

دراسة تأثير الفاعلية على قدرة المفاعل بتأثير التغذية العكسية لدرجة حرارة الوقود فرحان لفتة رشيد، ابراهيم كيطان فياض، فيصل غازي حمودي، صباح محمد فتحي، حوراء محمد حسين ت ترأث مان دوم ترجد مترجة من دوم تراث من من تراث من تراث من من تراث من تراث

دراسة تأثير الفاعلية على قدرة المفاعل بتأثير التغذية العكسية لدرجة حرارة الوقود

فرحان لفتة رشيد، ابراهيم كيطان فياض، فيصل غازي حمودي، صباح محمد فتحي، حوراء محمد حمد حمد عن المات في محمد حسين

وزارة العلوم والتكنولوجيا

جامعة ديالي/ كلية العلوم

وزارة العلوم والتكنولوجيا

الخلاصة:

شملت الدراسة ادخال فاعلية ثابتة سالبة موجبة و/أو فاعلية كدالة للزمن بهيئة متعددة الحدود وبوجود التغذية العكسية لدرجة حرارة الوقود لدراسة تأثيرات الفاعلية على سلوك قدرة المفاعل.

أدخلت فاعلية سالبة ثابتة \$ ρ=۰۰۰۰ بوجود التغذية العكسية لدرجة حرارة الوقود لوحظ استقرارية القدرة ثم تأخذ بالهبوط عند زيادة الفاعلية السالبة، وكذلك أدخلت فاعلية موجبة ثابتة \$ ρ=۰.۰۷ فلوحظ ان القدرة تستقر عند هذه الفاعلية وتبدأ بالزيادة عند زيادة الفاعلية الموجبة. أما في حالة إدخال الفاعليات الموجبة (٥-٢.٠٠ - ٥.٤٥) فقد لوحظ ان الفاعلية الناتجة تستقر ثم تهبط مع الزمن.

درست سلوكية قدرة المفاعل عند إدخال فاعليات موجبة (\$٢.٥٦- ٢١.٠٣)، إذ لوحظت زيادة مفاجئة في القدرة ثم اهتزاز الفاعليات الموجبة (\$٢.٥- ١.٩٤) بعد الزيادة المفاجئة في القدرة.

كما تم إدخال فاعليات كدالة للزمن بهيئة متعددة الحدود، مثلت النتائج المستحصلة في الدراسة الحالية للفاعلية و/او القدرة كدالة للزمن باشكال بيانية. وقد اوضحت هذه النتائج تطابقاً مع القيم العالمية المنشورة.

اظهرت هذه الدراسة ضرورة توفر التحديد المسبق لقيم تأثيرات الفاعلية لغرض تحليلات السلامة في الحالة العابرة وكذلك لمتطلبات السيطرة اثناء اشتغال المفاعل

الكلمات المرشدة: حركية المفاعل، حركية المفاعل النقطية، الحوادث، التغذية العكسية، إدخال فاعلية.

المقدمة:

من الأمور المهمة في عملية اشتعال المفاعلات النووية بصورة اعتيادية سواء كانت مفاعلات بحوث و/او مفاعلات قدرة هو موضوع السيطرة على تعداد النيوترونات الناتجة من عمليات التفاعل المستمر داخل قلب المفاعل النووي وكذلك عملية ضمان سلامة الاشتغال لا بد من دراسة سلوكية النيوترونات المتولدة في قلب المفاعل النووي كدالة للزمن وهذا يعني دراسة حركية المفاعل (Reactor Kinetics) او ما يسمى بدينامكية المفاعل (Reactor Dynamics) [2,1].

يعتمد جنوح المفاعل النووي عن الحالة الحرجة (Keff = 1) على مقدار الزيادة او النقصان في قيمة عامل التكاثر التأثيري (Keff) بالنسبة لقيمته في الحالة الحرجة وهذا يتطلب الأخذ بنظر الاعتبار عوامل متعددة تعمل على زيادة و/ او نقصان فاعلية المفاعل [ρ= K_{eff} - 1 / K_{eff}] كحركة قضبان السيطرة وانتاج النظائر في الوقود اثناء عملية الانشطار النووي المتسلسلة وتغيرات درجات الحرارة في قلب المفاعل والتغيرات البيئية المحيطة بالمفاعل والحوادث المفاجئة في المفاعل.[٦-٨] يمكن التعبير عن وحدة قياس الفاعلية بعدد النيوترونات المتأخرة الكلية β وكما يلي :

$$\beta = \sum_{i=1}^{N} \beta_{i}, \qquad 1\$ = \frac{\rho}{\beta}, \qquad 1cent = \frac{1}{100} \frac{\rho}{\beta}$$

$$i_{i=1} \text{ ($)} \quad 0.01 \text{ and } 0.01 \text{ and$$

دراسة تأثير الفاعلية على قدرة المفاعل بتأثير التغذية العكسية لدرجة حرارة الوقود

فرحان لفتة رشيد، ابراهيم كيطان فياض، فيصل غازي حمودي، صباح محمد فتحي، حوراء محمد حسين أي ان تغير في تعداد النيوترونات ومستوى قدرة المفاعل يؤثر بصورة مباشرة في الحالة الحرجة سلباً وايجاباً، وانه في حالة تغير مستوى القدرة يؤدي الى تغير في درجة حرارة قلب المفاعل النووي الذي بدوره سيؤثر في الحالة الحرجة نتيجة لتأثر طيف النيوترونات والمقاطع العرضية بسبب التغير الحاصل في أبعاد الشكل الهندسي وكثافة مكونات مادة القلب.

