
Using of Software Reuse Approaches to Develop UGELIB Web Application
Asaad Abdul-Kareem Al-Hijaj, Haidar M. Abdul-Nabi, Aziz Sabah Abdul Aziz
Dept. of Computer Science, College of Science, University of Basrah, Basrah ,Iraq.

Abstract:
In most engineering disciplines, systems are designed by composing existing components
that have been used in other systems. Software engineering has been more focused on original
development but it is now recognised that to achieve better software, more quickly and at lower

cost, we need to adopt a design process that is based on systematic software reuse.
The Application system reuse involves the reuse of entire application systems either by
configuring a system for an environment or by integrating two or more systems to create a new
application.This research discuss the development of systems by reuse-based model and explain
their benefits, some problems and illustrates different approaches. Therefore, adopts tow of
these approaches (COTS product reuse , Generative Programming) to build a web application
project named UGELIB (User Growth Electronic Library) which designed as Web site consists
of networked database. We use the appachi web server with SQL and PHP languages within that
server to construct the web components. Some of these components are COTS and others are
constructed by the project team. The site allows for visitors to explore, open, download, and

uploads materials. Thus, this approach satisfy the public interest.

Keywords: Software reuse, reused based, Web Engineering, Software
Engineering, Web Engineering Process, Web application development, CBSE,

COTS.
:المستخلص

في اغلب التخصصات الهندسیة تصمم النظم من خلال استغلال المكونات المتوفرة والتي استخدمت في
لقد ركزت هندسة البرمجیات فیما مضى على التطویر أساسا ولكن التركیز الآن هو للحصول على . نظم أخرى

على إعادة استخدام البرمجیات الأفضل والأسرع والأقل كلفة وذلك من خلال اعتماد عملیة تصمیم مبنیة
إعادة استخدام التطبیقات یكون إما بتشكیل النظام بحیث یتلاءم مع بیئة ما، أو بتكامل .البرمجیات المنظم

-Reusedفي هذا البحث نوقشت طریقة تطویر النظم بإعادة الاستخدام .نظامین أو أكثر لإنشاء تطبیق جدید

Basedومن ثم تطرق البحث لاعتماد اثنان من تلك التوجهات وهي . ومشاكلها وتوجهاتها المختلفةاوفوائده
مكتبة الكترونیة تنمو (UGELIBلبناء تطبیق ویب) ، والبرمجة التولیدیةCOTSمنتجات المكونات الجاهزة (

م الموقع استخدمنا خاد. حیث صمم التطبیق كموقع ویب یتضمن قاعدة بیانات شبكیة) من مستخدمیها
appachi web server مع لغةSQL ولغةPHPبعض تلك المكونات جاهزة . لبناء مكونات الموقع

COTSالزوار(لیتسنى بعد ذلك دخول المستخدمین . والبعض الآخر تم بناءه من قبل فریق تطویر المشروع (
.للاطلاع والإضافة وبما یحقق الفائدة العامة

مجیات بإعادة الاستخدام، إعادة الاستخدام، هندسة الویب، هندسة البرمجیات، عملیة بر : الكلمات المفتاحیة
.CBSE, COTS، هندسة الویب، تطویر تطبیقات الویب

1. Introduction:
The design process in most
engineering disciplines is based on reuse of
existing systems or components. Mechanical
or electrical engineers do not normally specify
a design where every component has to be
manufactured specially. The design on
components, which have been tried, and
tested in other systems. These are not just
small components such as flanges and valves
but include major subsystems such as engines,

condensers and turbines [1].
Reuse saves time and effort. There are
many techniques to realize reuse at every
level of software development process. Those
at the detailed design and code level are well

known and documented [2].
Software engineering has been more
focused on original development but it is now
recognised that to achieve better software,
more quickly and at lower cost, we need to
adopt a design process that is based on

systematic software reuse.
2. Reuse-based software engineering:
The software units that are reused may
be of radically different sizes. For example

[1]:
1) Application system reuse: The whole
of an application system may be reused
either by incorporating it without change
into other systems (COTS reuse) or by
developing application families. Widely
practised as software systems are
implemented as application families.
COTS reuse is becoming increasingly

common.
2) Component reuse: Components of an
application from sub-systems to single
objects may be reused. Now seen as the
key to effective and widespread reuse
through component-based software
engineering. However, it is still

relatively immature.
3) Object and Function reuse: Software
components that implement a single
well-defined function may be reused.
Common in some application domains
(e.g. engineering) where domain-

specific libraries of reusable functions
have been established.

2.2 Benefits of reuse:
QSM Associates, Inc. reports that
component-based development leads to a 70%
reduction in development cycle time; an 84%
reduction in project cost; and productivity
index of 26.2, compared to an industry norm

of 16.9 [3].
2.3 Reuse problems [1]:

 Increased maintenance costs.

 Lack of tool support.

 Not-invented-here syndrome.

 Maintaining a component library.

 Finding and adapting reusable
components.

