Holomorphically Projective Mappings Equiaffine Spaces Onto Non-Kählerian Spaces

Raad J. K. Al Lamy

Abstract

General aspects of the theory of the holomorphically- projective mappings of Kählerian spaces were studied by many authors .

In this paper considered the equations of the mappings of holomorphically-projective of equiaffine spaces onto non- Kählerian spaces in the form of a system of linear Cauchy equations .

1. Introduction

For the beginning we give some basic definitions.

A Riemannian spaces H_n called almost Hermitian ([2], [3]) if both metric tensor $g_{ij}(x)$ and almost Hermitian affinor structure $F_i^h(x)$ are determined in it, and satisfies the conditions

$$F_{\alpha}^{h} F_{i}^{\alpha} = -\delta_{i}^{h} \quad , \quad F_{(i}^{\alpha} g_{j)\alpha} = 0$$
 (1)

where δ_i^h the Kronecker symbol, (i,j) denoted symmetrization without division.

An almost Hermitian spaces with covariantly constant structure is called *Kählerian spaces*.

A Riemannian spaces K_n is said to be *Kählerian spaces* if there exists, together with the metric tensor $g_{ij}(x)$, a structure $F_i^h(x)$, F is a tensor of type (1, 1), with the properties:

$$F_{\alpha}^{h} F_{i}^{\alpha} = e \delta_{i}^{h}, \quad F_{(ij)} = 0, \quad F_{i,j}^{h} = 0, e = \mu 1$$
 (2)

A bijective correspondence between points of Kählerian spaces K_n and \overline{K}_n is called a holomorphically-projective mappings, if any analytically planar curve in K_n is transformed into an analytically planar curve in \overline{K}_n . (see [1]-[4])

2. Holomorphically Projective Mappings of Kählerian spaces

A Kählerian space K_n admits a holomorphically projective mapping onto \overline{K}_n if and only if one of the following conditions is satisfied (via diffeomorphism $K_n \to \overline{K}_n$):

$$\overline{g}_{ij,k} = 2\overline{g}_{ij}\varphi_k + \varphi_{(i}\overline{g}_{j)k} - e\overline{\varphi}_{(i}\overline{F}_{j)k} ; \qquad (3)$$

$$a_{ij,k} = \lambda_{(i}g_{j)k} - e\,\overline{\lambda}_{(i}F_{j)k} , \qquad (4)$$

where \overline{g}_{ij} is a metric tensor of \overline{K}_n , φ_i , λ_i are gradient vectors, a_{ij} is a tensor, $a_{ij} = a_{ji} = e a_{\alpha\beta} F_i^{\alpha} F_j^{\beta}$; $\det \|a_{ij}\| \neq 0$; $\overline{\varphi}_i \equiv \varphi_{\alpha} F_i^{\alpha}$; $\overline{\lambda}_i \equiv \lambda_{\alpha} F_i^{\alpha}$; $\overline{F}_{ij} \equiv \overline{g}_{i\alpha} F_i^{\alpha}$.

The vector λ_i has the following properties:

$$\lambda_{i,j} = \lambda_{j,i} = -e \lambda_{\alpha,\beta} F_i^{\alpha} F_j^{\beta} \quad . \tag{5}$$

From (2), where $e = \mu 1$, if e = -1 then K_n is called an elliptical Kählerian space, and if e = +1 then K_n called a hyperbolic Kählerian space.

A curve in K_n defined by the equations $x^h = x^h(t)$ and the conditions

$$d\lambda^h / dt + \Gamma_{\alpha\beta}^h \lambda^\alpha \lambda^\beta = \rho_1(t) \lambda^h + \rho_2(t) F_\alpha^h \lambda^\alpha ,$$

where $\lambda^h \equiv dx^h/dt$, ρ_1 , ρ_2 are functions of the argument t. if $\lambda_i \neq 0$, then the holomorphically projective mapping will called non – trivial. contracting (4) for e = -1, with $g^{ij}(\|g^{ij}\| = \|g_{ij}\|^{-1})$ so the vector $\overline{\lambda}_i$ is a gradient and $\overline{\lambda}_i = 1/4\partial_i (a_{\alpha\beta}g^{\alpha\beta}) \equiv \lambda_{,i}$. If the condition $\overline{\lambda}_{i,j} = \overline{\lambda}_{j,i}$ is hold, it follows that $\overline{\lambda}_{\alpha,\beta} F_i^{\alpha} F_j^{\beta} = 0$. (see[5]-[9]) Theorem 1

