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  الملخص
ثاليات اليمنى العظمى الغرض من هذا البحث هو دراسة الحلقات التي تكون فيها كل الم

 وتم عرض بعض MGP من النمط أنهاكما تم تعريف هذه الحلقات على ، معممة يسرى
 .وعلاقتها مع الحلقة المنتظمة بقوة ، حلقة منتظمة بضعف وحلقة كاش  خواصها الأساسية

 

ABSTRACT 

The purpose of this paper is to study the class of the rings for which 
every maximal right ideal is left GP-ideal. Such rings are called MGP-rings 
and give some of their basic properties as well as the relation between 
MGP-rings, strongly regular ring, weakly regular ring and kasch ring. 
 

1-  Introduction : 
Throughout this paper, R denotes as associative ring with identity. An 

ideal I of a ring R is said to be right(left) pure if for every a∈I, there exists 
b∈I such that a=ab (a=ba). This concept was introduced by  Fieldhouse [6], 
[ 7 ], Al-Ezeh [ 2 ],[ 3 ] and Mahmood [ 9 ].  
Recall that:- 
1- A ring R is regular if for every a∈R there exists b∈R such that a=aba, if 

a=a2 b, R is called strongly regular.  
2-A ring without non-zero nilpotent elements is called reduced.  
3-For any element a∈R, r(a) and l(a) denote the right annihilator   and the 

left annihilator of a, respectively.  
4-A ring R is said to be a left(right) uniform ring if and only if every non-

zero left(right) ideals is essential . 
5-Following [10], a ring R is said to be semi commutative if xy=0 implies 

that xRy=0, x,y ∈R. Clearly every reduced ring is semi commutative. It 
is easy to see that R is semi commutative if and only if every left(right) 
annihilator in R is a two-sided ideal.  

6-Y(R), J(R) are respectively the right singular ideal and the Jacobson 
radical of R. 
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2- MGP-rings 
In this section, the concept of maximal GP-ideals is introduced and we 

use it to define MGP-rings .We study such rings and give some of their 
basic properties.  
Following [8], an ideal I of a ring R is said to be right (left) GP-ideal 
(generalized pure ideal), if for every a in I, there exists b in I and a positive 
integer n such that an =an b (an =b an).  
 

Definition 2.1 : 
A ring R is called a right (left) MGP-ring if and only if every 

maximal right (left) ideal is left (right) GP-ideal. 
 

Example:   
Let Z12 be the ring of the integers module 12.  

Then the maximal ideals , I={0,3,6,9} , J={0,2,4,6,8,10} are GP-ideals. 
The following theorem gives some interesting characteristic 

properties of right MGP-rings. Before that we need the next lemma in our 
proof. 
 

Lemma 2.2: 
Let a be a non zero element of a ring R and let l(a) = 0. Then  

 for every positive integer n, l (an) = 0. 
Proof: obvious  # 
 

Theorem 2.3 : 
If R is a right MGP-ring and every ideal is principal, then any left 

regular element is right invertible .   
Proof : 

Let 0≠c ∈ R, such that l(c) = 0. If c R ≠ R, then there exists a 
maximal right ideal M containing cR . Since R is right MGP-ring, then M is 
a left GP-ideal, there exists d ∈ M and a positive integer  n, such that       
cn= dcn  and d = cx , for some x ∈ R .  

So ( 1-cx) ∈ l(cn) ,Since l( c ) = 0 , then by Lemma (2.2) we have  
l(cn) = 0 , thus cx = 1 ∈ M , this contradicts  cR ≠  R. Therefore  
cR = R , and hence c is a right invertible. #  
 
Lemma 2.4 : 

Let R be a reduced ring. Then for every  a ∈ R , and every positive 
integer  n ,  an R ∩   r (an) = 0 . 
Proof:  See [8] 
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Proposition 2.5 : 
Let R be a reduced, MGP-ring. Then for every a in  R and  

a positive integer n, r (an ) is a direct summand of R .  
Proof : 

To prove r (an) is a direct summand, we claim that an R + r (an) = R. 
If this is not true, let M be a maximal right ideal containing an R + r (an). 
Since R is MGP-ring , so (an)m = b (an)m  for some b ∈M and a positive 
integer m,  this implies (1-b) ∈ l( anm ) = r (an) ⊆  M (R is reduced) , and so  
1∈ M,a contradiction. Hence anR+r(an) =R . 