لهذا السبب تعتبر دراسة سلوكية النيوترونات كدالة للزمن ذات أهمية عملية لمتابعة حالة الاتزان (Stability) والسيطرة على اشتغال المفاعل في الحالات الاعتيادية او في حالة الزيادة المفاجئة (Excursion) في الفاعلية كما يحصل في حالة إخفاق إحدى مضخات قلب المفاعل مثلاً او أية حالة غير طبيعية. يتبين من ذلك ضرورة توفر التحديد المسبق لقيم تأثيرات الفاعلية لغرض تحليلات السلامة في الحالة العابرة (Transient) وكذلك لمتطلبات السيطرة أثناء اشتغال المفاعل حيث أجريت في هذا المضمار أبحاث عديدة [9-16].

استخدم في الدراسة الحالية البرنامج الحسابي AIREK – MOD في دراسة محاكاة حركية مفاعل (Reactor) لدرجة حرارة (With Feedback) قدرة (With Feedback) في حالة وجود التغذية العكسية (With Feedback) لدرجة حرارة الوقود (ود التغذية العكسية (Fuel Temperature) الرقود (سالم محاكات الوقود (سالم محاكات المحالية العكسية (حدارة العكسية العكسية العكسية العكسية (حدارة العكسية العكسية العكسية العكسية (حدارة العدم في حدارة حرارة العدم في حالة وجود التغذية العكسية (حدارة العدم في حدارة حرارة حرارة حرارة العدم في حدارة العدم في حدارة العدم في حدارة (حدارة حدارة حدارة حدارة العدم في حدارة العدم في حدارة العدم في حدارة العدم في حدارة (حدارة حدارة حدارة حدارة حدارة حدارة حدارة العدم في حدارة العدم في حدارة (حدارة حدارة (حدارة حدارة (حدارة حدارة (حدارة حدارة (حدارة حدارة (حدارة حدارة حدارة حدارة حدارة حدارة حدارة حدارة حدارة (حدارة حدارة (حدارة حدارة حدارة حدارة حدارة حدارة حدارة حدارة حدارة (حدارة حدارة (حدارة حدارة (حدارة حدارة حدارة حدارة حدارة حدارة حدارة حدارة حدارة حدارة حدالة ح

١ ـ النظرية :

في البحث الحالي سنفرض حالة نموذج المفاعل النقطي، حيث ان هذا النموذج يتحقق فقط عندما يقترب عامل التكاثر (Multiplication Factor) من الواحد وان عجزه الرئيسي هو عدم مقدرته على وصف التوزيع المكاني (Spatial (Distribution) خلال الحالة العابرة (Transient). يتضمن هذا النموذج حالات حسابية مهمة و واسعة.

ان الفكرة الأساسية لمركبة المفاعل بشكل عام لكل أنواع المفاعلات هي الفاعلية والمعدل الزمني وزمن توليد النيوترون والنيترونات المتأخرة. لذا فأن مفاعلات حركية المفاعل يمكن كتابتها بالشكل الآتي [17].

$$\begin{aligned} \frac{dN(t)}{dt} &= \frac{\left[\frac{k-1}{k}\right] - \overline{\gamma}\beta}{\Lambda} N + \sum_{1} \lambda_{1}C_{ieff} + S_{eff} \end{aligned} \tag{1} \\ \frac{dC_{ieff}}{dt} &= \frac{\overline{\gamma}\beta_{i}N}{\Lambda} - \lambda_{i}C_{ieff} \end{aligned} \tag{2} \end{aligned}$$

ان زمن توالد النيوترون ٨ هو اساسا ً يكون احتمالية انتاج تبادلي (Reciprocal Production Probability). يمكن كتابة معادلة حركية المفاعل المشار اليها في المعادلتين (١) و (٢) بالشكل النهائي وكما يلي :

دراسة تأثير الفاعلية على قدرة المفاعل بتأثير التغذية العكسية لدرجة حرارة الوقود فرحان لفتة رشيد، ابراهيم كيطان فياض، فيصل غازي حمودي، صباح محمد فتحي، حوراء محمد حسين

$$\frac{dN}{dt} = \frac{k(1 - \overline{\gamma}\beta) - 1}{L}N + \sum_{i}\lambda_{i}C_{ieff} + S_{eff}$$

$$\frac{dC_{ieff}}{dt} = \frac{\overline{\gamma}\beta k}{L}N - \lambda_{i}C_{ieff}$$
(4)

حيث ان:

N تمثل كثافة النيوترون، t تمثل الزمن، K تمثل عدد اعادة انتاج النيوترون، $\overline{\gamma}$ تمثل المكان (الموضع)، β تمثل العدد الكلي لمجاميع النيوترونات المتأخرة، C_i، دمثل تركيز وثابت انحلال مجموعة (ith group) للنيوترونات المتأخرة على التوالي، S_{eff} تمثل مصدر النيوترونات المتأخرة، C_i، تمثل تركيز وثابت انحلال مجموعة (odjoint flux) للنيوترونات المتأخرة على التوالي، S_{eff} تمثل مصدر النيوترونات، V تمثل الفيض (odjoint flux)، Φ تمثل كثافة النيوترونات، V تمثل سرعة التوالي، δ_{eff} تمثل مصدر النيوترونات، V تمثل الفيض (odjoint flux)، Φ تمثل كثافة النيوترونات، V تمثل سرعة النيوترون، γ_i ، χ_i تمثل مصدر النيوترونات المتأخرة الفيض (odjoint flux)، Φ تمثل كثافة النيوترونات، V تمثل المورية والتورون من γ_i , γ_i تمثل النيوترونات المتأخرة على التوالي، $\sum_{j} \gamma_j$