A diffeomorphism $f: K_n \to \overline{K}_n$ is holomorphically projective mapping if and only if there exist a solution of the following linear Cauchy equations

$$a_{ij,k} = \overline{\lambda}_{(i}g_{j)k} + \lambda_{(i}F_{j)k}, \qquad (6)$$

$$\lambda_{i,j} = \tau F_{ij} + a_{\alpha\beta} M_i^{\alpha\beta} , \qquad (7)$$

$$\tau_{,i} = \lambda_{\alpha} M_i^{\alpha} + a_{\alpha\beta} M_i^{\alpha\beta} . \tag{8}$$

On unknown tensor a_{ij} , a vector λ_i , and a function τ , where $a_{ij} = a_{ji}$, $a_{\alpha(i}F^{\alpha}_{j)} = 0$. Here $M^{\alpha\beta}_{ij}$, M^{α}_{i} , $M^{\alpha\beta}_{i}$ are tensors determined by formulas below and dependent on g_{ij} , F^{h}_{i} of the space K_{n} .

Consider the integrability conditions of the equation (4):

$$a_{\alpha(i}R_{j)kl}^{\alpha} = g_{k(i}\overline{\lambda}_{j),l} - g_{l(i}\overline{\lambda}_{j),k} - F_{k(i}\lambda_{j),l} + F_{l(i}\lambda_{j),k} . \tag{9}$$

Contracting (9) with $F_{k'}^k$ and also $F_{l'}^l$ we obtain two expressions. After removing primes we sum them up. Since in \overline{K}_n it holds

$$R_{i\alpha k}^{h} F_{i}^{\alpha} + R_{ij\alpha}^{h} F_{k}^{\alpha} = 0 ,$$

we get

$$F_{k((iTj)l} - F_{l(iTj)k} = 0$$
 where $T_{ij} = \overline{\lambda}_{i,j} + \lambda_{i,\alpha} F_i^{\alpha}$.

It follows that

$$T_{ij} = TF_{ij}$$
, i.e. $\overline{\lambda}_{i,j} + \lambda_{i,\alpha} F_j^{\alpha} = TF_{ij}$

where T is a function.

Contracting (9) with g^{jk} we then get

$$n\overline{\lambda}_{i,j} = \mu g_{ij} + \nu F_{ij} + a_{\alpha i} R^{\alpha}_{i} - a_{\alpha \beta} R^{\alpha ..\beta}_{.ij}, \qquad (10)$$

where R_{ijk}^h and R_{ij} are Riemannian and Ricci tensors, respectively, the operations of lifting and lowering of indices are induced by the metric tensor, and μ , ν are certain functions.

After symmetrizing (10) we get

$$n\overline{\lambda}_{i,j} = \mu g_{ij} + \frac{1}{2} a_{\alpha(i} R_{j)}^{\alpha} - a_{\alpha\beta} R_{.ij}^{\alpha..\beta} , \qquad (11)$$

Substituting (11) into (9) we obtain

$$a_{\alpha\beta} M_{ijkl}^{\alpha\beta} = F_{li} \lambda_{j,k} + F_{lj} \lambda_{i,k} - F_{ki} \lambda_{j,l} + F_{kj} \lambda_{i,l}$$
 (12)

Here and in what follows M are tensors determined by g_{ij} and F_i^h on K_n . More concretely

$$M_{ijkl}^{\alpha\beta} = \delta^{\alpha}_{(i} R_{j)kl}^{\beta} + M_{1|k(i}^{\alpha\beta} g_{j)l} - M_{1|l(i}^{\alpha\beta} g_{j)k} ;$$

$$nM_{1|li}^{\alpha\beta} = \frac{1}{2}\delta_{(i}^{\alpha}R_{j)}^{\beta} - R_{.ij.}^{\alpha..\beta}$$

where δ_i^h is the Kronecker symbol.

Let ε^j and υ^k be vectors such that $\varepsilon^j \upsilon^k F_{jk} = 1$.

Denote $M_i = \varepsilon^{\alpha} F_{\alpha i}$.

