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 اقتراح عائلة جديدة من خوارزميات التدرج المترافق في الامثلية غير المقيدة ذات  تم
القياس العالي التي تستخدم القياس الطيفي لخطوط البحث والتي هي توسيع للخوارزمية الطيفية 

  . Raydan [14] المقترحة من قبل

 باستخدام ى  والآخرBarzilai باستخدام خط بحث أحداهماتم تطوير العائلة بوسيلتين 
1=α في كل خطوة تكرارية مع استخدام شرط Wolfeفي الحالتين  . 

 مختلفة باستخدام العائلة الجديدة مقارنة مع بإبعاد دالة لاخطية ة عشرأحدى ةتم مقارن
 .ذات كفاءة عالية مع الحصول على نتائج عددية FRالخوارزمية القياسية لــ  

 

ABSTRACT 
A new family of  CG –algorithms for large-scale unconstrained 

optimization is introduced in this paper using the spectral scaling for the 

search directions, which is a generalization of the spectral gradient method 

proposed by Raydan [14]. 

Two modifications of the method are presented, one using Barzilai 

line search, and the others  take 1=α  at each iteration (where α  is step- 

size). In both cases tested for the  Wolfe conditions, eleven test problems 

with different dimensions are used to compare these algorithms against the  

well-known Fletcher –Revees CG-method, with obtaining a robust 

numerical results. 
 

Key Words. 
Unconstrained optimization, spectral  conjugate gradient method, 

inexact line search. 
 

1. Introduction 
Unconstrained optimization is one of the fundamental problems of 

numerical analysis with numerous applications. 

The problem is the following: 

For a function RRf n →:  and an initial point 
0
x  , find a point 

*x  (the 

minimizer of f ) which minimizes the function  )(xf , i.e.  

nRx∈

min )(xf          …(1) 
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Usually 
*x  exists and is locally unique. It is a assumed that f is 

continuously differentiable for all k  where k  is the number of iterations. 

Methods for unconstrained optimization are generally iterative methods in 

which the user typically provides an initial estimate 
0
x  of 

*x  with possibly 

some additional information. A sequence of iterates }{ kx  is then generated 

according to some algorithm. Usually function values }{ kf  is monotonically 

decreasing ( kf  denotes )( kxf ). 

A well-known algorithm for solving problem given in equation(1) is 

the Steepest Descent method first proposed by Cauchy in 1874. The 

iterations are made according to the following equation: 

kkkk dxx α+=+1     ,    ,...1,0=k        …(2) 

where kk gd −=  and 
k

α  is a step-size, which is obtained by carrying out an 

exact line search. It’s  well-known that the negative gradient direction has 

the following optimal property (see [7]). 

α
α 1

]][[

2
0 d

d
xffLimMing kk

aRd
k n

+−=−
+→∈

                                                  … (3) 

Despite the simplicity of the method and the optimal property (3), 

the Steepest Descent method converges slowly and is badly affected by ill- 

conditioning (see [9] or [15]). 

In 1988, a paper by Barzilai and Borwein [5] proposed a Steepest 

Descent method (the BB method) that uses a different strategy for choosing 

the step-size 
k

α   along the negative gradient direction which is obtained 

from two point approximation to the secant equation underlying Quasi-

Newton methods, 

 Considering nxnkk IH γ=  as an approximation to the Hessian of f  at 

k
x , they choose 

k
γ such that  

2
minarg kkk yHsH −= ,  

where kkk xxs −= +1  and kkk ggy −= +1  , yielding (see[2] or [5]), 

k
T
k

k
T
kBB

k
ss

ys
=γ                                                                …(4) 

with these, the method of Barzilai and Borwein is given by the following 

iterative scheme: 

kkkk gxx α−=+1       …(5) 

where 
BBk

γ
α

1
=  
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The scalar 
BBγ  has been already used as scaling factor in the Quasi-

Newton algorithms  or Conjugate Gradient algorithms (see[4] and [11]). 

The BB method has been shown to converge [14] and it’s 

convergence is linear [13], despite at these advances of BB method on 

quadratic functions, still there are many open questions about this method 

on non-quadratic functions although Fletcher [9] shows that the method be 

very low on some test functions. 

In recent paper Abbo [1] proposed a modification of BB by the 

following way [1]. 

Let nxn
BB
kk IG γ=  

where I is the identity matrix as an approximation of Hessian matrix 
k

G , 

from convex combination of forward and backward Euler's scheme  

])1[(1 kkkkk gghxx εε +−−=+ , 10 ≤≤ ε , h  is a step-size                        …(6) 

and using Taylor's series for g(x) about 
1+kx   , i.e.                              