ان زمن عمر انيوترون الفوري (Λ) في هذه المعادلات يتعلق بزمن تولد النيوترون الفوري (Λ) خلال عدد النيوترونات المنتجة بمحاكاة التعريف لـ (Λ) فأن (L) يجب ان يفرض كاحتمالية هدم تبادلي Rceiprocal Destruction ومن الواضح ان معادلات حركية المفاعل يمكن ان يعبر عنها بتعبير انتاج النيوترون (Λ) او بتعبير تحطم النيوترون (L). ومهما يكن من شيء فأن كلاهما بنفس الحالة وذا استعمال مألوف، ولأحسن الحالات العملية فأن التمييز ما بين (Λ) و (L) يكون مهمل بشكل عام.

٢ - تمثيل معادلة الفاعلية :

يمكن تمثيل معادلة الفاعلية التي ترتبط بالتغذية العكسية لدرجة حرارة الوقود بعد حل المعادلة ادناه لذا فأن [18] :

$$\frac{dT_F(t)}{dt} = K_1 N(t) - \frac{H}{C_F} [T_F - T_R]$$

تمثل هذه المعادلة مقدار التغير في درجة حرارة الوقود عن قيمتها في الحالة المستقرة (Steady State) علماً ان (رمز) تمثل درجة حرارة الوقود عند اشتعال المفاعل بعد زمن t، حيث N(t) تمثل كثافة النيوترونات كدالة للزمن، وان T_F(t) و T_R(t) ثمثل درجة حرارة الوقود ودرجة حرارة المبرد كدالة للزمن في قناة التبريد المعينة كدالة للزمن (K₂, K₁) الوقود والمبرد على التوالي وان (C_R و C_R) و C_R) تمثل السعة الحرارية (Heat تمثل مقلوب السعة (Capacity Reciprocal) للوقود المبرد على التوالي وان (C_R و C_R) تمثل السعة الحرارية (Meat معدل الزمن لانتقال الحرارة من الوقود الى المبرد. وعليه يمكن تمثيل معادلة الفاعلية على النحو الآتي:

$$\rho(t) = \rho_0 + \alpha_F T_F(t)$$

علماً ان ρ(t) تمثل الفاعلية كدالة للزمن اثناء اشتغال المفاعل للحالة المستقرة وان α_F تمثل معادلة درجة حرارة الفاعلية للوقود (Temperature Coefficient of Reactivity).

٣- الحسابات:

٤-١ حساب القدرة المتولدة في الوقود [19,17]

(5)

 $P = P_k + P_d$

حيث ان الحرارة الكلية الخارجية :

P=Total Heat Output = 2097 MW_{th} = 2097×10^6 W_{th}

القدرة المتولدة من الوقود

 P_k = Reactor Power Generated in Fuel.

دراسة تأثير الفاعلية على قدرة المفاعل بتأثير التغذية العكسية لدرجة حرارة الوقود فرحان لفتة رشيد، ابراهيم كيطان فياض، فيصل غازي حمودي، صباح محمد فتحي، حوراء محمد حسين P_d = Decay Heat = 0.0673×total Heat Output.

> أي ان: الحر ارة المضمحلة = ٢٢ ٦ % من القدرة الابتدائية. وعليه تكون القدرة المتولدة في الوقود هي:

 $P_k = P - Pd$

 $P_k = 2097 - 0.0673 \times 2097 = 2.097 \times (1 - 0.0673) = 1955.8719 \text{ MW}_{th}$

أو يمكن التعبير عن القدرة المتولدة بالوحدات الانكليزية للأغراض الحسابية كما يلى:

 $P_k = 0.19558719 \times 10^{10} W_{th} \approx 0.1959 \times 10^{10} W_{th}$

 $\approx 0.6684108 \times 10^{10} \text{ BTU/hr} \approx 0.1857 \times 10^{7} \text{ BTU / sec}$

٤-٢ الحسابات الحرارية للبيانات المتعلقة بالوقود:

أ- حساب السعة الحرارية للوقود:

 $r_p = Radius of one fuel rod$

$$r_p = ($$
 outside diameter of one fuel / 2)–(Diameter gap / 2)–clad thickness

$$r_p = (0.422/2) - (0.0065/2) - 0.0243$$

$$r_p = 0.1834$$
 inch = 0.0152 ft

or

$$r_p = 0.0046 \text{ m}$$

Total volume of the fuel (V_{*F*}) = $\pi r_f^2 L \times \text{Number of fuel rods}$

$$V_F = \pi \times 0.000233 \times 12 \times 32028$$

 $V_f = 282.1 \text{ ft}^3$

$$V_f = 282.1 \text{ ft}^3$$

or

$$V_{\rm F} = 7.99 \ {\rm m}^3$$

Total mass of the fuel (M_F) = ρ_{th} (% of the theoretical) ×V_F

$$M_F = 10.9 \times 0.935 \times 62.4 \times 282.18$$

$$M_F = 180772.5 \text{ lb}$$

or

 $M_F = 81998.4 \text{ kg}$

دراسة تأثير الفاعلية على قدرة المفاعل بتأثير التغذية العكسية لدرجة حرارة الوقود فرحان لفتة رشيد، ابراهيم كيطان فياض، فيصل غازي حمودي، صباح محمد فتحي، حوراء محمد حسين C_{PF} = Specific heat of the fuel

