

[Volume 2](https://bjeps.alkafeel.edu.iq/journal/vol2) | [Issue 2](https://bjeps.alkafeel.edu.iq/journal/vol2/iss2) Article 9

g-Coatomic Modules

Ahmed H. Alwan Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

Follow this and additional works at: [https://bjeps.alkafeel.edu.iq/journal](https://bjeps.alkafeel.edu.iq/journal?utm_source=bjeps.alkafeel.edu.iq%2Fjournal%2Fvol2%2Fiss2%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Algebra Commons](https://network.bepress.com/hgg/discipline/175?utm_source=bjeps.alkafeel.edu.iq%2Fjournal%2Fvol2%2Fiss2%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Alwan, Ahmed H. (2023) "g-Coatomic Modules," Al-Bahir Journal for Engineering and Pure Sciences: Vol. 2: Iss. 2, Article 9. Available at: <https://doi.org/10.55810/2313-0083.1025>

This Original Study is brought to you for free and open access by Al-Bahir Journal for Engineering and Pure Sciences. It has been accepted for inclusion in Al-Bahir Journal for Engineering and Pure Sciences by an authorized editor of Al-Bahir Journal for Engineering and Pure Sciences. For more information, please contact [bjeps@alkafeel.edu.iq.](mailto:bjeps@alkafeel.edu.iq)

ORIGINAL STUDY g-Coatomic Modules

Ahmed H. Alwan

Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

Abstract

Let R be a ring and M be a left R-module. A submodule N of M is said to be g-small in M, if for every submodule $L \leq$ M, with $N + L = M$ implies that $L = M$. Then $Rad_{\mathcal{R}}(M) = \sum_{i} N \leq M|N$ is a g-small submodule of M }. We call M gcoatomic module whenever $N \le M$ and $M/N = Rad_{\mathcal{Q}}(M/N)$ then $M/N = 0$. Also, R is called right (left) g-coatomic ring if the right (left) R-module R_R ($_R$ R) is g-coatomic. In this work, we study g-coatomic modules and ring. We investigate some properties of these modules. We prove $M = \bigoplus_{i=1}^{n} M_i$ is g-coatomic if and only if each M_i $(i = 1, ..., n)$ is g-coatomic. It is
proved that if R is a g-seminarfect ring with Rad $(R \mid Rad(R)) = 0$ then R is g-coatomic ring proved that if R is a g-semiperfect ring with $Rad_{\mathcal{C}}(R/Rad_{\mathcal{C}}(R)) = 0$, then R is g-coatomic ring.

Keywords: g-small submodule, Coatomic module, g-coatomic module, g-semiperfect module

1. Introduction

I hroughout the present paper, all rings are associative rings with identity and all modules are unital right modules.

Let R be a ring and let M be an R -module. We denote a submodule N of M by $N \leq M$. Let M be an R-module and let $N \leq M$. A submodule N of an R-module M is called small in M (we write $N \ll M$), if for every submodule $L \leq M$, with $N + L = M$ implies that $L = M$. A submodule $L \leq M$ is said to be essential in M, denoted as $L \trianglelefteq M$, if $L \cap N = 0$ for every non-zero submodule $N \leq M$. The submodule K is called a generalized small (briefly, g-small) submodule of M if, for every essential submodule T of M such that $M = K + T$ implies that $T = M$, we can write $K \ll_g M$ (in [[12\]](#page-6-0), it is called an e-small submodule of M and denoted by $K \ll_e M$). It is clear that every small submodule is a g-small submodule but the converse is not true generally. If T is essential and maximal submodule of M then T is said to be a generalized maximal submodule of M. The intersection of all generalized maximal submodules of M is called the generalized radical of M and denoted by $Rad_{g}(M)$ that also knows as the sum of all g-small submodules in M [\[6](#page-6-1),[12\]](#page-6-0). For any R-module M , we write $Rad(M), Soc(M)$ and $Z(M)$ for the radical, socle and singular submodule of M, respectively. M is said

