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ABSTRACT

A new family of CG -algorithms for large-scale unconstrained
optimization is introduced in this paper using the spectral scaling for the
search directions, which is a generalization of the spectral gradient method
proposed by Raydan [14].

Two modifications of the method are presented, one using Barzilai
line search, and the others take « =1 at each iteration (where « is step-
size). In both cases tested for the Wolfe conditions, eleven test problems
with different dimensions are used to compare these algorithms against the
well-known Fletcher —Revees CG-method, with obtaining a robust
numerical results.

Key Words.
Unconstrained optimization, spectral conjugate gradient method,
inexact line search.

1. Introduction

Unconstrained optimization is one of the fundamental problems of
numerical analysis with numerous applications.

The problem is the following:

For a function f:R" —> R and an initial point X, , find a point x" (the
minimizer of /) which minimizes the function f(x), i.c.

mir} f(x) ..(D)

XeR
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Usually x exists and is locally unique. It is a assumed that f is
continuously differentiable for all £ where k is the number of iterations.
Methods for unconstrained optimization are generally iterative methods in
which the user typically provides an initial estimate x, of x~ with possibly
some additional information. A sequence of iterates {x,} is then generated
according to some algorithm. Usually function values {f,} is monotonically
decreasing ( £, denotes f(x;)).

A well-known algorithm for solving problem given in equation(1) is
the Steepest Descent method first proposed by Cauchy in 1874. The
iterations are made according to the following equation:

Xpp =Xp+o,d, , k=01, ...(2)

where d, =-g, and «, is a step-size, which is obtained by carrying out an

exact line search. It’s well-known that the negative gradient direction has
the following optimal property (see [7]).
1

= . 3)

~ g = Min Lim{f;, — fTx, +-21]
deR" a0 ||d||2
Despite the simplicity of the method and the optimal property (3),
the Steepest Descent method converges slowly and is badly affected by ill-
conditioning (see [9] or [15]).
In 1988, a paper by Barzilai and Borwein [5] proposed a Steepest
Descent method (the BB method) that uses a different strategy for choosing

the step-size ¢, along the negative gradient direction which is obtained

from two point approximation to the secant equation underlying Quasi-

Newton methods,
Considering H, =y,1I,,, as an approximation to the Hessian of f at

X, , they choose y, such that
H, = argmin"Hsk —J’knz ’
where s, =x,,, —x, and y, = g,,, — g, , yielding (see[2] or [5]),
T
N
yi =22k (@

Sk Sk
with these, the method of Barzilai and Borwein is given by the following
iterative scheme:

X+l = Xp — A 8k (5)

1
where a; = ——
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The scalar ¥*” has been already used as scaling factor in the Quasi-

Newton algorithms or Conjugate Gradient algorithms (see[4] and [11]).

The BB method has been shown to converge [14] and it’s
convergence is linear [13], despite at these advances of BB method on
quadratic functions, still there are many open questions about this method
on non-quadratic functions although Fletcher [9] shows that the method be
very low on some test functions.

In recent paper Abbo [1] proposed a modification of BB by the
following way [1].

Let G, = 7/°1,.,

where I is the identity matrix as an approximation of Hessian matrix G,,

from convex combination of forward and backward Euler's scheme
Xpa =X — i [(1-€)g, +&g,], 0<e<1, h is a step-size ...(6)

and using Taylor's series for g(x) about x,,, ,1.e.
2
81 = &k + G5y +0(||S|| ) (7

2. Conjugate Gradient Method (CG-Methods)

Conjugate Gradient Methods depend on the fact that for quadratic
function, if we search along a set of n mutually conjugate directions  d, ,
k=12,.,n , then we will find the minimum in at most n steps if line
searches are exact. Moreover, if we generate this set of directions by known
gradients, then each direction can be simply expressed as

dy =-go ... (8)
diy) =—8kn + Prdy ..(9)

where £, can be calculated by

T
Py = EriBhel ...(10)
8k 8k
_ T
Brore :w (1)
Sk Vi

All these B, ’s are equivalent on quadratic function with exact line

searches and starting with steepest descent direction, but when extended to
general non-linear functions, the conjugate gradient algorithm with different
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[ are quite different in efficiency. Formula (11) gives better algorithms

than (10) in practice , a reason for this is given by Powell [13]. One of the
reasons for the inefficiency of CG-method is that none of the £ in (10) and
(11) takes into consideration the effect of inexact line searches [10]. To
overcome this drawback some authors proposed the so called spectral
conjugate gradient methods (see for example [3],[6]).