 $C_{PF} = 0.054 \text{ BTU/ lb. }^{\circ}F$

 $C_{PF} = 0.054$ Calories / gm. °C

 $C_{PF} = 229.9$ Joule / Kg. °C

 C_c = Fuel heat capacity

$$C_c = M_F \times C_{FF} = 180772.5 \text{ lb} \times 0.054 \text{ (BUT / lb. °F)}$$

$$C_{c} = 9930.09 \text{ BUT} / ^{\circ}\text{F}$$

or

 $C_c = 180772.5 \text{ lb} \times 0.45 \text{ Kg} / \text{lb} \times 4.18 \times 10^3 \times 0.054$

 $C_c = 18859464.07 \text{ J} / \text{°k}$

ب- حساب مقلوب السعة الحرارية للوقود:

$$K_1 = 1/\ C_c = 1\ /\ \rho_{th}\ V_F\ C_{PF} = 1\ /\ M_f\ C_{PF}$$

=1/9930.90 = 0.0001 °F / BTU=0.1 × 10^{-3} °F / BTU =0.53 × 10^{-7} °k/Joule

ج- حساب مقلوب ثابت الزمن:

حساب معدل الانتقال الحراري للمبرد [20-21]:

$$h = 0.145 \left[1 + 10^{-2} T_b - 10^{-5} T_b^2 \right] \frac{V^{0.2}}{D_e^{0.2}} (BTU / hr.ft^2.°F)$$

= Heat Transfer Coefficient

حيث ان [17]:

 V_m = Velocity of Coolant

or

 $V_{\rm m} = 0.0011 \text{ m/sec}$

 T_b = Bulck Temperature Vol: 9 No: 2, May 2013

دراسة تأثير الفاعلية على قدرة المفاعل بتأثير التغذية العكسية لدرجة حرارة الوقود فرحان لفتة رشيد، ابراهيم كيطان فياض، فيصل غازي حمودي، صباح محمد فتحي، حوراء محمد حسين $T_b = 577.0~^\circ F = 575.927 k$

وعند التعويض عن T_b و V_m نحصل على:

$$h = 0.148 \left[1 + 10^{-2} \times 577 - 10^{-5} \times (577)^{2} \right] \times \frac{(13.9 \times 3600)^{0.8}}{De^{0.2}}$$

وان قطر المكافئ (D_e) يحسب من العلاقة الأتية [16-12] :

$$De = \frac{S^2 - \left(\frac{1}{2}D\right)^2 \pi}{\pi D}$$

حيث ان :

D= Outside diameter for one fuel rod القطر الخارجي لعمود وقود واحد

S = Rod Pitch = 0.563/12 ft = 0.0143 m

$$\begin{split} De &= \frac{\left(\frac{0.563}{12}\right)^2 - \frac{1}{4}\pi \left(\frac{0.422}{12}\right)^2}{0.1104\pi} \\ De &= 0.0111 \text{ ft} \\ \text{or} \\ De &= 0.00339 \text{ m} \\ \\ De &= 0.00339 \text{ m} \\ \\ De &= 0.148 \left[1 + 5.77 - 10^{-5} \times (577)^2\right] \times \frac{(13.9 \times 3600)^{0.8}}{(0.0111)^{0.2}} \\ \text{h} &= 7.195.2 \text{ BTU / hr. ft}^2. \text{`F} \\ A &= \text{Active heat transfer surface area} \\ A &= 42460 \text{ ft}^2 \\ A &= 3944.5 \text{ m}^2 \\ \text{hA / (M_F C_{FF}) = H / Cc} \\ &= 7.195.27 \text{ BTU / hr. ft}^2. \text{`F} / 9930.09\text{BTU / `F} \\ \text{hA / (M_F C_{FF}) = 30766.2 1/\text{hr} = 8.54 1/\text{sec}} \end{split}$$

دراسة تأثير الفاعلية على قدرة المفاعل بتأثير التغذية العكسية لدرجة حرارة الوقود فرحان لفتة رشيد، ابراهيم كيطان فياض، فيصل غازي حمودي، صباح محمد فتحي، حوراء محمد حسين $\tau = 8.54 \ 1/sec = 0.11 \ sec = Time \ constant$

٤ - البيانات النيوترونية :

تم استخدام فاعليات مختلفة لبيان سلوك حركية مفاعل قدرة نوع PWR (مفاعل الماء المضغوط) [11] لوقود اليورانيوم U^{235} باستعمال (6) سنة مجاميع من النيوترونات المتأخرة، وان العدد الكلي (β) يساوي ٢٠٠٦٠ وان عمر النيوترونات U^{235} وان عمر النيوترونات (10 يساوي ١٤-٠٠٠ وان عمر النيوترونات (10 يساوي 1٤-٠٠٠ وان عمر النيوترونات (10 يساوي 10 يساوي 10 يساوي 1٤-٠٠٠ وان عمر النيوترونات (10 يساوي 10 يساوي 1٤-٠٠٠ وان عمر النيوترونات (10 يساوي 10 يساوي 10 يساوي 1٤-٠٠٠ وان عمر النيوترونات (10 يساوي 10 يساوي 1٤-٠٠ وان عمر النيوترونات (10 يساوي 10 يساوي 10 يساوي 1٤-٠٠ وان 10 يساوي 10 يساو

النتائج :

شملت نتائج الحسابات حالة وجود التغذية العكسية لدرجة حرارة الوقود (Feedback) وتضمنت حالات متعددة كالحالات المدرجة فيما يأتي :

أ- ادخال فاعليات سالبة ثابتة كالآتى :

(\$0.01 , \$ 0.11 , \$ 0.9 , \$ 0.90 , \$ 0.95 , \$ 1.0) نتيجة لادخال هذه الفعاليات اجريت حسابات لدراسة سلوك قدرة المفاعل كدالة للزمن وقد مثلت النتائج لجميع هذه الحالات في الشكل رقم (١) والشكل رقم (٢) على التوالي، وفي حالة وجود التغذية العكسية لدرجة حرارة الوقود (1 feedback).