to be singular(or non-singular) if $M = Z(M)$ (or $Z(M) = 0$). M is called coatomic if every submodule N of M, Rad $(M/N) = M/N$ implies $M/N = 0$, equivalently every proper submodule of M is contained in a maximal submodule of M see ([\[1](#page-6-2)], [\[3](#page-6-3),[4\]](#page-6-4)). A submodule N of a module M is called δ -small in *M*, denoted by $N \ll_{\delta} M$, if $N + K \neq M$ for any proper submodule K of M with M/K singular. Further, for a module M the submodule $\delta(M)$ is generated by all δ -small submodules of M [[10\]](#page-6-5). In [\[5](#page-6-6)] M is called δ -coatomic if every submodule N of M, $\delta(M/N)$ = M/N implies $M/N = 0$. The paper deals with gcoatomic modules as a generalization of coatomic modules. We say that a module M is g-coatomic, if every submodule of M is contained in a generalized maximal submodule of M or equivalently, for a submodule $N \leq M$, if $Rad_{\mathcal{P}}(M/N) = M/N$ then $M/N = 0$. In Section [2](#page-1-0), some properties of generalized small submodules are given. In Section [3,](#page-3-0) several basic properties and characterizations of gcoatomic modules and rings are given.

We will refer to [[1,](#page-6-2)[2](#page-6-7),[9\]](#page-6-8) for all undefined notions used in the text, and also for basic facts concerning coatomic and singular modules.

2. g-small submodule and the functor $Rad_{\mathcal{P}}(M)$

In this section, some important properties of generalized small submodules are presented.

Received 15 March 2023; revised 5 April 2023; accepted 12 April 2023. Available online 11 May 2023 E-mail address: ahmedha_math@utq.edu.iq.

Definition 2.1. [[6,](#page-6-1)[12\]](#page-6-0) Let N be a submodule of a module M. N is said to be g-small, denoted by $N \ll_{\mathcal{Q}} M$, in M if, for every essential submodule T of M such that $M = N + T$ implies that $T = M$ (in [[12\]](#page-6-0), it is called an e-small submodule of M and denoted by $K \ll_e M$). If N is any small submodule of M , then N is g-small submodule of M. For the reader's convenience, we record here some of the known results which will be used repeatedly in the sequel.

Proposition 2.2. [12, Proposition 2.3] Let N be a submodule of a module M. The following are equivalent.

(1) $N \ll_{\rm e} M$,

(2) if $\overline{M} = X + N$, then $M = X \oplus Y$ with M/X a semisimple module and $Y \leq M$.

Lemma 2.3. Let M be a module. Then

- (1) For submodules N, K, L of M with $K \le N$, we have (a) If $N \ll_g M$, then $K \ll_g M$ and $N/K \ll_g M/K$. (b) $N + L \ll_g M$ if and only if $N \ll_g M$ and $L \ll_{\varphi} M$.
- (2) If $K \ll_{\mathbb{Q}} M$ and $f : M \rightarrow N$ is a homomorphism, then $f(K) \ll_{g} N$. In particular, if $K \ll_{g} M \leq N$, then $K \ll_{\rm g} N$.
- (3) Let N, K, L, and T be submodules of M. If $K \ll_{\mathfrak{g}} L$ and $N \ll_{\rm g} T$, then $K + N \ll_{\rm g} L + T$.
- (4) Let $K_1 \leq M_1 \leq M$, $K_2 \leq M_2 \leq M$ and $M = M_1 \oplus M_2$ M_2 . Then $K_1 \oplus K_2 \ll_{\mathfrak{S}} M_1 \oplus M_2$ if and only if $K_1 \ll_g M_1$ and $K_2 \ll_g M_2$.

Proof. See Proposition 2.5 of [[12,](#page-6-0)] or see [[6\]](#page-6-1).

Corollary 2.4. [[6\]](#page-6-1) Let M be an R-module, $K \ll_{\rm g} M$ and $L \leq M$. Then $K + L/L \ll_{\rm g} M/L$.

Definition 2.5. [[12\]](#page-6-0) Let M be a module. Define $Rad_{\mathfrak{C}}(M) = \bigcap \{N \leq M \mid N \text{ is maximal in } M\}.$

For a module M, the intersection of maximal essential submodules of an R-module M is called a generalized radical of M and denoted by $Rad_{\mathcal{Q}}(M)$ (in [\[12](#page-6-0)], it is denoted by $Rad_{e}(M)$). If M have no maximal essential submodules, then we denote $Rad_{\mathcal{P}}(M) = M$. Obviously, $Rad(M) \subseteq \delta(M) \subseteq Rad_{\mathcal{P}}(M)$. For an arbitrary ring R, let $Rad_{\mathcal{Q}}(R) = Rad_{\mathcal{Q}}(R_R)$.

In the following we use g-small submodules to characterize $Rad_{\mathcal{Q}}(M)$.

Theorem 2.6. Let M be an R-modules. Then $Rad_{g}(M) = \sum_{N \ll_{g} M}N.$

Proof. [12, Theorem 2.10].

