rad_g(M) \ll_g M$ and $Rad_g(M / Rad_g(M)) = 0$. Then *M*

is g-coatomic if it satisfies one of the following conditions.

- (1) $M/Rad_g(M)$ is semisimple.
- (2) For every submodule A of M, there exists a submodule B of M such that M = A + B and A∩B ≪_g M.

Proof

- (1) Suppose that $M / Rad_g(M)$ is semisimple with $Rad_g(M) \ll_g M$ and $Rad_g(M / Rad_g(M)) = 0$. For any submodule N of M, let $Rad_g(M) = M/N$. Since $M / Rad_g(M)$ is semisimple, there exists a submodule K of M with $Rad_g(M) \le K$ and $M / Rad_g(M) = ((N + Rad_g(M)) / Rad_g(M)) \oplus K / Rad_g(M)$. Then M = N + K and $N \cap K \le Rad_g(M)$. Hence $M/N = (N + K)/N \cong K/(N \cap K)$. Let p denote the canonical epimorphism $K/(N \cap K) \rightarrow K / Rad_g(M)$. By Lemma 2.3, $K / Rad_g(M) = p(K / (N \cap K)) = p(Rad_g(K / (N \cap K))) \le Rad_g(K / Rad_g(M))$, and by assumption, $Rad_g(M / Rad_g(M)) = 0$, and so $Rad_g(K / Rad_g(M)) = 0$. Hence $K/(N \cap K) = 0$. Thus M/N = 0.
- (2) Assume that, for every submodule *A* of *M*, there exists a submodule *B* of *M* such that M = A + B and $A \cap B \ll_g M$. By Proposition 2.14, $M/Rad_g(M)$ is semisimple. Hence *M* is g-coatomic by pa rt (1).

Lemma 3.4. Let *M* be a module. Then the following holds.

If X ≤ Rad_g(M) and X is g-coatomic, then X ≪M.
If M is g-coatomic, then Rad_g(M) ≪M. In either case Rad_g(M) ≪_g M.

Proof

- (1) Suppose that $X \le Rad_g(M)$ and X is g-coatomic module. Let M = X + Y for some submodule Y of M. We show that M = Y. Suppose that $M \ne Y$. Then $X \ne X \cap Y$. By hypothesis and Lemma 3.2, there exists a maximal submodule X' of X such that $X \cap Y \le X' \le X$ and X/X' is singular simple. Hence M/(X'+Y) is singular simple since $X/X' \cong (X + Y)/(X' + Y) = M/(X' + Y)$. It follows that $X' \le Rad_g(M) \le X' + Y$ and $X' + Y \le Rad_g(M) + Y \le X' + Y$, and so M = X' + Y. Therefore X = X'. This contradicts the fact that X' is maximal submodule of X. Thus X is small in M and so g-small in M.
- (2) Assume that *M* is g-coatomic module. Let $M = Rad_g(M) + Y$ for some $Y \le M$. Assume that $M \ne Y$. By Lemma 3.2, there exists $Y \le Y' \le M$ with M/Y'

singular simple. Thus, Y' is a generalized maximal submodule. By Lemma 2.3, $Rad_g(M) \le Y'$. Hence M = Y'. This contradicts the fact that Y' is maximal submodule of M. Hence $Rad_g(M)$ is small in M and so g-small in M.

Theorem 3.5. For an *R*-module *M* with $Rad_g(M / Rad_g(M)) = 0$, the following are equivalent.

- (1) *M*/*Rad*_g(*M*) is semisimple and every submodule of *Rad*_g(*M*) is g-coatomic.
- (2) For every submodule A of M, there exists a submodule B of M such that M = A + B and A∩ B≪_g M, and every submodule of M is g-coatomic.

Proof. Note under the assumptions 1 and 2, $Rad_g(M) \ll_g M$ by Lemma 3.4 and Proposition 2.14. (1) \Rightarrow (2) For any submodule *A* of *M*, let *M*/ $Rad_g(M) = ((A + Rad_g(M)) / Rad_g(M)) \oplus B / Rad_g(M)$ for some submodule *B* of *M*. Then M = A + B and $A \cap B \leq Rad_g(M)$. Since $Rad_g(M) \ll_g M$, by Lemma 2.3, $A \cap B \ll_g M$.