2.4 Reusable Software Resources
Four software resource categories that
should be considered as planning proceeds

[4]:
Off-the-shelf components. Existing software
that can be acquired from a third party or that
has been developed internally for a past
project. COTS (commercial off-the-shelf)
components are purchased from a third party,
are ready for use on the current project, and

have been fully validated.
Full-experience components. Existing
specifications, designs, code, ortest data
developed for past projects that are similar to
the software to be built for the current project.
Members of the current software team have
had full experience in the application area

represented by these components.
Therefore, modifications required for full-
experience components will be relatively low-

risk.
Partial-experience components. Existing
specifications, designs, code, or test data
developed for past projects that are related to
the software to be built for the current project

but will require substantial modification.
Members of the current software team have
only limited experience in the application area
represented by these components. Therefore,
modifications required for partial- experience

components have a fair degree of risk.
New components. Software components that
must be built by the software team
specifically for the needs of the current

project.

2.5 The reuse landscape:
Although reuse is often simply
thought of as the reuse of system components,
there are many different approaches to reuse
that may be used. Reuse is possible at a range
of levels from simple functions to complete
application systems. The reuse landscape
covers the range of possible reuse techniques

as shown in Fig. (1) [1, 2]:

Fig. (1)- The reuse landscape.
2.6 Reuse Concept:
The concept of a software component
is a "description of what a component does",
The concept should communicate the intent of

the component [5].
When you reuse program or design
components, you have to follow the design
decisions made by the original developer of
the component. This may limit the

opportunities for reuse.
However, a more abstract form of reuse is the
reuse concept when a particular approach is
described in an implementation independent
way and an implementation is then developed.
The two main approaches to the reuse concept

are [1]:

 Design patterns;

 Generative programming.

2.6.1 Design patterns
The architectural design defines the
relationship between major structural
elements of the software, the “design
patterns” that can be used to achieve the
requirements that have been defined for the
system, and the constraints that affect the way
in which architectural design patterns can be

applied [6].

2.6.2 Generator-based reuse
Program generators involve the reuse
of standard patterns and algorithms. These are
embedded in the generator and parameterised
by user commands. A program is then

automatically generated. Generator-based
reuse is possible when domain abstractions
and their mapping to executable code can be
identified. A domain specific language is used
to compose and control these abstractions as

shown in Fig. (2)
[1].

Design
patterns

Component-based
development

Component
frameworks

Service-oriented
systems

COTS
integ ration

Application
product lines

Legacy system
wrapping

Prog ram
libraries

Prog ram
generators

Aspect-oriented
software development

Configurable ver tical
applications

Fig. (2)
The program generation reuse process.

2.7Application system reuse
Involves the reuse of entire application
systems either by configuring a system for an
environment or by integrating two or more

systems to create a new application.
Two approaches covered here:

 COTS product integration;

 Product line development.

2.7.1 Component-based SE development:
Component-based software
engineering (CBSE) is a process that
emphasizes the design and construction of
computer-based systems using reusable
software “components.” [7] describes CBSE
in the following way: CBSE is changing the
way large software systems are developed.
CBSE embodies the “buy, don’t build”
philosophy espoused by Fred Brooks and
others. In the same way that early subroutines
liberated the programmer from thinking about
details, CBSE shifts the emphasis from
programming software to composing software
systems. Implementation has given way to
integration as the focus. At its foundation is
the assumption that there is sufficient
commonality in many large software systems
to justify developing reusable components to

exploit and satisfy that commonality.

2.7.1.1 Components
These components, consisting of
interface objects, application objects, and
database objects, establish how the data are to

be processed [2].
Components provide a service without
regard to where the component is executing or

its programming language [1]:
 A component is an independent

executable entity that can be made
up of one or more executable
objects

 The component interface is
published and all interactions are
through the published interface

Components can range in size from
simple functions to entire application systems.
2.7.1.2 Component interfaces

 Provides interface

Defines the services that are provided
by the component to other components

 Requires interface

Defines the services that specifies
what services must be made available for the
component to execute as specified. As shown

in Fig. (3) [1, 2]:

Fig. (3) The components interface
2.7.1.3 CBSE processes

The CBSE process
yields [8]:

• Qualified components—assessed by
software engineers to ensure that not only
functionality, but performance, reliability,
usability, and other quality factors
conform to the requirements of the system

or product to be built.
• Adapted components—adapted to modify
(also called mask or wrap) unwanted or

undesirable characteristics.

• Assembled components—integrated
into an architectural style and

interconnected with an appropriate
infrastructure that allows the components
to be coordinated and managed

effectively.
• Updated components—replacing existing
software as new versions of components

become available.
CBSE usually involves a prototyping
or an incremental development process with
components being ‘glued together’ using a

scripting language as shown in Fig. (4):

Client
Web Browser E-Mail System

Server

Library System License Issue Validation

Database

Fig. (4) The CBSE development process.
2.7.1.4 CBSE problems [1]:

 Component incompatibilities may
mean that cost and schedule savings
are less then expected.

 Finding and understanding
components.

 Managing evolution as requirements
change in situations where it may be
impossible to change the system
components.