)(
2

1 sosGgg kkkk ++=+         …(7) 

 

2. Conjugate Gradient Method (CG-Methods) 
Conjugate Gradient Methods depend on the fact that for quadratic 

function, if we search along a set of n mutually conjugate directions     
k
d  , 

nk ,...,2,1=   , then we will find the minimum in at most n steps if line 

searches are exact. Moreover, if we generate this set of directions by known 

gradients, then each direction can be simply expressed as  

00 gd −=        … (8)                           

kkkk dgd β+−= ++ 11                   ...(9) 

where 
k

β  can be calculated by  

k
T
k

k
T
k

FR
gg

gg 11 ++=β        …(10) 

k
T
k

k
T

kk
perry

ys

gsy 1)( +−
=β                                 …(11) 

All these 
k

β ’s  are equivalent on quadratic function with exact line 

searches and starting with steepest  descent direction, but when extended to 

general non-linear functions, the conjugate gradient algorithm with different 
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β  are quite different in efficiency. Formula (11) gives better algorithms 

than (10) in practice , a reason for this is given by Powell [13]. One of the 

reasons for the inefficiency of CG-method is that none of the β  in (10)  and 

(11) takes into consideration the effect of inexact line searches [10]. To 

overcome  this drawback some authors proposed the so called spectral 

conjugate gradient methods (see for example [3],[6]). 

Birgin and Martinez in [6] introduced an spectral conjugate gradient 

(SCG), in which the search directions are generated by  
 

kkk gd θ−=     , 0=k  

kkkkk sgd βθ +−= +++ 111       …(12) 

where  
k

T
k

k
T
k

k
ys

ss
=+1θ                                                                  …(13) 

and  
k

T
k

k
T

kkk
k

ys

gsy 1)( +−
=

θ
β       …(14) 

For if 1=kθ  this formula was introduced by Perry in [12], if we assume that  

01 =+j
T
j gs      ,   kj ,...,1,0=   then 

k
T
kkk

k
T
kk

k
gg

gy

θα

θ
β 1+=  .                                               …(15) 

Finally, assuming that the successive gradients are orthogonal, we 

obtain the generalization of FR formula: 

k
T
kkk

k
T
kk

k
gg

gg

θα

θ
β 11 ++=       …(16) 

In fact, SCG algorithm is a generalization of the Raydan [14] 

spectral gradient algorithm defined by 

kkk gd θ−=                                          …(17) 

where θ   as in (13). 
 

3. Outlines of the spectral CG-algorithm algorithm 
 

Let nRx ∈0  , , 00 gd −=  , 0=k , 10 =α  
 

Step(1) : if 0=kg  stop, otherwise go to step(2) 
 

Step(2) : compute   
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k

kk
k

d

d 11 −−=
α

α       …(18) 

such that   Wolfe-condition is satisfied and hence a new 1+kx  is computed                                                         
 

Step(3) : compute 
1+kθ  by (13) and 

k
β by (15) or (16) and define 

kkkkk sgd βθ +−= +++ 111  

Step(4) :   If   12

3
1 10 +

−
+ −≤ kkk

T
k gdgd                            …(19) 

then set      kk dd =+1  else  11 ++ −= kk gd θ  

Step(5) : k=k+1 go to step(1) 

4. New family of SCG methods (NSCG say) 
 

In [10] Birgin gives a nice comparison by asking the following 

questions: 

1- Is the choice (13) better than 1=θ ? 

2- Which is the best choice of 
k

β  among (15) and (16)? 

3- Which is the best choice of 
k

α ? 

According to these inquires let us consider the following: 

From the last term in (7) and substituting in (6) we obtain 
)]()1[(1 kkkkkkk sGgghxx ++−−=−+ εε  

][ kkkkk sGghs ε+−=  

kkkkkk ghsGhs −=+ ε  

kkkkk ghsGhI −=+ )( ε  

kkk
k

kk gGhI
h

xx 11 )( −+ +−=
−

ε                             …(20) 

Let 
2

1

2

1

kk

kk
k

xx

gg
L

−

−
=

+

+   , Lipschitz constant , let IG kk λ= where I is 

nn×  identity matrix and put  kk Lh =  in (20)  

kkkkkk gILILxx 1

1 ][ −
+ +−=− θλ  

kT

T

T

T

kk
k

g
yy

ys

ss

yy
Ixx

L

1
1 ].[)(

1 −
+ +−=− ε  

kT
kk

T
k

k
T
k

k
k

g
ysss

ss
s

L
][

1

ε+
−=  
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Q  kT
kk

T
k

k
T
k

k g
ysss

ss
d

ε+
−=      

kkk dxx +=+1  

where
ysss

ss

TT

T

ε
θ

+
=                                                 …(21) 

From (21) it is clear that setting 0=ε  this gives 1==
ss

ss
T

T

θ , this will 

answer one of the inquiries of Birgin. Also taking  1=ε  will give 

ysss

ss

TT

T

+
=θ . To answer the 2

nd
 inquiry, it is clear that 

k
β  in (14) is very 

effective since the line search which is used in this paper is not exact. To 

answer the 3
rd
 inquiry we suggest a new hybrid computations for the scalar 

α  as shown in step(2) from the new algorithm. 