 Now, since an R ∩  r (an) =0 ,Lemma( 2.4) ,then r (an) is a direct 
summand. # 

 

Recall that, a ring R is called a right (left) MP-ring if every maximal 
right (left) ideal is a left (right) pure. 

We consider the condition (*): R satisfies l( bn) ⊆ r(b)  for any  
b ∈ R  and   a positive integer  n . 

 
Theorem 2.6 : 

 Let R be a ring satisfying (*). Then R is a right MGP-ring if and 
only if  R is strongly regular . 
Proof: 

If this is not true let R be a right MGP-ring and let b be any element 
in R .We shall prove that bR + r (b) =R . 
If this is not true let M be a maximal right ideal containing bR+r(b) . Since  
R is an   MGP-ring , then there exists  a ∈ M and a positive integer n   such 
that   bn = abn  which implies that (1-a) ∈ l( bn) ⊆ r(b) ⊂ M , thus  
1 ∈ M ,a contradiction . Therefore bR+ r(b) = R .  
In particular, b u + v = 1 , for some  u ∈ R , v∈r(b) .  
So b = b2 u , therefore R is strongly regular . 

Conversely; assume that R is strongly regular, then by [1], R is 
regular and reduced. Also by [9] , R is an MP-ring and semi commutative, 
then R is an MGP –ring  . # 
 
Proposition 2.7 : 

Let R be a right MGP-ring satisfying (*). Then Y(R) = 0. 
Proof: 
  If Y(R) ≠ 0 ,then by a Lemma (7) of [10]; there exists  
0 ≠ a ∈Y (R)  with a2 = 0 .From Theorem (2.6)  R is strongly regular , that 
is a = a2 b , for some  b ∈ R . Hence a = 0, contradiction. Therefore Y(R) = 
0. # 
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Proposition 2.8 : 
If R is a right MGP  – ring, then any reduced principal right ideal of 

R is a direct summand . 
Proof  : Let I = aR be a reduced principal right ideal of R .If aR+r(a ) ≠ R،  
then there exists a maximal right ideal M of R containing aR+r(a). 

Now , since  R is a right MGP-ring and  a ∈ M , then there exists        
b ∈ M  and  a positive integer n such that  an  = b an ,and hence (1-b)an= 0 . 
Since I is reduced then we have (1-b) ∈ l( an) = r(an) = r(a)⊂  M, this 
implies that 1 ∈ M , which contradicts  M ≠  R. Therefore, aR+r(a) = R , 
thus a =a2 c  for some c∈R. If we set d=a2∈I, then a=a2 d . implies that        
a = ada  and hence aR = e R , where e = ad  is  an idempotent element . Then 
by [6], aR is a direct summand. # 
 
Proposition 2.9 : 

Let R be a right MGP-ring satisfying (*). If an b = 0, for any 
 a,b ∈ R and a positive integer n, then  r (an) + r(b) = R . 
Proof: Assume that r (an) +r(b) ≠ R . Let M be a maximal right ideal 
containing r(an) +r(b) . Since  R  is a right MGP-ring  and an b = 0  implies 
that  b ∈ r ( an) ⊆ M , there exists  c ∈ M and a positive integer  m such that 
bm = cbm , so( 1- c) ∈ l( bm)⊆  r(b)⊂  M,which implies that 1∈M ,which is 
a contradiction . Therefore r (an) + r(b) = R . 
 
Theorem 2.10 : 

Let R be a uniform semi commutative, MGP-ring and every ideal is 
principal. Then R is a division ring . 
Proof   : Let 0 ≠  a  ∈ R and  aR ≠  R ,and let M be a maximal right ideal 
containing aR .Since R is an MGP-ring, then there exists b ∈ aR ⊆ M  ،  
and a positive integer  n  such that  an= ban . 
This implies that an =acan   , for some  c ∈ R. Since R is uniform so every 
ideal is an essential ideal. 

