Using of Software Reuse Approaches to Develop UGELIB Web Application
Asaad Abdul-Kareem Al-Hijaj, Haidar M. Abdul-Nabi, Aziz Sabah Abdul Aziz
Dept. of Computer Science, College of Science, University of Basrah, Basrah ,Iraq.

Abstraet:
In most engineering disciplines, systems are designed by composing existing components
that have been used in other systems. Software engineering has been more focused on original
development but it is now recognised that to achieve better software, more quickly and at lower
cost, we need to adopt a design process that is based on svstematic soffware reuse.
The Application system reuse involves the reuse of entire application systems either by
configuring a system for an environment or by integrating two or more systems to create a new
application. This research discuss the development of systems by reuse-based model and explain
their benefits, some problems and illustrates different approaches. Therefore, adopts tow of
these approaches (COTS product reuse , Generative Programming) to build a web application
project named UGELIB (User Growth Electronic Library) which designed as Web site consists
of networked database. We use the appachi web server with SQL and PHP languages within that
server to construct the web components. Some of these components are COTS and others are
constructed by the project team. The site allows for visitors to explore, open, download, and
uploads materials. Thus, this approach satisfy the public interest.

Keywords: Software reuse, reused based, Web Engineering, Software

Engineering, Web Engineering Process, Web application development, CBSE,
COTS.

ualiiall

o eaiind lly 530 giall Sl Sall Placiad Pha o adaill pana dguadigh Sloaaddl) Gl b
ole dpmanll a0 U1 S0 o0y Wl gl o puine Lad iyl At iy o) 81 ol
Aadial sale) e A aaad dlee dldel DA e Sl A S8V pouly deadl) syl
ol 5l cle A g o iy plall S L) 058 ligkill plaaial ale). alidl Cilinas)
Reused- alaaiu) salely alaill skt il calys Candl 13 Byon ki oLy JiS1) (pallis
A Sleagll el fa W) Slde Sl @l A5 ey JAdlidall Leileagis LiSLia g ety Based
sa 433 50 45€0) UGELIB s (s i (il daapdly «COTS sialall eyl cilaiia)
plgall adld Lieddi) A€0h lily 2el ey cug algeS Bubill aea Cua (lgediue
Sala DligSall Gl ymey Ladsall DligSe cld PHP 4ils SQL 4al as appachi web server
()) pariioadl Jpis ol smy il g0 phal) gkt o 08 o0 oeliy 8 Y1 Gandly COTS
Aalall 5800 Biny Lagy Alsyly g 3D

Aolee biaa) Aais s gll Aaia caladnl] sale) calaanl) salely Cilis p Aaliadl LS

1. Introduction:
The design process in most
engineering disciplines is based on reuse of
existing systems or components. Mechanical
or electrical engineers do not normally specify
a design where every component has to be
manufactured specially. The design on
components, which have been tried, and
tested in other systems. These are not just
small components such as flanges and valves
but include major subsystems such as engines,
condensers and turbines [1].
Reuse saves time and effort. There are
many techniques to realize reuse at every
level of software development process. Those
at the detailed design and code level are well
known and documented [2].
Software engineering has been more
focused on original development but it is now
recognised that to achieve better software,
more quickly and at lower cost, we need to
adopt a design process that is based on
systematic software reuse.
2. Reuse-based software engineering:
The software units that are reused may
be of radically different sizes. For example
[1]:
1) Application system reuse: The whole
of an application system may be reused
either by incorporating it without change
into other systems (COTS reuse) or by
developing application families. Widely
practised as software systems are
implemented as application families.
COTS reuse is becoming increasingly
common.
2) Component reuse: Components of an
application from sub-systems to single
objects may be reused. Now seen as the
key to effective and widespread reuse
through component-based software
engineering. However, it s still
relatively immature.
3) Object and Function reuse: Software
components that implement a single
well-defined function may be reused.
Common in some application domains
(e.g. engineering) where domain-

specific libraries of reusable functions
have been established.

2.2 Benefits of reuse:

QSM Associates, Inc. reports that

component-based development leads to a 70%

reduction in development cycle time; an 84%

reduction in project cost; and productivity

index of 26.2, compared to an industry norm
of 16.9 [3].

2.3 Reuse problems [1]:

e Increased maintenance costs.

e Lack of tool support.
e Not-invented-here syndrome.
e Maintaining a component library.

e Finding and adapting reusable
components.

2.4 Reusable Software Resources

Four software resource categories that
should be considered as planning proceeds
[4]:
Off-the-shelf components. Existing software
that can be acquired from a third party or that
has been developed internally for a past
project. COTS (commercial off-the-shelf)
components are purchased from a third party,
are ready for use on the current project, and
have been fully validated.
Full-experience = components. Existing
specifications, designs, code, ortest data
developed for past projects that are similar to
the software to be built for the current project.
Members of the current software team have
had full experience in the application area
represented by these components.
Therefore, modifications required for full-
experience components will be relatively low-
risk.
Partial-experience components. Existing
specifications, designs, code, or test data
developed for past projects that are related to
the software to be built for the current project

but will require substantial modification.
Members of the current software team have
only limited experience in the application area
represented by these components. Therefore,
modifications required for partial- experience
components have a fair degree of risk.