We are going to list outlines of the new proposed algorithm (NSCG). 

 

4.1 Outline of the algorithm (NSCG) 
 

Let nRx ∈0  , 10 <<< γσ , 00 gd −=  , 0=k  

Step(1) : if 0=kg  stop, else go to step(2) 

Step(2):First compute 1=kα  and second compute 

















>

=

= −−
0

01

11
k

d

d

k

k

kkk αα    

 Such that k
T
kkkkkk dgxfdxf σαα +≤+ )()(                                             …(22) 

 

And k
T
kk

T
k dgdg γ≥+1                                                      …(23) 

kkkk dxx α+=+1                    

Step(3) : compute θ   by (21) and  
k

β by (16) and define 

 

kkkkk sgd βθ +−= +++ 111  

Step(4) :   If           12

3
1 10 +

−
+ −≤ kk

T
k gdgd                            

then       kk dd =+1  else     111 +++ −= kkk gd θ         

Step(5) : k=k+1 go to step(1) 
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4.2  Some theoretical results 
 

4.2.1 Theorem:  
If 

k
α  satisfies Wolf condition defined by (22) and (23) then the 

search direction will be descent , i.e. 0>k
T
k sy  . 

For proof see [5]. 

 

4.2.2 Theorem: 

Suppose that f is bounded below in 
nR   and that f is continuously 

differentiable in neighborhood of the level set )}()(:{ 0xfxfxL ≤= . Assume 

also that the gradient 
k
g  is Lipchitz continuous i.e. there exists a constant 

0>c  s.t.   nRyxyxcygxg ∈∀−≤− ,)()( . 

Consider any iteration of the form  

kkkk dxx α+=+1   where 1=α   and if 
kk
gd −=  and 

k
α  satisfies Wolfe 

conditions defined in (22) and (23)  then 0lim =
∞→

k
k

g  . 

Proof : From equation (22) we have    k
T
kk

T
kk dgdgg )1()( 21 −≥−+ σ    …(24) 

on the other hand, the lipchitz condition     
2

1 )( kkk
T

kk dcdgg α≤−+  …(25) 

from (24) and (25) we get               
2

2
2 )(1

k

k
T
k

k
d

dg

c







 −
≥

σ
α                    …(26) 

using equations (22) and (26) we have 
2

2
2

11

)(
)

1
(

k

k
T
k

kk
d

dg

c
ff

−
+≤+

σ
σ     …(27)   

now using the relation k
T
kkkk dgdg −=γcos  where 

k
γ  is the angle between 

k
g  and 

k
d . 

then the equation (27) can be written as kkkk gtff γ2
1 cos+≤+           …(28) 

where 
c

t
)1( 21 −

=
σσ

   and )
2

1
,0(, 21 ∈σσ  

summing the expression in equation (28) and since f is bounded below, we 

obtain  

∞<∑
22cos kk gγ           …(29) 

assuming that 0cos2 >> δγ k  for all k, then we conclude that  

                 

                                      0lim =
∞→

k
k

g                                     …(30) 
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5. Numerical results  
The comparative test involves  eleven well-known standard test 

functions(given in the appendix)  with different dimensions. The results are 

given in the Table(1) is specifically quoting the number  of function 

evaluations (NOF) . All programs are written in FORTRAN 90 language 

and for all cases the stopping criterion is taken to be 5

1 101 −
+ < xg k . The 

results are given in table (1): 
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Table (1) 
Comparison results between the new (NSCG)  

and Birgin spectral standard SCG for FRβ   

New (SCG) Standard SCG) 

k

kk

k
d

d
11 −−=

α
α

 

1=
k

α  

k

kk

k
d

d
11 −−=

α
α  

1=
k

α  Test Function N 

f & g Eva. f & g Eva. f & g Eva. f & g Eva. 