Let X be a submodule of M. We show that X is g-coatomic. Assume that $Rad_g(X/A) = X/A$ for some submodule A of X. Then $M/Rad_g(M) = ((A + Rad_g(M)) / Rad_g(M)) \oplus B/Rad_g(M)$ for some submodule B of M since $M/Rad_g(M)$ is semisimple. Then M = A + Band $A \cap B \leq Rad_g(M)$. It is easy to check that

 $\begin{array}{lll} (X + & Rad_{g}(M))/(A + & Rad_{g}(M)) = & Rad_{g}((X + \\ Rad_{g}(M))/(A + & Rad_{g}(M))) \\ \leq & Rad_{g}(M/(A + & Rad_{g}(M))). \\ & Rad_{g}(M/(A + & Rad_{g}(M))). \end{array}$

 $Rad_{g}(M/(A + Rad_{g}(M))) \cong Rad_{g}(B/Rad_{g}(M)) \leq Rad_{g}(M)$ $(M/Rad_{g}(M)).$

By assumption, $Rad_g(M/Rad_g(M)) = 0$. Hence $A + Rad_g(M) = X + Rad_g(M)$, and so $X = A + (X \cap Rad_g(M))$. Then $X/A \cong (X \cap Rad_g(M))/(A \cap Rad_g(M))$. Since every submodule of $Rad_g(M)$ is g-coatomic by hypothesis, $X \cap Rad_g(M)$ is a g-coatomic submodule of $Rad_g(M)$. Since $Rad_g(M)$ is a g-coatomic submodule of $Rad_g(M)$. Since $Rad_g((X \cap Rad_g(M))) / (A \cap Rad_g(M))) = (X \cap Rad_g(M)) / (A \cap Rad_g(M))$, we have that $X \cap Rad_g(M) = A \cap Rad_g(M)$. Hence A = X.

 $(2) \Rightarrow (1)$ It is clear by Proposition 2.14.

Proposition 3.6. Let $0 \rightarrow K \rightarrow M \rightarrow N \rightarrow 0$ be an exact sequence of modules.

If *M* is g-coatomic module, then *N* is g-coatomic.
If *K* and *N* are g-coatomic modules, then *M* is g-coatomic.

In particular, any direct summand of a g-coatomic module is g-coatomic.

Proof

(1) We may suppose that $K \le M$ and N = M/K. Let U be a submodule of N. Suppose that $Rad_g(N/U) =$

N/U. Then we find submodule *L* of *M* with L/K = U. Then $Rad_g(M/L) = M/L$. Since *M* is a g-coatomic module, M/L = 0. This implies that N/U = 0. It follows that *N* is g-coatomic.

(2) Assume that *K* and *N* are g-coatomic modules. Let *L* be any proper essential submodule of *M*.

Case I. M/K = (L + K)/K. Then M = L + K. Since K is g-coatomic, there exists a generalized maximal submodule K' of K such that $K \cap L \le K' \le K$ and K/K' singular simple. Since $K/K' \cong (K + L)/(K' + L) = M/(K' + L)$, M/(K' + L) is singular simple. Thus, K' + L is generalized maximal submodule of M with $L \le K' + L$. Hence M is g-coatomic by Lemma 3.2.

Case II. $M/K \neq (L + K)/K$. Then $M \neq L + K$. Since *N* is g-coatomic and $N \cong M/K$, there exists a submodule K'/K of M/K such that $(M/K)/(K'/K) \cong M/K'$ is singular simple and $(L + K)/K \leq K'/K$. Thus, K' is generalized maximal submodule of *M* with $L \leq K'$. Then *M* is g-coatomic by Lemma 3.2.

Proposition 3.7. Let $M = \bigoplus_{i=1}^{n} M_i$ be a finite direct sum of modules M_i (i = 1, ..., n). Then M is g-coatomic if and only if each M_i (i = 1, ..., n) is g-coatomic.

Proof. It is sufficient by induction on *n* to prove this is the case when n = 2. Let M_1 and M_2 be g-coatomic modules and $M = M_1 \bigoplus M_2$. We consider the following exact sequence;

 $0 \to M_1 \to M = M_1 \bigoplus M_2 \to M_2 \to 0$

Hence, $M = M_1 \bigoplus M_2$ is g-coatomic module if and only if M_1 and M_2 are g-coatomic modules by Proposition 3.6.