Lemma 2.7. Let M and N be modules. Then

(1) If $f : M \rightarrow N$ is an R-homomorphism, then $f(Rad_{\mathbf{g}}(M)) \leq Rad_{\mathbf{g}}(N)$.

(2) If every proper essential submodule of M is contained in a maximal submodule of M, then $Rad_{\mathcal{Q}}(M)$ is the unique largest g-small submodule of M.

Proof. [[12\]](#page-6-0) Corollary 2.11.

Lemma 2.8. If $M = \bigoplus_{i \in I} M_i$ then $Rad_{\mathcal{B}}(M) =$ $\bigoplus_{i\in I}Rad_{\mathcal{G}}(M_i).$

Proof. See [[6,](#page-6-1) Lemma 4].

Lemma 2.9. Let M be a finitely generated R-module. Then $Rad_{\mathcal{Q}}(M)\ll_{\mathcal{Q}} M$.

Proof. See [[8,](#page-6-9) Lemma 14].

Remark 2.10. It is clear that, in general, $Rad_{\mathcal{Q}}(M)$ need not be g-small in M. But if M is a coatomic module, i.e. every proper submodule of M is contained in a maximal submodule of M, then $Rad_{g}(M)$ is g-small in M by [Lemma 2.7](#page-2-0)(2).

Remark 2.11. Clearly, for a module M, if $Rad(M)$ is small in M then $M/Rad(M)$ has no nonzero small submodule. Also, in [5, Lemma 1.3(2)] If $\delta(M)$ is δ -small in M, then $\delta(M/\delta(M)) = 0$. However this statement cannot be generalized for $Rad_{g}(M)$, i.e., if $Rad_{g}(M) \ll_{g} M$, maybe $Rad_{g}(M / Rad_{g}(M)) \neq 0$. As the following example shows.

Example 2.12. Let M be the Z-module \mathbb{Z}_{24} . $Rad_{g}(M) = 2\mathbb{Z}_{24} \ll_{g} M$. But $\frac{\mathbb{Z}_{24}}{2\mathbb{Z}_{24}} \cong \mathbb{Z}_{2}$ and $\mathbb{Z}_{2} \ll_{g} \mathbb{Z}_{2}$.

Lemma 2.13. Let M be a nonsingular module. If $Rad_{g}(M)$ is g-small in M and $K/Rad_{g}(M)$ is also gsmall in $M/Rad_{g}(M)$ where $K \leq M$, then K is gsmall in M.

Proof. Let $K/Rad_g(M)$ be a g-small submodule of $M/Rad_g(M)$ and $M = K + L$ with $L \trianglelefteq M$. So, $L + Rad_g(M) \trianglelefteq M$. By [2, Proposition 1.21], $Rad_{g}(M) \trianglelefteq M$. By [2, Proposition 1.21],
 $M/(L+Rad_{g}(M))$ is singular, so $M/(L + Rad_g(M))$ is singular, so
M/Rad (M)/(L+Rad (M))/Rad (M) is singular By $M/Rad_g(M)/(L+Rad_g(M))/Rad_g(M)$ is singular. By
[2 Proposition 1.21] $(L+Rad(M))/Rad(M)$ is [2, Proposition 1.21], $(L + Rad_{g}(M))/Rad_{g}(M)$ is essential submodule of $M/Rad_{\rm g}(M)$, and since $M/Rad_{\mathcal{Q}}(M) = K/Rad_{\mathcal{Q}}(M) + (L+Rad_{\mathcal{Q}}(M))/Rad_{\mathcal{Q}}(M)$ and $K/Rad_g(M)$ is g-small submodule of $M/Rad_{\mathcal{Q}}(M)$, $M = L + Rad_{\mathcal{Q}}(M)$. Being Rad_g (M) is gsmall in M and $L \trianglelefteq M$, we then have $M = L$ and so K is g-small in M.

Now we give a characterization of $M/Rad_{\rm g}(M)$.

Proposition 2.14. Let M be an R-module.

(1) If, for any submodule N of M , there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \le N$
and $N \cap M_2 \ll_{\varphi} M_2$, then $M/Rad_{\varphi}(M)$ is $N \cap M_2 \ll_{\rm g} M_2$, then $M/Rad_{\rm g}(M)$ semisimple.

(2) If, for every submodule A of M , there exists a submodule B of M such that $M = A + B$ and $A \cap$ $B \ll_{\rm g} M$, then $M/Rad_{\rm g}(M)$ is semisimple.