Birgin and Martinez in [6] introduced an spectral conjugate gradient
(SCG), in which the search directions are generated by

d,=—6,g, k=0

dis1 = =018k + Brsk ...(12)
sTs
where 6, =——+ ...(13)
Sk Vi
T
and g, = (Grk _Tsk) 81 .(14)
Sk Vi

For if ¢, =1 this formula was introduced by Perry in [12], if we assume that

szng:o , j=01,..k then
ekJ’I{gkl

PRERS i -(13)
0,81 &k

Finally, assuming that the successive gradients are orthogonal, we

obtain the generalization of FR formula:

ﬁkZHkngH(ng (16)
0,8k &x

In fact, SCG algorithm is a generalization of the Raydan [14]
spectral gradient algorithm defined by

dk :—akgk ...(17)
where € asin (13).

3. Outlines of the spectral CG-algorithm algorithm
Let x,eR" ,, dy=-gy , k=0, oy =1

Step(1) : if g, =0 stop, otherwise go to step(2)
Step(2) : compute
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a_||d -
- # (18)
k
such that Wolfe-condition is satisfied and hence a new x,,, is computed

Step(3) : compute g, , by (13) and S, by (15) or (16) and define

di ==& + Bisi
Step(4) : If  d] g, <-107|d;,||gsa ...(19)
thenset d,,, =d, else d,,, =-0g;,,
Step(5) : k=k+1 go to step(1)
4. New family of SCG methods (NSCG say)

In [10] Birgin gives a nice comparison by asking the following
questions:
1- Is the choice (13) better than & =1?

2- Which is the best choice of £, among (15) and (16)?
3- Which is the best choice of «, ?

According to these inquires let us consider the following:
From the last term in (7) and substituting in (6) we obtain
Xpa — X = I [(1—&)gy + &(gy + Gysy)]

Sk = —hi (g +6Gys]
Si +‘9thkSk :_hkgk

(I +eGy)sp =—he gy

xk+1h_—xk:_(1+gthk)4gk ...(20)
k
||gk+1 _gk||2 . . .
Let 1, ===——==%- , Lipschitz constant , let G, =2,/ where Iis
"xk+1 Xk "

nx n identity matrix and put %, =L, in (20)
X=X, ==L [I+LOAI"g,

1 Ty sty _
— (g —x) =+ e 52 2 gy
Ly s's vy

1 sTs
—sp =1 — 18k

k Sk Sk TERY
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T
Sk Sk
dp =— 8k

SESp+EsLy
Xpal =X +d

T
s 8

where = ————— .21
sTs +as’y @D

T
From (21) it is clear that setting & =0 this gives 6= S—TS =1, this will
s s

answer one of the inquiries of Birgin. Also taking &=1 will give

T
AN

0 = ————— . To answer the 2" inquiry, it is clear that B, in (14) is very
s's +s'y

effective since the line search which is used in this paper is not exact. To
answer the 3" inquiry we suggest a new hybrid computations for the scalar
«a as shown in step(2) from the new algorithm.

We are going to list outlines of the new proposed algorithm (NSCG).

4.1 Outline of the algorithm (NSCG)

Let x,eR" , 0<o<y<l,dy=-gy , k=0
Step(1) : if g, =0 stop, else go to step(2)
Step(2):First compute «, =1 and second compute

1 k=0
ap = ak—lndk—l" k>0
e
Such that f(x, +a,d;) < f(x;)+ 0w, g} d, ...(22)
And g, d, >%ld, ...(23)

Xpa1 =X Hapdy

Step(3) : compute € by (21) and 3, by (16) and define

dis1 =018k + Brsk

Step(4) : If d{ g <107 d|,[|g ]

then diyg =dg €lse  dyy =680

Step(5) : k=k+1 go to step(1)
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4.2 Some theoretical results

4.2.1 Theorem:
If «, satisfies Wolf condition defined by (22) and (23) then the

search direction will be descent , i.e. y/s, >0 .
For proof see [5].

4.2.2 Theorem:
Suppose that f is bounded below in R” and that f is continuously

differentiable in neighborhood of the level set L ={x: f(x) < f(x,)}. Assume
also that the gradient g, is Lipchitz continuous i.e. there exists a constant
c>0 s.t. ||g(x) —g(y)" < c"x—y" Vx,yeR".