ب- ادخال فاعليات موجبة ثابتة وكالآتى :

(\$ 0.007 \$, 0.06 \$, 0.10 \$, 0.24 \$, 0.24 \$, 0.24 \$, 0.007 \$) على التوالي ياي تنحصر قيم هذه الفاعليات من 0.007 الى \$0.35 وكذلك القيم الموجبة الآتية :-

\$(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.57, 0.56, 0.56, 0.53) على التوالي لدراسة سلوك القدرة كدالة (للزمن في حالة ادخال فاعلية موجبة (Positive Reactivity) وخاصة لغرض محاكاة الحوادث عندما يتسبب ادخال فاعلية موجبة.

مثلت نتائج الحسابات لأدخال فاعليات موجبة ثابتة من \$ 0.007 الى \$0.35 باشكال بيانية للقدرة كدالة للزمن وكما هي موضحة في الشكل رقم (3 والشكل رقم (4) كما مثلت نتائج الحسابات لادخال فاعليات موجبة ثابتة من \$0.54 الى \$0.56 باشكال بيانية للقدرة كدالة للزمن وكما هي موضحة في الشكل رقم (3) ما مثلت نتائج الحسابات لادخال فاعليات موجبة ثابتة من \$0.4 الى \$0.56 باشكال بيانية للقدرة كدالة للزمن كما موضحة بالشكل رقم (5) والشكل رقم (6) على التوالي ولحالة التغذية العكسية لدرجة درارة الوقود (Feedback). كذلك اجريت حسابات لادخال فاعليات موجبة ثابتة من \$0.50 الى \$0.56 باشكال بيانية للقدرة كدالة للزمن كما موضحة بالشكل رقم (5) والشكل رقم (6) على التوالي ولحالة التغذية العكسية لدرجة حرارة الوقود (Feedback). كذلك اجريت حسابات لادخال فاعليات موجبة ثابتة (,0.9%, 0.84%, 0.9%, 0.7%, 0.2%, 0.35%, 0.45%, 0.45%, 0.57%

على التوالي لدراسة سلوك الفاعلية في حالة التغذية العكسية لدرجة حرارة الوقود أي لحالة الحادثة التي تتضمن ادخال فاعليات موجبة (Positive Reactivity) ثابتة ، حيث مثلت نتائج الحسابات للفاعلية كدالة للزمن a (Reactivity) فاعليات موجبة (Function Time) بأشكال بيانية كما هي موضحة في الشكل رقم (7) والشكل رقم (8) وللقدرة كدالة للزمن للفاعليات من (\$0.7) الى (\$0.96) بالاشكال البيانية الموضحة في الشكل رقم (9) والشكل رقم (0) وللقدرة كدالة للزمن للفاعليات من (\$0.7) الى (\$0.96) بالاشكال البيانية الموضحة في الشكل رقم (9) والشكل رقم (10) ولحالة التغذية العكسية لدرجة حرارة الوقود. وفضلا عن ذلك فقد ادخلت قيم عالية للفاعلية الموجبة أي : (,\$1.20 إلى (\$0.96) بالاشكال البيانية الموضحة بالشكل رقم (9) والشكل رقم (10) ولحالة التغذية العكسية لدرجة حرارة الوقود. وفضلا عن ذلك فقد ادخلت قيم عالية للفاعلية الموجبة أي : (,\$1.20 إلى (\$1.00 إلى (\$0.0 إلى

كذلك تمت دراسة سلوك الفاعلية كدالة لزمن دورة المفاعل (Reactivity as a Function of the Reactor Period) عند ادخال فاعليات موجبة ثابتة أي :

(\$0.29, 0.29, 0.29, 0.57, 0.55, 0.45, 0.35, 0.29) على التوالي وقد مثلت نتائج الحسابات باشكال بيانية. كما هي موضحة في الشكل رقم (13) والشكل رقم (14).

دراسة تأثير الفاعلية على قدرة المفاعل بتأثير التغنية العكسية لدرجة حرارة الوقود

فرحان لفتة رشيد، ابراهيم كيطان فياض، فيصل غازي حمودي، صباح محمد فتحي، حوراء محمد حسين جراء محمد حسين جر انخابتة

١- ادخال فاعلية خطية في حالة التغذية العكسية لدرجة حرارة الوقود (I Feedback) تم تمثيل الفاعلية كدالة للزمن بشكل علاقات رياضية خطية وغير خطية وكالآتى :

- $1 \rho(t) = 0.001 t^2$ \$
- 2- $\rho(t) = -0.1 t + t^2$ \$
- $3 \rho(t) = 0.01 + t$ \$
- 4- $\rho(t) = 0.3 + 1.5t$ \$
- 5- $\rho(t) = 0.3 + 1.6t$ \$
- 6- $\rho(t) = 0.4 + 1.9t$ \$

شملت هذه الحسابات دراسة سلوك القدرة كدالة للزمن بوجود التغذية العكسية لدرجة حرارة الوقود وقد مثلت نتائج الحسابات باشكال بيانية كما في الشكل رقم (15) والشكل رقم (16).