Proof:

- (1) Let $Rad_{\mathcal{Q}}(M) \leq N \leq M$. Then $N/Rad_{\mathcal{Q}}(M) \leq M/\sqrt{M}$ $Rad_{g}(M)$. By assumption, there exists a submodule *A* of *N* such that $M = A \oplus B$ and $N \cap B \ll_g B$ for some submodules B of M. So $M/Rad_g(M) = N/$ $Rad_{\mathcal{Q}}(M) \oplus ((B + Rad_{\mathcal{Q}}(M)) / Rad_{\mathcal{Q}}(M)).$
- (2) Let $\mathrm{Rad}_{\mathfrak{C}}(M) \leq N \leq M$. By hypothesis, there exists a submodule K of M such that $M = N + K$ and N∩K $\ll_{g} M$. Then N∩K $\leq Rad_{g}(M)$. Hence $M/Rad_{\mathfrak{g}}(M)$ is semisimple by [\[7](#page-6-10), Proposition 2.1].

3. g-Coatomic modules and rings

In this section, we define g-coatomic modules and g-semiperfect modules. We study properties and characterizations of g-coatomic and g-semiperfect modules. In [[5\]](#page-6-6) the authors defined δ -coatomic modules in this vein, we introduce g-coatomic modules.

Definition 3.1. An R-module M is said to be a gcoatomic if every submodule N of M, $Rad_{g}(M/N)$ = M/N implies $M/N = 0$. In The ring R is called right (or left) g-coatomic if the right (or left) R-module R_R (or $_R$ R) is g-coatomic.

We can give another definition of g-coatomic module.

Lemma 3.2. Let M be a module. The following are equivalent.

- (1) *M* is g-coatomic.
- (2) Every proper submodule K of M is contained in a generalized maximal submodule.

Proof

1 \Rightarrow 2: Let K be any proper submodule of M. By (1), $Rad_{\mathcal{P}}(M/K) \neq M/K$. Hence there exists a singular simple module S and homomorphism $f : M/K \rightarrow S$. Let $Ker(f) = N/K$. Then N is an essential and maximal submodule in M. $2\Rightarrow$ 1: Let K be a proper submodule of M. Assume

that $Rad_{g}(M/K) = M/K$. We prove $M/K = 0$. By (2) there exists an essential and maximal submodule N of *M* such that $K \leq N$. Let *p* denote the canonical epimorphism from M/K onto M/N . Since $Ker(p) =$ N/K , Rad_g $(M/K) \leq N/K$. By assumption M/K = N/K , and so $M = N$. This contradiction completes the proof.

Theorem 3.3. Let M be an R-module with $Rad_{\mathcal{Q}}(M) \ll_{\mathcal{Q}} M$ and $Rad_{\mathcal{Q}}(M / \text{Rad}_{\mathcal{Q}}(M)) = 0$. Then M

is g-coatomic if it satisfies one of the following conditions.

- (1) $M/Rad_{\mathfrak{g}}(M)$ is semisimple.
- (2) For every submodule A of M , there exists a submodule B of M such that $M = A + B$ and $A∩B \ll_{\mathfrak{g}} M$.

Proof

- (1) Suppose that $M/Rad_g(M)$ is semisimple with $Rad_{g}(M) \ll_{g} M$ and $Rad_{g}(M / \ Rad_{g}(M)) = 0$. For any submodule N of M, let $Rad_{g}(M/N) = M/N$. Since $M/Rad_{\mathfrak{g}}(M)$ is semisimple, there exists a submodule K of M with $Rad_{g}(M) \leq K$ and $M/Rad_{\mathbf{g}}(M) = ((N + Rad_{\mathbf{g}}(M))/Rad_{\mathbf{g}}(M)) \oplus K/A$ $Rad_{g}(M)$. Then $M = N + K$ and $N \cap K \leq Rad_{g}(M)$. Hence $M/N = (N + K)/N \cong K/(N \cap K)$. Let p denote the canonical epimorphism $K/(N \cap K) \rightarrow$ $K/Rad_{\varphi}(M)$. By [Lemma 2.3](#page-2-1), $K/Rad_{\varphi}(M) =$ $p(K/(N \cap K)) = p(Rad_{\mathcal{Q}}(K/(N \cap K))) \leq Rad_{\mathcal{Q}}(K)$ $Rad_{\mathcal{P}}(M)$, and by assumption, $Rad_{\mathcal{P}}(M / Rad_{\mathcal{P}}(M))$ $= 0$, and so $Rad_{\mathfrak{g}}(K/Rad_{\mathfrak{g}}(M)) = 0$. Hence $K/(N \cap K) = 0$. Thus $M/N = 0$.
- (2) Assume that, for every submodule A of M , there exists a submodule B of M such that $M = A + B$ and $A∩B \ll_{\varphi} M$. By [Proposition 2.14,](#page-2-2) $M/Rad_{\varphi}(M)$ is semisimple. Hence M is g-coatomic by pa rt (1).