1000 44 35 44 32 

5000 101 40 99 161 

 

Extended 

Trigonometric 
10000 86 40 86 152 

1000 59 92 64 121 

5000 60 92 64 106 
 

Extended 

 Rosenbrock 
10000 64 99 64 105 

1000 662 431 364 

5000 1239 833 

513 

1351 938 Perturbed Quadratic 

10000 1504 1198 1703 2001 

1000 1619 622 636 591 

5000 # 873 # 2327 Raydan 1 

10000 # # # # 

1000 307 388 337 344 

5000 486 826 747 830 Diagonal 2 

10000 522 1189 3397 1200 

2000 54 42 320 

5000 429 185 732 

469 

537 
Generalized 

Tridiagonal-1 
10000 1324 325 1666 321 

3000 1769 116 5663 195 

4000 1911 181 1524 425 
Extended Three 

Exponential Terms 

10000 2634 438 4364 768 

Generalized PSC1 5000 # # # # 

1000 172 152 147 590 

3000 146 179 183 2062 Extended Powell 

5000 158 155 178 712 

1000 37 141 43 46 

6000 37 141 39 307 Extended Maratos 

10000 98 141 432 310 

1000 184 71 184 81 

5000 192 71 202 79 Extended Wood 

10000 178 74 188 83 

Total 16076 9170 24970 16257 

 

From Table (1)  taking the standard Birgin (SCG) as  %100 NOF we 

can get the following  values. 
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Table(2) 

NOF+NOG  

k

kk

k
d

d
11 −−=

α
α  

1=
k

α  

Standard SCG 100% 100% 

New SCG 64% 56% 

 

From table (2) it is clear that the new proposed algorithm  with it’s 

both versions has an improvements of  about (33-36)% NOF according to 

our selected number of test functions. 

 

6. Appendix : 
 

All the test functions used in this paper are from general literature: 

1. Extended Trigonometric Function   

f(x) = 2

1 1

)cos1()cos((∑ ∑
= =

−+−
n

i

n

j

ij xixn                  , Tx ]2.0,...,2.0,2.0[0 =   

2. Extended Rosenbrock Function  

f(x) =  2
12

22
12

2/

1

2 )1()( −−
=

−+−∑ ii

n

i

i xxxc                     ,  Tx ]1,2.1,..,1,2.1[0 −−=  

3. Perturbed Quadratic Function  

f(x) = 2

11

2 )(
100

1 ∑∑
==

+
n

i

i

n

i

i xix                                  ,  Tx ]5.0,...,5.0,5.0[0 =  

4. Raydan1 Function 

f(x) = ))(exp(
10

1

ii

n

i

xx
i

−∑
=

                                     ,   Tx ]1,...,1,1[0 =  

5. Diagonal2 Function  

f(x) = ))(exp(

1
i

x
x i
i

n

i

−∑
=

                                      , Tnx ]/1,...,2/1,1/1[0 =  

6. Generalized Tridigonal-1 Function 

f(x) = 4
1

2
1

1

1

)1()3( +−+−+ ++

−

=
∑ iii

n

i

i xxxx                         ,   Tx ]2,...,2,2[0 =  
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7. Extended Three Exponential Terms 

f(x) = )1.0exp()1.03exp()1.03(exp( 122122

2/

1

12 −−+−−+−+ −−
=

−∑ iiii

n

i

i xxxxx  ,  

                                                                                    Tx ]5.0,...,5.0,5.0[0 =  

8. Generalized PSC1 Function 

f(x) = )(cos)(sin)( 222
1

2
1

1

1

2
iiiii

n

i

i xxxxxx +++ ++

−

=
∑      , Tx ]1.0,3,...,1.0,3[0 =  

9. Extended Powell Function 

f(x) = 

4
434

4
1424

2
414

2
24

4/

1

34 )(10)2()(5)10( iiiiiii

n

i

i xxxxxxxx −+−+−++ −−−−−
=

−∑      , 

                                                                                      Tx ]1,0,1,3,...,1,0,1,3[0 −−=     

10. Extended Maratos Function 

f(x) = 22
2

2
12

2/

1

12 )1( −++ −
=

−∑ ii

n

i

i xxcx                       ,   Tx ]1.0,1.1,...,1.0,1.1[0 =  

11. Extended Wood Function 

           f(x)= 2
14

2
4

2
14

2
34

2
24

4/

1

2
34 )1()(90)1()(100 −−−−

=
− −+−+−+−∑ iiiii

n

i

i xxxxxx  + 

                      )1)(1(8.19)}1()1{(1.10 4244
2

24 −−+−+− −− iiii xxxx   ,  

                                                                        Tx ]1,3,1,3,...,1,3,1,3[0 −−−−−−−−=  
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