كذلك تمت دراسة سلوك الفاعلية كدالة للزمن عن طريق ادخال فاعلية ثابتة وغير خطية كدالة للزمن وبوجود التغذية العكسية لدرجة حرارة الوقود وكما يلي :

 $1- \rho(t) = 0.01 t$ $2- \rho(t) = 2$ $3- \rho(t) = 0.001 t^{2}$ $4- \rho(t) = 0.3 + 1.5t$ $5- \rho(t) = 0.01t^{2}$ \$

وقد مثلت نتائج حسابات الفاعلية كدالة للزمن بأشكال بيانية كما هي موضحة في الشكل رقم (17).

المناقشة والاستنتاج :

ان ادخال فاعلية سالبة (Negative Reactivity) الى منظومة حرجة (Critical System) قد يؤدي بالمنظومة الى ان تصبح في حالة تحت الحرجة (Sub critical) مسببة انخفاضاً في مستوى قدرة المفاعل والذي يكون فوريا في البداية ثم يستمر بالهبوط التدريجي حيث نلاحظ نزولا سريعاً ثم تأخذ القدرة بالنزول التدريجي.

يحدث الهبوط الفوري الابتدائي في القدرة بعد فترة زمنية قصيرة جداً بسبب تناقص عامل المضاعفة نتيجة لتناقص تعداد النيوترونات في الأجيال اللاحقة ، ولكن بعد فترة زمنية أطول نلاحظ ان تأثير النيوترونات المتأخرة المتولدة يستمر بإضافة نيوترونات تمنع مستوى القدرة من الهبوط السريع ، اي انها تبطئ معدل التناقص في القدرة عندما تكون الفاعلية الداخلة سالبة (Negative).

يعتمد الهبوط السريع في القدرة على القيمة الفاعلية السالبة الداخلة حيث يزداد الهبوط الفوري في القدرة كلما ازدادت قيمة الفاعلية وكما هو موضح في الشكل (١) والشكل رقم (٢)، ان قيمة الفاعلية السالبة الداخلة β=-001 لاتؤثر بصورة جدية في الحالة الحرجة في حين تؤدي قيم الفاعلية السالبة الداخلة من β=-001-و الى القيمة β=-1.5 الى جنوح

Vol: 9 No: 2, May 2013

ISSN: 2222-8373

دراسة تأثير الفاعلية على قدرة المفاعل بتأثير التغذية العكسية لدرجة حرارة الوقود

فرحان لفتة رشيد، ابراهيم كيطان فياض، فيصل غازي حمودي، صباح محمد فتحي، حوراء محمد حسين المفاعل الى الحالة تحت الحرجة. تمت مقارنة سلوك القدرة كدالة للزمن عند الفاعلية السالبة \$0.9–p= ووجد تطابق تام مع الدراسة المرجعية [17].

تصبح المنظومة الحرجة عند ادخال فاعليات موجبة ثابتة ،منظومة فوق الحرجة (Supercritical) وتأخذ القدرة في الزيادة كما هو موضح في الاشكال (٣-٦) والاشكال (٩-١٢). ونلاحظ حدوث القفزة الفورية الابتدائية (Jump Initial) في القدرة عندما تكون قيمة الفاعلية اكبر من المجموع الكلي لاجزاء النيوترونات المتناظرة (ρ>β) وفي خلال فترة زمنية قصيرة جداً ثم تأخذ القدرة بالارتفاع كدالة اسية مع الزمن.

تبين هذه الدراسة التنبؤ المسبق بسلوك القدرة كدالة للزمن على الرغم من وجود التغذية العكسية لدرجة حرارة الوقود التي تؤدي الى خطورة ادخال الفاعليات الموجبة وخاصة عند القيم \$9.2 صوقد تمت مقارنة سلوك القدرة كدالة للزمن عند الفاعلية كؤدي الى خطورة ادخال الفاعليات الموجبة وخاصة عند القيم \$12. موقد تمت مقارنة سلوك الفاعلية كدالة للزمن عند الفاعلية كوم ووجد تطابق جيد مع الدراسة المرجعية [17]. كذلك تمت دراسة سلوك الفاعلية كدالة للزمن عند الفاعليات الموجبة وخاصة إلى من وجود تمت مقارنة سلوك الفاعلية كدالة للزمن عند الفاعلية كرما ووجد تطابق جيد مع الدراسة المرجعية [17]. كذلك تمت دراسة سلوك الفاعلية كدالة للزمن عند الفاعليات الموجبة وجد أن الفاعلية تزداد قليلا في اللحظات الأولى ثم تستقر مع الزمن لقيم الفاعليات الموجبة الداخلة من \$ 0.2 الى 8.0 وتبدأ بالهبوط بعد فترات زمنية متفاوتة تتراوح من ٤٠ ثانية الى ١٢٥ ثانية لقيم الفعاليات الموجبة الداخلة ألداخلة من \$ 0.2 الى 8.0 وتبدأ بالهبوط بعد فترات زمنية متفاوتة تتراوح من ٤٠ ثانية الى ١٢٥ ثانية لقيم الفعاليات الموجبة الداخلة من \$ 0.2 الى 8.0 وتبدأ بالهبوط بعد فترات زمنية متفاوتة تتراوح من ٢٠ ثانية الى ١٢٥ ثانية لقيم الفاعليات الموجبة الداخلة من \$ 0.2 الى 8.0 وتبدأ بالهبوط بعد فترات زمنية متفاوتة تتراوح من ٢٠ ثانية الى ١٢٥ ثانية لقيم الفعاليات الموجبة ألداخلة من \$ 0.1 الى 8.0 أله الذاخلة من ٢٤ ثانية الى ١٢٥ ثانية قليم ألفاعلية 3.0 فقد أله الذاخلة من \$ 0.5 الى 8.0 ألفاعلية كرالة للزمن بعد فترات زمنية ماله من استقرار و / أو هبوط الفاعلية كدالة للزمن بعد فترات زمنية كبيرة ، الا أن هذه ألفاعليات الموجبة غير محبذة لأن عمليات الزيادة في القدرة تكون كبيرة في اللحظات الأولى مما تؤدي الى حصول حادثة الفاعليات الموجبة غير محبذة لأن عمليات الزيادة في القدرة تكون كبيرة في الماعيات الأولى مما تؤدي الى على ما عرفية ألفاعيات الموجبة غير متوقع في منظومة الفاعليات الموجبة غير منورة تكون ليرات أذا ما حصل أي عطل غير متوقع في منظومة السيطرة لإطفاء المفاعل.