Lemma 3.4. Let M be a module. Then the following holds.

(1) If $X \leq Rad_{\mathcal{Q}}(M)$ and X is g-coatomic, then $X \ll M$. (2) If M is g-coatomic, then $Rad_{g}(M) \ll M$. In either case $Rad_{g}(M) \ll_{g} M$.

Proof

- (1) Suppose that $X \leq Rad_{\mathcal{Q}}(M)$ and X is g-coatomic module. Let $M = X + Y$ for some submodule Y of M. We show that $M = Y$. Suppose that $M \neq Y$. Then $X \neq X \cap Y$. By hypothesis and [Lemma 3.2,](#page-3-1) there exists a maximal submodule X' of X such that $X ∩ Y \leq X' \leq X$ and X/X' is singular simple. Hence $M/(X'+Y)$ is singular simple since $X/X \cong (X + Y)/(X' + Y) = M/(X' + Y)$. It fol-
lows that $X' < Rad(M) < X' + Y$ and $X' + Y$ lows that $X' \leq Rad_{\mathcal{G}}(M) \leq X' + Y$ and $X' + Y$ $Y \leq Rad_{g}(M) + Y \leq X' + Y$, and so $M = X' + Y$. Therefore $X = X'$. This contradicts the fact that X' is maximal submodule of X. Thus X is small in M. is maximal submodule of X . Thus X is small in M and so g-small in M.
- (2) Assume that M is g-coatomic module. Let $M =$ $Rad_{\mathcal{G}}(M) + Y$ for some $Y \leq M$. Assume that $M \neq Y$. By [Lemma 3.2](#page-3-1), there exists $Y \le Y' \le M$ with M/Y'

singular simple. Thus, Y' is a generalized maximal submodule. By [Lemma 2.3](#page-2-1), Rad_g $(M) \leq Y'$. Hence $M - Y'$ This contradicts the fact that Y' is $M = Y'$. This contradicts the fact that Y' is
maximal submodule of M. Hence Rad (M) is maximal submodule of M. Hence $Rad_{\mathcal{P}}(M)$ is small in M and so g-small in M.

Theorem 3.5. For an R-module M with $Rad_{g}(M/Rad_{g}(M))=0$, the following are equivalent.

- (1) $M/Rad_g(M)$ is semisimple and every submodule of $Rad_{g}(M)$ is g-coatomic.
- (2) For every submodule A of M , there exists a submodule B of M such that $M = A + B$ and A \cap $B \ll_{\rm g} M$, and every submodule of M is gcoatomic.

Proof. Note under the assumptions 1 and 2, $Rad_{g}(M) \ll_{g} M$ by [Lemma 3.4](#page-3-2) and [Proposition 2.14](#page-2-2). (1) \Rightarrow (2) For any submodule A of M, let M/ $Rad_{\mathcal{G}}(M) = ((A + Rad_{\mathcal{G}}(M)) / Rad_{\mathcal{G}}(M)) \oplus B/Rad_{\mathcal{G}}(M)$ for some submodule B of M. Then $M = A + B$ and $A \cap B \leq Rad_{g}(M)$. Since $Rad_{g}(M) \ll_{g} M$, by [Lemma](#page-2-1) [2.3](#page-2-1), $A \cap B \ll_{\mathfrak{g}} M$.

Let X be a submodule of M . We show that X is g-coatomic. Assume that $Rad_{\mathcal{P}}(X/A) = X/A$ for some submodule A of X. Then $M/Rad_{\varphi}(M) = ((A+Rad_{\varphi}))$ (M)) /Rad_g (M)) $\oplus B/Rad_{g}(M)$ for some submodule B of M since $M/Rad_{\mathcal{Q}}(M)$ is semisimple. Then $M = A + B$

and $A∩B \leq Rad_{g}(M)$. It is easy to check that
 $(X + Rad_{g}(M))/(A + Rad_{g}(M)) = Rad_{g}((X +$ $Rad_{\mathcal{Q}}(M))/(A +$ $Rad_{\mathcal{G}}(M))/(A+Rad_{\mathcal{G}}(M)))$ $\leq Rad_{\mathcal{Q}}(M/(A + Rad_{\mathcal{Q}}(M))).$