Definition 3.8. A pair (P, f) is called a projective gcover of the module M if P is projective right R-module and f is an epimorphism of P onto M with $Ker(f) \ll_{g} P$.

Lemma 3.9. Let M = A + B. If M/A has a projective g-cover, then *B* contains a submodule *A*' of *A* such that M = A + A' and $A \cap A' \ll_g A'$.

Proof. Let $\pi : B \to M/A$ the natural homomorphism and $f : P \to M/A$ be a projective g-cover. Since *P* is projective, there exists $g : P \to B$ such that $\pi \circ g = f$ and Ker(f) is g-small in *P*. Then $(\pi \circ g)(P) = f(P)$ and $A \cap g(P) = g(Ker(f))$. Hence M = A + g(P) and $A \cap g(P) = g(Ker(f))$. Since $Ker(f) \ll_g P$, so $g(Ker(f)) \ll_g g(P)$ and thus $A \cap g(P) \ll_g g(P)$.

Lemma 3.10. Let *A* be any submodule of *M*. Assume that M/A has a projective g-cover. Then there exists

a submodule A' such that M = A + A' and $A \cap A' \ll_g A'$.

Proof. Let B = M in Lemma 3.9.

Definition 3.11. A projective module *M* is called g-semiperfect if every homomorphic image of *M* has a projective g-cover.

Lemma 3.12. For any projective *R*-module *M*, the following are equivalent:

- (1) *M* is g-semiperfect.
- (2) For any $N \leq M$, M has a decomposition $M = M_1 \bigoplus M_2$ for some submodules M_1, M_2 with $M_1 \leq N$ and $M_2 \cap N \ll_g M_2$.

proof. The proof is similar to that of Lemma 2.4 in [10] for δ -semiperfect modules.

Theorem 3.13. Let *M* be a g-semiperfect module such that $Rad_g(M) \ll_g M$ and $Rad_g(M/Rad_g(M)) = 0$. Then *M* is g-coatomic.

Proof. Let *M* be a g-semiperfect module. Let $A \le M$. By Lemma 3.10, there exists a submodule A' such that M = A + A' such that $A \cap A' \ll_g A'$. So by Theorem 3.3, *M* is g-coatomic.

Proposition 3.14. For any ring *R*, $Rad_g(R)$ is g-small in *R*.

Proof. Let *I* be an essential right ideal in *R* ($I \leq R$). Assume that $R = Rad_g(R) + I$. Suppose that *I* is proper and let *K* be a maximal right ideal containing *I*. Then *K* generalized maximal right ideal of *R*. Hence $Rad_g(R) \leq K$, this is a contradiction. Thus for any $I \leq R$ such that $R = Rad_g(R) + I$ we have R = I. By definition $Rad_g(R) \ll_g R$.

Definition 3.15. A ring *R* is named g-semiperfect if every finitely generated right *R*-module has a projective g-cover. The ring *R* is g-semiperfect if and only if the regular module R_R is g-semiperfect.

R is g-semiperfect if $R/Rad_g(R)$ is semisimple and idempotents in $R/Rad_g(R)$ can be lifted modulo $Rad_g(R)$.

Proposition 3.16. Let *R* be a g-semiperfect ring with $Rad_g(R/Rad_g(R)) = 0$. Then *R* is left and right g-coatomic ring.

Proof. *R* is right g-coatomic ring from Theorem 3.13 and Proposition 3.14. By symmetry, *R* is also left g-coatomic ring.

Theorem 3.17: let *R* be a ring. Then each right ideal *I* of *R* with $Rad_g(R/I) = R/I$ is direct summand.

Proof: Let *I* be a right ideal of *R*. Assume that $Rad_g(R/I) = R/I$. Then all maps from R/I to singular simple right *R*-modules is zero. Assume that *I*

is an essential right ideal. Let *K* be a maximal right ideal containing *I*. Then *R*/*K* is singular simple right *R*-module. Since *R*/*K* is an image of *R*/*I* and $Rad_g(R/I) = R/I$, R = K. This is a contradiction. Hence *I* is not essential. Let *L* be a maximal right ideal with respect to the property $I \cap L = 0$. Then $I \oplus L$ is essential in *R*. Assume that $I \oplus L$ is proper. Let *T* be a maximal right ideal containing $I \oplus L$. Then *R*/*T* is singular simple image of *R*/*I*. This is a contradiction again. Thus $R = I \oplus L$.

The following result is well known and also easy to prove.