ان محاكاة ادخال فاعليات موجبة ثابتة تعطي التنبؤ المسبق بما يحصل في سلوك قدرة المفاعل كدالة للزمن حيث بينت الدراسة الحالية ان ادخال فاعليات موجبة يؤدي الى الزيادة المفاجئة في القدرة فضلا عن حصول اهتزاز في القدرة عند ادخال فاعليات موجبة كبيرة (\$1.5-2.5) وبعد فترة زمنية قصيرة (أجزاء من الثانية) كما هو واضح في الشكل رقم (١١) والشكل رقم (١٢). تمت مقارنة سلوك القدرة للفاعليات الموجبة \$(5.0, 0.5, 1.2) حيث بينت هذه الدراسة تطابقاً جيداً مع الدراسة المرجعية [17].

تمت دراسة الفاعلية كدالة لدورة المفاعل (Period) عند إدخال فاعليات موجبة من (٢. الى ١. ١٧) \$ وقد وجد ان الفاعلية ترتفع قليل لفترة قصيرة جداً ومن ثم تستقر لدورات زمنية قصيرة وبعدها تتناقص للدورات الزمنية الكبيرة كما هو واضح في الشكل (١٣) والشكل رقم (١٤).

أجريت محاكاة لسلوك القدرة كدالة للزمن عند ادخال فاعليات خطية وغير خطية بوجود التغذية العكسية لدرجة حرارة الوقود كما هو موضح في الشكل رقم (١٥) والشكل رقم (١٦) وقد تمت مقارنة سلوك القدرة عند ادخال الفعالية ρ(t)0.3+1.3t مع الدراسة المرجعية ووجد تطابق لسلوك القدرة كدالة للزمن للقيم المستحصلة في الدراسة الحالية [17].

يبين سلوك القدرة كدالة للزمن الزيادة التدريجية للقدرة مع الزمن عند إدخال فاعليات خطية وغير خطية ولفترات زمنية قصيرة (أقل من الثانية). ان ادخال مثل هذه الفاعليات قد يسبب حادثة اذا لم تحصل استجابة فورية لمنظومة السيطرة. كذلك أجريت دراسة لادخال فاعلية موجبة (Positive Reactivity) وخطية وغير خطية كما هي مبينة في الشكل رقم (١٧) لدراسة سلوك الفاعلية لفترة زمنية وخاصة عند ادخال الفاعلية؟200 =(h) والفاعلية 1.5t +0.3 =(h) مما يعطي مؤشراً لتجنب إدخال مثل هذه الدوال (Functions) أثناء اشتغال المفاعل بالرغم من وجود التغذية العكسية لدرجة حرارة الوقود.

يلاحظ من الاشكاال (٧، ٨، ١٣، ١٥، ١٦) استقرار الفاعلية أو القدرة عند مستوى معين ثم تاخذ بالانخفاض. ان هذا السلوك ناتج عن تولد النيوترونات المتأخرة التي تلعب دوراً مهماً في السيطرة على المفاعل.

لى قدرة المفاعل بتأثير التغذية العكسية لدرجة حرارة الوقود فرحان لفته رسيد، ابراهيم كيطان فياض، فيصل غازي حمودي، صباح محمد فتحي، حوراء محمد ح ين

Fig.(4) : Power VS. Time (1 Feedback)

Fig.(6) : Power VS. Time (1 Feedback)

دراسة تأثير الفاعلية على قدرة المفاعل بتأثير التغذية العكسية لدرجة حرارة الوقود فرحان لفتة رشيد، ابراهيم كيطان فياض، فيصل غازي حمودي، صباح محمد فتحي، حوراء محمد حسين

Time (s)

Diyala Journal For Pure Sciences

Time (s)

Vol: 9 No: 2, May 2013

ISSN: 2222-8373

دراسة تأثير الفاعلية على قدرة المفاعل بتأثير التغذية العكسية لدرجة حرارة الوقود فرحان لفتة رشيد، ابراهيم كيطان فياض، فيصل غازي حمودي، صباح محمد فتحي، حوراء محمد حسين

Power(Watt)

Diyala Journal For Pure Sciences

Time (s)

Fig.(16) : Power VS. Time(1 Feedback)

Diyala Journal For Pure Sciences

دراسة تأثير الفاعلية على قدرة المفاعل بتأثير التغذية العكسية لدرجة حرارة الوقود فرحان لفتة رشيد، ابراهيم كيطان فياض، فيصل غازي حمودي، صباح محمد فتحي، حوراء محمد حسين المصادر :

1. G. Kessler, (1983), "Nuclear Fission Reactors", Springer Verlag Wien, New York.

2. J. L. Meen, (1964), "Two Group Reactor Theory", Gordon and Breach, New York.

3. Paul F. Zweifel, (1973), "Reactor Physics", McGraw–hill Book Company INC.

4. Roland Allen Knief, (1981), "Nuclear Energy Technology", McGraw–Hill Book Company INC.

5. M. Ragheb, (2006), Point reactor Kinetic, pp. 1-34.

6. K. Mourt Zanos, etl., (2001), "Calculation of the moderator temperature coefficient of reactivity for water moderated reactors", Annals of Nuclear Energy. Vol. 28, pp. 1773-1782.