3. The UGELIB Web System:
The resources being managed are the
E-Books, Thesis, Magazines, Multimedia
(Video, Audio, Images), and Programs
(Utilities, Anti Viruses …), in the library.
Additional domain-specific functionality
(issue Licences, Download, Upload, search,
etc.) must be added for this application as

shown in Fig. (5) and Fig. (6):

Fig. (5)
The UGELIB Client Server architecture.

Fig. (6) The UGELIB architecture.

3.1 System modelling
System modelling helps the analyst to
understand the functionality of the system and
models are used to communicate with

customers. Different models present the
system from different perspectives [9]:
 External perspective showing the

system’s context or environment

Library User Access

Admin, Users, Sign Up, Sign In, Search, Download, Upload

Web Server Processing

Library Database

 Behavioural perspective showing
the behaviour of the system

 Structural perspective showing the
system or data architecture

3.2 The Unified Modelling Language:
UML was devised by the developers
of widely used object-oriented analysis and
design methods. Has become an effective
standard for object-oriented modelling. Object

classes are rectangles with the name at the
top, attributes in the middle section and
operations in the bottom section.
Relationships between object classes (known
as associations) are shown as lines linking
objects. Inheritance is referred to as
generalisation and is shown ‘upwards’ rather
than ‘downwards’ in a hierarchy as shown in

Fig. (7) and Fig. (8):

Fig. (7) The UGELIB class hierarchy.

Library Items

Item No.
Title

Author Name
Type

File name, type, Size
Description
Date, time

Download Count

Issue()
SignUp()
SignIn()

Search()
Download()

Upload()

Software ItemsPublished Items

E-Books

Title
Publisher

Title
Type

Description

Thesis Magazines

Author
Type

Description
Year

Student Name
Type

Description
Year

Type
Description

Year
Issue

Multimedia

Type
Description

Utilities

Type
Description

LIB. Index LIB. ItemRegistration

LIB. User
Lockup

Display

Sign Up

Get License
Sign In

Validation OK

Brows

Display

Download

Accept

Upload

Accept

Fig. (8) The User class hierarchy.
3.3 Multiple inheritances
Rather than inheriting the attributes
and services from a single parent class, a
system which supports multiple inheritances
allows object classes to inherit from several
super-classes. Can lead to semantic conflicts
where attributes/services with the same name
in different super-classes have different
semantics. Makes class hierarchy

reorganisation more complex.

3.4 Object behaviour modelling
A behavioural model shows the interactions
between objects to produce some particular
system behaviour that is specified as a use-
case. Sequence diagrams (or collaboration
diagrams) in the UML are used to model
interaction between objects as shown in Fig.

(9). [1]

Library User

Login ID
Password

Name
Address

Phone
E-Mail

IssueLicense()
Download()

Upload()
Browse()

DelLicense()

Staff StudentAdmin

Passward2 Dept.
Position

Dept.
Stage

Fig. (9) The Object
Behaviour Model.

4. Conclusion
In this paper we have discussed how
to engineer Web applications and focusing on
Reuse-Based approaches . We introduced
Web Design with CBSE as a method to
design in Web applications. A design contains
the specification of both the behavior and
navigational structure of Web applications in

a particular domain.

We have also introduced UGELIB
web application. We showed that Web design
can be mapped into an UGELIB model and
then into a Web application by using the
UGELIB -Web environment or other Web
implementation tools. We showed that design
web application could also be mapped in a

straightforward way into object-oriented
application by showing a specific architecture.
One of the most important
architectural components in Web Design
application is Generic Navigational model.
The model are recurrent COTS in Web
applications since they usually deal with sets
of similar objects. We are now incorporating
other navigation method into UGELIB web
application to enhance its accessibility power.
We strongly believe that development;
delivery and maintenance times in the Web
domain require reuse-centric approaches. The
systematic reuse of semi-complete design
structures, as described by Web design
application is a key approach for maximizing

reuse in Web application development.

References

1. Ian Sommerville, “Software Engineering”,

Seventh Edition, Pearson Education

Limited, 2004.

2. Roger S. Pressman, “Software Engineering,

A Practitioner’s Approach ”, Sixth Edition,

McGraw Hill Co, 2005

3. Yourdon, E., “Software Reuse”,

Application Development Strategies, vol. 6,

no. 12, December, pp 1-16, 1994.

4. Bennatan, E.M., "Software Project

Management: A Practitioner’s Approach",

McGraw-Hill, 1992.

5. Whittle, B., "Models and Languages for

Component Description and Reuse", ACM

Software Engineering Notes, Vol. 20, no. 2,

pp 76-89, April 1995.

6. Shaw, M. and D. Garlan, "Software

Architecture", Prentice-Hall, 1996.

7. Clements, P.C., “From Subroutines to

Subsystems: Component Based Software

Development,” American Programmer, vol.

8, No. 11, November 1995.

8. Brown, A.W. and K.C. Wallnau,

“Engineering of Component Based

Systems,” Component-Based Software

Engineering, IEEE Computer Society Press,

pp. 7–15, 1996.

9. Asaad Abdul-Kareem Al-Hijaj, Haidar M.

Abdul-Nabi; "Development of ISIRS Web

Application Using Object Behavioral

Modeling", Proceedings of the 1st

International Conference on the KUFA

University, Iraq 2009.