Consider any iteration of the form

X =% +a4d, where a=1 and if 4, =-g, and «, satisfies Wolfe

k

conditions defined in (22) and (23) then fim|g,|=0 -
k—o0

Proof : From equation (22) we have (g,,, —g,) d; > (o, —Dgld, ...(24)
on the other hand, the lipchitz condition  (g;., —g,)" d; < aydd;|” ...(25)
T 2
from (24) and (25) we get > ("2—‘1]% ...(26)
c dk
T 2
0-2_1)(gkdk2) (27)
¢ i

now using the relation ||g, [|;[cosy, =-gid, where y, is the angle between

using equations (22) and (26) we have f;,, < f; + o, (

g, and d,.
then the equation (27) can be written as f;, < f; +1|g.]cos” 7, ...(28)
where 1= 210270 44 0,,0, € (O,%)

C

summing the expression in equation (28) and since f is bounded below, we
obtain

2
Z:cos2 velgil < ...(29)
assuming that cos” y, >8>0 for all k, then we conclude that

lim g ]| =0 ...(30)
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5. Numerical results

The comparative test involves eleven well-known standard test
functions(given in the appendix) with different dimensions. The results are
given in the Table(1) is specifically quoting the number of function
evaluations (NOF) . All programs are written in FORTRAN 90 language

and for all cases the stopping criterion is taken to be ||g,f+1 || <1x107°. The

results are given in table (1):
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Table (1)
Comparison results between the new (NSCG)

and Birgin spectral standard SCG for ﬂ FR

New (SCG) Standard SCG)
L. |
Test Function N k Hdk H a, =1 o, =—F—— a, =1
ld.]
f& g Eva. f& g Eva. f & g Eva. f& g Eva

Extended
Trigonometric

Extended
Rosenbrock

Perturbed Quadratic

Raydan 1

Diagonal 2

Generalized
Tridiagonal-1

Extended Three
Exponential Terms

Generalized PSC1

Extended Powell

Extended Maratos

1000

184

71 184 81
Extended Wood 5000 192 71 202 79
10000 178 74 188 83

I Total 16076 9170 | 24970 | 16257 |

From Table (1) taking the standard Birgin (SCG) as %100 NOF we

can get the following values.
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Table(2)
NOF+NOG
_ald. | o =1
a, =
ld.]
Standard SCG 100% 100%
New SCG 64% 56%

From table (2) it is clear that the new proposed algorithm with it’s
both versions has an improvements of about (33-36)% NOF according to

our selected number of test functions.

6. Appendix :

All the test functions used in this paper are from general literature:
1. Extended Trigonometric Function

f(x) Zi((n —icosxj) +i(l1-cosx;)* , X =[0.2,0.2,...,0.2]"

i=1 Jj=1
2. Extended Rosenbrock Function
n/2

f(x) = Zc(xZi —x3)7 + (1= x)° . xo=[-121..-121"

i=1
3. Perturbed Quadratic Function

_ _ T
f(x) = ZIx +m(2x) , Xy =[0.5,0.5,...,0.5]

4. Raydanl Function
f(x) = z%(exp(xi)—xi) ., Xp =[LL...1]7

i=1
5. Diagonal2 Function

fx) = >’ (exp(x;) — 1) , X =[1/11/2,...1/n]"
i=1 !
6. Generalized Tridigonal-1 Function

n—1

f(x) = Z(xi + X _3)2 +( =X + 1)4 ,» X = [292,-.-,2]T

i=1
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7. Extended Three Exponential Terms
n/2

f(x) = Z(exp(le-_l +3x,; —0.1) + exp(xy;_; —3x,; —0.1) + exp(—xy;_; —0.1) ,
i=1
xo =[0.5,0.5,...,0.51"
8. Generalized PSC1 Function
n—1
f(x) = Z(x,? +x2,xx,)% +sin?(x) +cos?(x;) , xp =[3,0.1,...,3,0.1]"
=1
9. Extended Powell Function
f(x) =
n/4
Z(x4i—3 + 10x4i—2)2 +5(xgm — x4i)2 + (X450 — 2"4;’—1)4 +10(x4;_3 _x4i)4 s
i=1
xo =[3,-1,0,1,...,3,-1,0,1]"

10. Extended Maratos Function
nl/2

£x) = Yy ey 413 1) , X =[1.1,0.1,...1.1,0.1]"
i=1

11. Extended Wood Function

nl/4
f(X)= D 100055 = x45)” + (Xgry =17 +9005 = x4)" + (1= x4)° +
i=1

10.1{(xg; 5 —1)? + (xg; =D} +19.8(x4; , —D(xy; =1)
xo =[-3,-1,-3,~1,...-3,-1,-3,-1]"
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