New components. Software components that
must be built by the software team
specifically for the needs of the current
project.

Component
frameworks

Component-based

development
Legacy system
wrapping

Service-oriented
systems

2.6 Reuse Concept:
The concept of a software component
is a "description of what a component does",
The concept should communicate the intent of
the component [5].
When you reuse program or design
components, you have to follow the design
decisions made by the original developer of
the component. This may limit the
opportunities for reuse.
However, a more abstract form of reuse is the
reuse concept when a particular approach is
described in an implementation independent
way and an implementation is then developed.
The two main approaches to the reuse concept
are [1]:
2.6.2 Generator-based reuse
Program generators involve the reuse
of standard patterns and algorithms. These are
embedded in the generator and parameterised
by user commands. A program is then

Design
patterns

Application
product lines

_ Qors Program
Integ ration generators

Configurable vertical
applications

Program
libraries

2.5 The reuse landscape:
Although reuse is often simply
thought of as the reuse of system components,
there are many different approaches to reuse
that may be used. Reuse is possible at a range
of levels from simple functions to complete
application systems. The reuse landscape
covers the range of possible reuse techniques
as shown in Fig. (1) [1, 2]:

Aspect-oriented
software development

Fig. (1)- The reuse landscape.
= Design patterns;

» Generative programming.

2.6.1 Design patterns
The architectural design defines the
relationship ~ between major structural
elements of the software, the “design
patterns” that can be used to achieve the
requirements that have been defined for the
system, and the constraints that affect the way
in which architectural design patterns can be
applied [6].

automatically generated. ~Generator-based
reuse is possible when domain abstractions
and their mapping to executable code can be
identified. A domain specific language is used
to compose and control these abstractions as
shown in Fig. (2)

Application
description

Program generator

[1].

Generated program

Application domain
knowledge

| Database .

Fig. (2)

The program generation reuse process.

2.7Application system reuse
Involves the reuse of entire application
systems either by configuring a system for an
environment or by integrating two or more
systems to create a new application.
Two approaches covered here:
= COTS product integration;

= Product line development.

2.7.1 Component-based SE development:
Component-based software
engineering (CBSE) is a process that
emphasizes the design and construction of
computer-based systems using reusable
software “components.” [7] describes CBSE
in the following way: CBSE is changing the
way large software systems are developed.
CBSE embodies the “buy, don’t build”
philosophy espoused by Fred Brooks and
others. In the same way that early subroutines
liberated the programmer from thinking about
details, CBSE shifts the emphasis from
programming software to composing software
systems. Implementation has given way to
integration as the focus. At its foundation is
the assumption that there is sufficient
commonality in many large software systems
to justify developing reusable components to
exploit and satisfy that commonality.

Requires interface Component
2.7.1.3 CBSE processes
The CBSE process
yields [8]:

* Qualified components—assessed by
software engineers to ensure that not only
functionality, but performance, reliability,
usability, and other quality factors
conform to the requirements of the system
or product to be built.

* Adapted components—adapted to modify
(also called mask or wrap) unwanted or
undesirable characteristics.

2.7.1.1 Components
These components, consisting of
interface objects, application objects, and
database objects, establish how the data are to
be processed [2].
Components provide a service without
regard to where the component is executing or
its programming language [1]:
e A component is an independent
executable entity that can be made
up of one or more executable
objects

e The component interface 1is
published and all interactions are
through the published interface

Components can range in size from
simple functions to entire application systems.
2.7.1.2 Component interfaces

* Provides interface

Defines the services that are provided
by the component to other components
= Requires interface

Defines the services that specifies

what services must be made available for the

component to execute as specified. As shown
in Fig. (3) [1, 2]:

Provides interface

Fig. (3) The components interface
» Assembled components—integrated
into an architectural style and
interconnected with an appropriate
infrastructure that allows the components
to be coordinated and managed
effectively.
* Updated components—replacing existing
software as new versions of components
become available.
CBSE usually involves a prototyping
or an incremental development process with
components being ‘glued together’ using a
scripting language as shown in Fig. (4):

Search for
reusable
components

Design
system
aachitecture

Incorporate
discovered
components

Specify
components

Fig. (4) The CBSE development process.

2.7.1.4 CBSE problems [1]: 3. The UGELIB Web System:
= Component incompatibilities may The resources being managed are the
mean that cost and schedule savings E-Books, Thesis, Magazines, Multimedia
are less then expected. (Video, Audio, Images), and Programs
o] (Utilities, Anti Viruses ...), in the library.
= Finding and understanding Additional domain-specific functionality
components.

(issue Licences, Download, Upload, search,
etc.) must be added for this application as

» Managing evolution as requirements shown in Fig. (5) and Fig. (6);

change in situations where it may be
impossible to change the system

components.
Client
Server

Fig. (5)
The UGELIB Client Server architecture.