 $Rad_{\mathcal{G}}(M/(A + Rad_{\mathcal{G}}(M))) \cong Rad_{\mathcal{G}}(B/Rad_{\mathcal{G}}(M)) \leq Rad_{\mathcal{G}}$ $(M/Rad_{\mathcal{Q}}(M)).$

By assumption, $Rad_{g}(M/Rad_{g}(M)) = 0$. Hence $A +$ $Rad_{g}(M) = X + Rad_{g}(M)$, and so $X = A +$ $(X \cap Rad_{\mathcal{G}}(M))$. Then $X/A \cong (X \cap Rad_{\mathcal{G}}(M))/(A \cap Rad_{\mathcal{G}})$ (M)). Since every submodule of Rad_g (M) is gcoatomic by hypothesis, $X \cap Rad_{g}(M)$ is a g-coatomic submodule of $Rad_{\mathcal{Q}}(M)$. Since $Rad_{\mathcal{Q}}((X \cap Rad_{\mathcal{Q}}(M)))$ $(A \cap Rad_{\mathcal{G}}(M))) = (X \cap Rad_{\mathcal{G}}(M)) / (A \cap Rad_{\mathcal{G}}(M))$, we have that $X \cap Rad_{\mathcal{Q}}(M) = A \cap Rad_{\mathcal{Q}}(M)$. Hence $A = X$.

 $(2) \Rightarrow (1)$ It is clear by [Proposition 2.14](#page-2-2).

Proposition 3.6. Let $0 \rightarrow K \rightarrow M \rightarrow N \rightarrow 0$ be an exact sequence of modules.

(1) If M is g-coatomic module, then N is g-coatomic. (2) If K and N are g-coatomic modules, then M is gcoatomic.

In particular, any direct summand of a g-coatomic module is g-coatomic.

Proof

(1) We may suppose that $K \leq M$ and $N = M/K$. Let U be a submodule of N. Suppose that $Rad_{g}(N/U) =$

 N/U . Then we find submodule L of M with $L/K =$ U. Then $Rad_{\mathcal{Q}}(M/L) = M/L$. Since M is a gcoatomic module, $M/L = 0$. This implies that $N/U = 0$. It follows that N is g-coatomic.

(2) Assume that K and N are g-coatomic modules. Let *L* be any proper essential submodule of *M*.

Case I. $M/K = (L + K)/K$. Then $M = L + K$. Since K is g-coatomic, there exists a generalized maximal submodule K' of K such that $K ∩ L ≤ K' ≤ K$ and K/K' singular simple. Since $K/K' \cong (K+L)/(K'+L) = M/(K'+L)$ M/ $(K'+L)$ is singular simple. Thus $M/(K'+L)$, $M/(K'+L)$ is singular simple. Thus, $K'+L$ is generalized maximal submodule of M with $L \leq K' + L$. Hence M is g-coatomic by [Lemma 3.2](#page-3-1).

Case II. $M/K \neq (L + K)/K$. Then $M \neq L + K$. Since N is g-coatomic and $N \cong M/K$, there exists a submodule K'/K of M/K such that $(M/K)/(K'/K) \cong M/K$
K' is singular simple and $(I + K)/K < K'/K$ Thus K' K' is singular simple and $(L+K)/K \leq K'/K$. Thus, K'
is generalized maximal submodule of M with $I < K'$ is generalized maximal submodule of M with $L \leq K'.$
Then M is g-coatomic by Lemma 3.2 Then *M* is g-coatomic by [Lemma 3.2](#page-3-1).

Proposition 3.7. Let $M = \bigoplus_{i=1}^{n} M_i$ be a finite direct sum of modules M_i (*i* - 1 n). Then M is sum of modules M_i $(i = 1, ..., n)$. Then M is g-coatomic if and only if each M_i $(i = 1, ..., n)$ is g-coatomic.

Proof. It is sufficient by induction on n to prove this is the case when $n = 2$. Let M_1 and M_2 be g-coatomic modules and $M = M_1 \bigoplus M_2$. We consider the following exact sequence;

 $0 \rightarrow M_1 \rightarrow M = M_1 \bigoplus M_2 \rightarrow M_2 \rightarrow 0$

Hence, $M = M_1 \bigoplus M_2$ is g-coatomic module if and only if M_1 and M_2 are g-coatomic modules by [Proposition 3.6](#page-4-0).

Definition 3.8. A pair (P, f) is called a projective gcover of the module M if P is projective right R-module and f is an epimorphism of P onto M with $Ker(f) \ll_{\mathfrak{L}} P$.