7. Tomohiko Iwasaki, etl., (2002), "Integral test for Np237 and Am241 cross sections in JENDL, ENDF and JEF Libraries", J. Nucl. Sci. and Tech. supplement 2, pp 920-923.

8. R. Khelifi, etl., (2007), Flux calculation in LSNAA using an Am²⁴¹-Be source, J. Radioanalytical and Nucl. Chem., Vol. 274, No. 3, pp. 639-642.

9. Annals of Nuclear Energy, (1998), Anwar M. Mirza, Salma Khanam, Nassir M. Murza, Simulation of reactivity transients in current MTRS, Vol. 25, issue 18, pp. 1465-1484.

10. Milton S. Ash, (1979), "Nuclear Reactor Kinetics", Second Edition, McGraw Book Compoany. INC. U.S.A.

11. G. R. Keepin and C.W.Cox (1960), "General Solution of the Reactor Kinetic Equation", Nucl. Sci. Eng.: 8, 670-690.

12. Lewins Jeffery (1960) "The Use of the Generation Time in Reactor Kinetics", Nucl. Sci. Eng: 7, 122-126.

13. J.B. Yansinsky, (1970), "On the Use of the Point Kinetices for the Analysis of Rod-Ejection Accident", Nucl. Sci. Eng.: 39, 241 – 256.

14. J. B. Yansinsky and A. F. Henry, (1965), "Some Numerical Experiments

15. Mahammed Rahgoshay, Yashar Rahmani, (2007), "Study of Temperature Distribution of Fuel, Clad and Coolant in The VVER-1000 Reacter Core During Group-10 Control Rod Scram By Using Diffusion and Point Kinetic Methods "Nukleonika, Vol.52, No.4, PP.159-165. 16. Milton S. Ash, (1955), "Solution of the Reactor Kinetics Equations for Time-Dependent Reactivities", U.S. Atomic Energy Commission, UCRL-4622.

17. S. Boeria, (1980), "Kinetic Calculation: The Airek Cod", proceeding Course on Reactor Thery and power reactors, IAEA, Vienna.

18. Carla Mongini – tamagini, (1964), "Airek- Mod: A modified Version of the Kinetic Code Airek – II", Joint Nuclear Center Ispara Establishment, Italy, scientific data processing center – CETIS.

19. Tylee j. Louis, (1983), "Simple Reactor Model Simulation of Loft ATWS even", Nuclear Technology, Vol. 61 APR.

20. S. Glasstone and A. Sesonke, (1981), "Nuclear Reactor Engineering", Van Nostrand Reinhold Company, New York.

21. John R. Lamarsh, (1975), "Introduction to Nuclear Engineering", Addison-Wesley publishing company.

دراسة تأثير الفاعلية على قدرة المفاعل بتأثير التغذية العكسية لدرجة حرارة الوقود فرحان لفتة رشيد، ابراهيم كيطان فياض، فيصل غازي حمودي، صباح محمد فتحي، حوراء محمد حسين

Study of Reactivity Effect on Reactor Power by Feedback Fuel Temperature

Farhan L. R. Ibrahim G
Ministry of Tecnology&scieneF. Faissal G. H. Sabah M. F. Haora M. H.
Diyala of University
College of science

<u>Abstract</u>

The study deals with insertion of step negative or step positive reactivity and/or ramp reactivity expressed as a polynomial in time in the presence of one feedback mechanism in order to predict the neutron behavior as a function of time in terms of reactor power. Insertion of negative step reactivity such as $\rho = -0.001$ \$ indicates that the reactor power is stable due to this value but insertion of larger negative step reactivates causes a decrease in power as a function to time while insertion of positive step reactivity such as $\rho=0.007$ \$ shows that the reactor power stable but it increases with time in case of insertion of large positives reactivities despite of the presence of one feedback mechanism. Also, it is observed that the resulted reactivity due to insertion of positive reactivities in the range (0.2\$ - 0.4\$) will be stable for any time interval without being affected by feedback mechanism. He resulted reactivity due to insertion of positive reactivities in the range (0.45\$ - 0.65\$) will be stable for certain time interval and then decrease due to the effect of one feedback mechanism.

The sudden jump in power (excursion) is observed during very short time after inserting positive reactivities in the range of (1.003\$ - 2.5\$) and continues oscillations occur in the power after the excursion in case of inserting positive reactivities in the range of (1.5\$ - 2.5\$) despite the presence of feedback mechanism.

Insertion of ramp reactivities in terms of polynomial in time to study the behavior of power and/or reactivity as a function of time in the presence of two feedback mechanism (fuel) has been carried out and the result are displayed as plots, and showed this results corresponding with international results.

This study appeared proceeding determination present necessarily for reactivity effects values of safety analysis in transient and for control requirements through reactor operation.

Keywords: reactor kinetic, point reactor kinetic, accidents, feedback, reactivity insertions.