Library User Access

Admin, Users, Sign Up. Sign In, Search, Download. Upload

Web Server Processing

Librarv Database

Fig. (6) The UGELIB architecture.

3.1 System modelling customers. Different models present the
System modelling helps the analyst to system from different perspectives [9]:
understand the functionality of the system and e [External perspective showing the

models are used to communicate with system’s context or environment

e Behavioural perspective showing
the behaviour of the system

o Structural perspective showing the
system or data architecture

3.2 The Unified Modelling Language:
UML was devised by the developers
of widely used object-oriented analysis and
design methods. Has become an effective
standard for object-oriented modelling. Object

classes are rectangles with the name at the
top, attributes in the middle section and
operations in the bottom section.
Relationships between object classes (known
as associations) are shown as lines linking
objects. Inheritance is referred to as
generalisation and is shown ‘upwards’ rather
than ‘downwards’ in a hierarchy as shown in

Fig. (7) and Fig. (8):

Library ltems

Iltem No.

Title

Author Name

Type

File name, type, Size
Description

Date, time
Download Count

Issue()
SignUp()
Signin()
Search()
Download()
Upload()
I I
Published Items Software Items
Title
Publisher Type
Description
A 4
I I I I
E-Books Thesis Magazines Multimedia Utilities
Author Student Name Type Type Type
Type _TY_Pe Description Description Description
Description Description Year
Year Year Issue

Fig. (7) The UGELIB class hierarchy.

Library User

Login ID
Password
Name
Address
Phone
E-Mail

IssueLicense()
Download()
Upload()

Browse()
DelLicense()

Admin

Staff Student

Passward2

Dept. Dept.
Position Stage

Fig. (8) The User class hierarchy.

3.3 Multiple inheritances

Rather than inheriting the attributes

and services from a single parent class, a

system which supports multiple inheritances

allows object classes to inherit from several

super-classes. Can lead to semantic conflicts

where attributes/services with the same name

in different super-classes have different

semantics. Makes class hierarchy
reorganisation more complex.

3.4 Object behaviour modelling

A behavioural model shows the interactions
between objects to produce some particular
system behaviour that is specified as a use-
case. Sequence diagrams (or collaboration
diagrams) in the UML are used to model
interaction between objects as shown in Fig.

9. [1]

LIB. Index

Registration LIB. ltem

LIB. User
Lockup

Display I

Sign Up

A

Get License

v

Sign In

Validation OK

v

Brows

Display

A

A\ 4

Download

Accept

A

v

Upload

Accept

v

A

4. Conclusion

In this paper we have discussed how

to engineer Web applications and focusing on

Reuse-Based approaches . We introduced

Web Design with CBSE as a method to

design in Web applications. A design contains

the specification of both the behavior and

navigational structure of Web applications in
a particular domain.

We have also introduced UGELIB

web application. We showed that Web design
can be mapped into an UGELIB model and
then into a Web application by using the
UGELIB -Web environment or other Web
implementation tools. We showed that design
web application could also be mapped in a

References
1. Ian Sommerville, “Software Engineering”,
Pearson Education

Limited, 2004.

Seventh Edition,

3. Yourdon, E. = “Software Reuse”,
Application Development Strategies, vol. 6,
no. 12, December, pp 1-16, 1994.

4. Bennatan, E.M., "Software Project
Management: A Practitioner’s Approach",
McGraw-Hill, 1992.

5. Whittle, B., "Models and Languages for
Component Description and Reuse", ACM
Software Engineering Notes, Vol. 20, no. 2,
pp 76-89, April 1995.

6. Shaw, M. and D. Garlan, "Software
Architecture", Prentice-Hall, 1996.

7. Clements, P.C., “From Subroutines to

Subsystems: Component Based Software

straightforward way into object-oriented
application by showing a specific architecture.
One of the most important
architectural components in Web Design
application is Generic Navigational model.
The model are recurrent COTS in Web
applications since they usually deal with sets
of similar objects. We are now incorporating
other navigation method into UGELIB web
application to enhance its accessibility power.
We strongly believe that development;
delivery and maintenance times in the Web
domain require reuse-centric approaches. The
systematic reuse of semi-complete design
structures, as described by Web design
application is a key approach for maximizing
reuse in Web application development.

2. Roger S. Pressman, “Software Engineering,
A Practitioner’s Approach ”, Sixth Edition,
McGraw Hill Co, 2005

Development,” American Programmer, vol.
8, No. 11, November 1995.

8. Brown, A.W. and K.C. Wallnau,
“Engineering of Component Based
Systems,” Component-Based Software
Engineering, IEEE Computer Society Press,
pp. 7-15, 1996.

9. Asaad Abdul-Kareem Al-Hijaj, Haidar M.
Abdul-Nabi; "Development of ISIRS Web
Application Using Object Behavioral
Modeling", Proceedings of the 1%
International Conference on the KUFA

University, Iraq 2009.