Theorem 3.18: The following are equivalent for a ring *R*.

- (1) *R* is semisimple artinian.
- (2) Every maximal right ideal of R is a direct summand of R_R .

Proof: It follows from [11, Lemma 2.1].

Remark 3.19: If *I* is an essential right ideal in the ring *R*, then R/I is singular right *R*-module. The converse is also true. In module case it takes the form: for a nonsingular module *M* and $N \le M, M/N$ is singular if and only if *N* is essential in *M* [2, Proposition 1.21]. Any maximal right ideal in a ring is essential right ideal or direct summand. For g-coatomic rings, this is not the case in general for maximal right ideals.

Theorem 3.20: Let *R* be a right g-coatomic ring. Then

- (1) Every simple right *R*-module is singular.
- (2) Every maximal right ideal in *R* is essential right ideal.

Proof:

- (1) Let *I* be a maximal right ideal in *R*. If $Rad_g(R/I) = R/I$, by hypothesis R = I. It is not possible. So $Rad_g(R/I) = 0$. Then there exists a nonzero homomorphism $f: R/I \rightarrow S$ where *S* is a singular simple right *R*-module. Hence *f* is an isomorphism and so R/I is singular right *R*-module.
- (2) Let *I* be a maximal right ideal in *R*. We claim that *I* is an essential right ideal. Assume that *I* is not essential right ideal and let $R = I \oplus K$ for some right ideal *K*. If $Rad_g(R/I) = R/I$, by hypothesis R = I. It is not possible. Hence $Rad_g(R/I) \neq R/I$. By (1), R/I is nonzero singular simple right *R*-module. By Remark 3.19, *I* is an essential right ideal of *R*. This contradicts the assumption. Therefore *I* is direct summand.

Examples 3.21:

(1) Consider the integers \mathbb{Z} as \mathbb{Z} -module. Then $Rad_g(\mathbb{Z}) = 0$ and for any prime integer p,

 $Rad_{g}(\mathbb{Z}/p\mathbb{Z}) = 0$ since $\mathbb{Z}/p\mathbb{Z}$ is singular simple \mathbb{Z} -module. Hence \mathbb{Z} is g-coatomic \mathbb{Z} -module. But the rational numbers \mathbb{Q} as \mathbb{Z} -module is not g-coatomic since every cyclic submodule of \mathbb{Q} is small and so $Rad_{g}(\mathbb{Q}) = \mathbb{Q}$.

- (2) Let *M* be a local module with unique maximal submodule $Rad(M) = Rad_g(M)$. Then *M* is g-coatomic.
- (3) Let *M* denote the Z-module Z. By Lemma 3.12, *M* is not g-semiperfect module. Since every proper submodule is contained in an essential maximal submodule, by Lemma 3.2, *M* is g-coatomic.

Conflicts of interest

There is no conflict of interest.

References

 Anderson FW, Fuller KR. Rings and categories of modules. New York: Springer-Verlag; 1974.

- [2] Goodearl KR. Ring Theory: nonsingular rings and modules. New York: Dekker; 1976.
- [3] Gungoroglu G. Coatomic modules. Far East J Math Sci 1998: 153–62. Special Volume, Part II.
- [4] Kasch F. Modules and rings. Academic Press; 1982.
- [5] Kosan MT, Harmanci A. Generalizations of coatomic modules. Cent Eur J Math 2005;3(2):273-81.
- [6] Koşar B, Nebiyev C, Pekin A. A generalization of g-supplemented modules. Miskolc Math Notes 2019;20(1): 345-52.
- [7] Lomp C. On semilocal modules and rings. Commun Algebra 1999;27(4):1921–35.
- [8] Nebiyev C, Ökten HH. Weakly g-supplemented modules. Eur J Pure Appl Math 2017;10(3):521–8.
- [9] Wisbauer R. Foundations of module and ring theory. Reading: Gordon & Breach; 1991.
- [10] Zhou Y. Generalizations of perfect, semiperfect, and semiregular rings. Algebra Colloq 2000;7(3):305–18.
- [11] Yousif MY, Zhou Y. Semiregular, semiperfect and perfect rings relative to an ideal. Rocky Mt J Math 2002;32(4): 1651-71.
- [12] Zhou DX, Zhang XR. Small-essential submodules and morita duality. Southeast Asian Bull Math 2011;35: 1051–62.