Lemma 3.9. Let $M = A + B$. If M/A has a projective g-cover, then B contains a submodule A' of A such that $M = A + A'$ and $A \cap A' \ll_g A'$.

Proof. Let $\pi : B \rightarrow M/A$ the natural homomorphism and $f : P \rightarrow M / A$ be a projective g-cover. Since P is projective, there exists $g : P \rightarrow B$ such that $\pi \circ g = f$ and $Ker(f)$ is g-small in P. Then $(\pi \circ g)(P) = f(P)$ and $A \cap g(P) = g(Ker(f))$. Hence $M = A + g(P)$ and $A \cap g(P) = g(Ker(f))$. Since $Ker(f) \ll_{\mathcal{F}} P$, so $A \cap g(P) = g(Ker(f))$. Since $Ker(f) \ll_g P$, $g(Ker(f)) \ll_g g(P)$ and thus $A \cap g(P) \ll_g g(P)$.

Lemma 3.10. Let A be any submodule of M. Assume that M/A has a projective g-cover. Then there exists a submodule A' such that $M = A + A'$ and $A \cap$ $A' \ll_g A'.$

Proof. Let $B = M$ in [Lemma 3.9](#page-4-1).

Definition 3.11. A projective module M is called gsemiperfect if every homomorphic image of M has a projective g-cover.

Lemma 3.12. For any projective R-module M, the following are equivalent:

- (1) M is g-semiperfect.
- (2) For any $N \leq M$, M has a decomposition $M =$ $M_1 \bigoplus M_2$ for some submodules M_1 , M_2 with $M_1 \leq$ N and $M_2 \cap N \ll_{\varrho} M_2$.

proof. The proof is similar to that of Lemma 2.4 in [\[10](#page-6-5)] for δ -semiperfect modules.

Theorem 3.13. Let M be a g-semiperfect module such that $Rad_{g}(M) \ll_{g} M$ and $Rad_{g}(M)Rad_{g}(M)) = 0.$ Then M is g-coatomic.

Proof. Let M be a g-semiperfect module. Let $A \leq M$. By [Lemma 3.10,](#page-4-2) there exists a submodule A' such that $M = A + A'$ such that $A \cap A' \ll_{g} A'$. So by Theo-
rem 3.3 M is g-coatomic [rem 3.3,](#page-3-3) M is g-coatomic.

Proposition 3.14. For any ring R, $Rad_{\mathcal{P}}(R)$ is g-small in R.

Proof. Let *I* be an essential right ideal in *R* ($I \leq R$). Assume that $R = Rad_{g}(R) + I$. Suppose that I is proper and let K be a maximal right ideal containing I: Then K generalized maximal right ideal of R. Hence $Rad_{\mathcal{E}}(R) \leq K$, this is a contradiction. Thus for any $I \trianglelefteq R$ such that $R = Rad_{g}(R) + I$ we have $R = I$. By definition $Rad_{\mathcal{Q}}(R) \ll_{\mathcal{Q}} R$.

Definition 3.15. A ring R is named g-semiperfect if every finitely generated right R-module has a projective g-cover. The ring R is g-semiperfect if and only if the regular module R_R is g-semiperfect.

R is g-semiperfect if $R/Rad_g(R)$ is semisimple and idempotents in $R/Rad_g(R)$ can be lifted modulo $Rad_{\mathcal{B}}(R)$.

Proposition 3.16. Let R be a g-semiperfect ring with $Rad_{\mathcal{Q}}(R/Rad_{\mathcal{Q}}(R)) = 0$. Then R is left and right gcoatomic ring.

Proof. R is right g-coatomic ring from [Theorem 3.13](#page-5-0) and [Proposition 3.14.](#page-5-1) By symmetry, R is also left gcoatomic ring.

Theorem 3.17: let R be a ring. Then each right ideal I of R with $Rad_{g}(R/I) = R/I$ is direct summand.

Proof: Let I be a right ideal of R. Assume that $Rad_{g}(R/I) = R/I$. Then all maps from R/I to singular simple right R-modules is zero. Assume that I

is an essential right ideal. Let K be a maximal right ideal containing I. Then R/K is singular simple right R-module. Since R/K is an image of R/I and $Rad_{\mathcal{R}}(R/I) = R/I$, $R = K$. This is a contradiction. Hence I is not essential. Let L be a maximal right ideal with respect to the property $I \cap L = 0$. Then $I \oplus I$ L is essential in R. Assume that $I \oplus L$ is proper. Let T be a maximal right ideal containing $I \oplus L$. Then R/T is singular simple image of R/I . This is a contradiction again. Thus $R = I \oplus L$.