Let x ∈ r (ar) ∩an R .Then acx =0  and  x= an z for some z∈R, so 
acan z= 0 , yields an z=0=x .Therefore, r (ac)∩  an R  = 0 ,since R is a 
uniform ring and  an R ≠0 ,then r(ac) = 0 . Since  R is semi commutative , 
l(ac) = 0 , then by Theorem  (2.3)  ac is a  right invertible element ,so there 
exists v ∈R  such that acv = 1 . Hence a (cv) = 1 ∈ M ,which is a 
contradiction. Therefore aR = R . 
 

Now, since ar=1 (aR=R),we have ara=a which implies that             
(1-ra )∈ r(a)=l(a)⊆l(ar)=r(ar)=0.Therefore, (1-ra)=0 ,whence ra=1,so a is a 
left invertible .Thus R is a division ring. #  
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3-The relation between MGP-rings and other rings 
In this section we give further properties of the MGP-rings and link 

between MGP- rings and other rings . 
We shall begin this section with the following result, which gives the 

connection between MGP-rings and weakly regular rings. 
Following [11], a ring R is a right (left) weakly regular if I2 =I for 

each right (left) ideal I of R . Equivalently, if a∈aRaR (a∈RaRa) for every a 
in R . Then R is called weakly regular. 

 
Theorem 3.1 : 

Let R be a right MGP-ring and satisfying (*). Then R is a reduced 
weakly regular ring . 
Proof  : Let a be a non zero element in R with a2 = 0. Let M be a maximal 
right ideal containing r (a). Since  a ∈ r (a) ⊆ M   and  R is an MGP-ring , 
then there exists b ∈ M and a positive integer   n  such  that an = ban , which 
implies that  ( 1- b ) ∈ l(an) ⊆ r (a)⊂  M , yielding  1 ∈ M,which is a 
contradiction .  

Therefore, a = 0, and hence R is a reduced ring .We show that     
RxR + r(x) = R, for any x  ∈ R. 

Suppose that there exists y ∈ R such that RyR+ r (y) ≠ R . 
Then there exists a maximal right ideal M of R containing RyR+r(y). Since  
R is a right MGP-ring , there exists   a  in  M   and a positive integer n such 
that  yn = a yn implying that ( 1-a) ∈ l(yn) ⊆ r(y) ⊂  M , whence  (1-a) ∈M  
and so  1 ∈ M implies that M=R , which is a contradiction.  
Therefore, RxR +r(x) =R, for any  x ∈R. 
Hence R is a right weakly regular ring. Since R is reduced, it also can be 
easily verified that R is a weakly regular ring. # 
 
Definition 3.2: [9] 

A ring R is said to be a right (left) Kasch ring if every maximal right 
(left) ideal is a right (left) annihilator . 

 
Theorem 3.3 : 

Every semi commutative right MGP-ring is a right Kasch ring . 
Proof  : Let M be any maximal right ideal of R and let Y(R) be the right 
singular ideal of R . 

If M ∩Y(R) = 0, then for any y ∈ Y(R),   y∉M, this implies that 
r(y) is an essential right ideal of R . 

Let x  ∈ r (y) ∩ r (1-y), then yx= 0 and (1-y) x = 0 yields x=yx=0. 
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Therefore r(y)∩ r (I-y) = 0, whence r (1-y) = 0. Since R is semi 
commutative ring, then we have l(1-y) = 0 .  

By Theorem (2.3),(1-y) is an invertible element of R. Hence  
y ∈ J ⊂  M ,a contradiction. 
Thus M ∩Y(R) ≠ ٠  .  Let 0 ≠ a∈ M ∩Y(R). 

Since R is an MGP-ring, then there exists b ∈ M and a positive 
integer n such that an = ban = aran .We claim that r (ar) ∩  an R = 0. 
If not, let d∈r(ar) ∩  an R .Then  ar  d = 0 and d=an x for some x∈R , so  
aran x = 0 implies that an x = 0=d. Therefore, r (ar) ∩  an R = 0.But r(ar) is 
essential ,then  an R = 0  and hence  an x = 0 , for all  x ∈ R implies that  
an ∈ l(x) = r(x). Therefore, M = r(x).Thus R is a right Kasch ring. # 
 
Corollary 3.4: 

Let R be a reduced MGP-ring. Then R is a Kasch ring  . 
Proof: Since R is a reduced right MGP-ring .Then by Theorem (3.3) R is a 
Kasch ring  .# 
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