The following result is well known and also easy to prove.

Theorem 3.18: The following are equivalent for a ring R.

- (1) R is semisimple artinian.
- (2) Every maximal right ideal of R is a direct summand of R_R .

Proof: It follows from [[11,](#page-6-11) Lemma 2.1].

Remark 3.19: If I is an essential right ideal in the ring R , then R/I is singular right R-module. The converse is also true. In module case it takes the form: for a nonsingular module M and $N \le M$, M/N is singular if and only if N is essential in M [2, Proposition 1.21]. Any maximal right ideal in a ring is essential right ideal or direct summand. For g-coatomic rings, this is not the case in general for maximal right ideals.

Theorem 3.20: Let R be a right g-coatomic ring. Then

- (1) Every simple right R-module is singular.
- (2) Every maximal right ideal in R is essential right ideal.

Proof:

- (1) Let I be a maximal right ideal in R. If $Rad_{g}(R/I)$ = R/I , by hypothesis $R = I$. It is not possible. So $Rad_{\mathcal{Q}}(R/I) = 0$. Then there exists a nonzero homomorphism $f: R/I \rightarrow S$ where S is a singular simple right R -module. Hence f is an isomorphism and so R/I is singular right R-module.
- (2) Let I be a maximal right ideal in R. We claim that I is an essential right ideal. Assume that I is not essential right ideal and let $R = I \oplus K$ for some right ideal K. If $Rad_{g}(R/I) = R/I$, by hypothesis $R = I$. It is not possible. Hence $Rad_{\mathcal{Q}}(R/I) \neq R/I$. By (1) , R/I is nonzero singular simple right R-module. By [Remark 3.19](#page-5-2), I is an essential right ideal of R. This contradicts the assumption. Therefore I is direct summand.

Examples 3.21:

(1) Consider the integers $\mathbb Z$ as $\mathbb Z$ -module. Then $Rad_{\mathcal{Q}}(\mathbb{Z})=0$ and for any prime integer p, $Rad_{\varphi}(\mathbb{Z}/p\mathbb{Z})=0$ since $\mathbb{Z}/p\mathbb{Z}$ is singular simple \mathbb{Z} -module. Hence \mathbb{Z} is g-coatomic \mathbb{Z} -module. But the rational numbers $\mathbb Q$ as $\mathbb Z$ -module is not gcoatomic since every cyclic submodule of Q is small and so $Rad_{g}(\mathbb{Q}) = \mathbb{Q}$.

- (2) Let M be a local module with unique maximal submodule $Rad(M) = Rad_g(M)$. Then M is gcoatomic.
- (3) Let M denote the $\mathbb Z$ -module $\mathbb Z$. By [Lemma 3.12,](#page-5-3) M is not g-semiperfect module. Since every proper submodule is contained in an essential maximal submodule, by [Lemma 3.2](#page-3-1), M is g-coatomic.

Conflicts of interest

There is no conflict of interest.

References

[1] Anderson FW, Fuller KR. Rings and categories of modules. New York: Springer-Verlag; 1974.

- [2] Goodearl KR. Ring Theory: nonsingular rings and modules. New York: Dekker; 1976.
- [3] Gungoroglu G. Coatomic modules. Far East J Math Sci 1998: 153-62. Special Volume, Part II.
- [4] Kasch F. Modules and rings. Academic Press; 1982.
- [5] Kosan MT, Harmanci A. Generalizations of coatomic modules. Cent Eur J Math 2005;3(2):273-81.
- [6] Koşar B, Nebiyev C, Pekin A. A generalization of g-supplemented modules. Miskolc Math Notes 2019;20(1): $345 - 52$.
- [7] Lomp C. On semilocal modules and rings. Commun Algebra 1999;27(4):1921-35.
- [8] Nebiyev C, Ӧkten HH. Weakly g-supplemented modules. Eur J Pure Appl Math 2017;10(3):521-8.
- [9] Wisbauer R. Foundations of module and ring theory. Reading: Gordon & Breach; 1991.
- [10] Zhou Y. Generalizations of perfect, semiperfect, and semiregular rings. Algebra Colloq 2000;7(3):305-18.
- [11] Yousif MY, Zhou Y. Semiregular, semiperfect and perfect rings relative to an ideal. Rocky Mt J Math 2002;32(4): $1651 - 71.$
- [12] Zhou DX, Zhang XR. Small-essential submodules and morita duality. Southeast Asian Bull Math 2011;35: $1051 - 62$.