Contracting (12) with $\varepsilon^i \varepsilon^j v^k$ we get

$$\varepsilon^{\alpha} \lambda_{\alpha,i} = \tau M_i + a_{\alpha\beta} M_{2|i}^{\alpha\beta} , \qquad (13)$$

where $\tau = \lambda_{\alpha,\beta} \varepsilon^{\alpha} v^{\beta}$. Contracting (12) with $\varepsilon^{j} v^{k}$ and using (13) we arrive at

$$\lambda_{i,i} = \tau F_{ij} + T_i M_j + a_{\alpha\beta} M_{3|ij}^{\alpha\beta} \qquad , \qquad (14)$$

where T_i is a vector. Substituting (14) into (9) we obtain

$$T_i(M_k F_{ij} - M_i F_{kj}) + T_j(M_k F_{li} - M_l F_{ki}) = a_{\alpha\beta} M_{4|ijkl}^{\alpha\beta}$$
. (15)

Contracting (15) with $v^i v^j v^k \varepsilon^l$ we get $v^\alpha T_\alpha = a_{\alpha\beta} M_{5}^{\alpha\beta}$, and contracting

(15) with $v^j v^k \varepsilon^l$ we get $T_i = a_{\alpha\beta} M_{6|i}^{\alpha\beta}$. Then (14) assumes the form (7).

Integrability conditions of (7) are

$$F_{ij}\tau_{,j} - F_{ik}\tau_{,j} = a_{\alpha\beta}M_{7|ijk}^{\alpha\beta} + \lambda_{\alpha}M_{8|ijk}^{\alpha\beta} . \tag{16}$$

Contracting (15) with $\varepsilon^i \varepsilon^j v^k$ we get

$$\tau_{,\alpha}\varepsilon^{\alpha}=a_{\alpha\beta}M_{9|}^{\alpha\beta}+\lambda_{\alpha}M_{10|}^{\alpha\beta}\ .$$

Then contracting (15) with $\varepsilon^{j}v^{i}$ we get finally (8).

The theorem is proved.

The system (6), (7) and (8) has all most one solution for the initial values in a point x_0 : $a_{ij}(x_0)$, $\lambda_i(x_0)$ and $\tau(x_0)$. Hence, the general solution of this system on no more than (n+2)(n+1)/2 - m(n-m+1) essential parameters.

The integrability conditions of the system (6), (7) and (8) and their differential prolongation are linear algebraic equations on the components of the unknown tensors a_{ii} , λ_i , and τ with coefficients from K_n .

Thus, one can, in principle, solve the problem whether a given m - parabolically – Kählerian space K_n admits or not a holomorphically – projective mapping and its uniqueness.

3. Holomorphically Projective Mappings Equiaffine Spaces Onto Non-Kählerian Spaces

In case

$$F_{i,j}^h \neq \mathbf{0} \tag{17}$$

and

$$F_{i/j}^h \neq 0 , \qquad (18)$$

where ', ' and '/' are covariate derivatives in affine – connection space A_n and a Riemannian space \overline{H}_n respectively.

The differentiation of (2) covariantly by x^h in A_n with unknown symmetric regular tensor a_{ij} , we obtaining

$$a^{\alpha(i} F_{\alpha,k}^{j)} = 0 \tag{19}$$

and its simplification differentiation

$$\psi^{(i}F_{\alpha}^{j)}F_{\gamma,k}^{\alpha} - \psi^{\alpha}F_{\alpha}^{(i}F_{\gamma,k}^{j)} + \delta_{\gamma}^{(i}F_{\beta}^{j)}F_{\alpha,k}^{\beta}\psi^{\alpha} - F_{\gamma}^{(i}F_{\alpha,k}^{j)}\psi^{\alpha} = a^{\alpha(i}F_{\alpha,k\gamma}^{j)}.(20)$$

First contraction (20) with respect to the indices j and γ , then contracting with F_i^{τ} , replace index τ by i, there

$$F_{\alpha,k}^{i}\psi^{\alpha} = \frac{-1}{n+2} \left(a^{\alpha\beta} F_{\alpha,k\beta}^{\sigma} + a^{\alpha\sigma} F_{\alpha,k\sigma}^{\sigma} \right) F_{\sigma}^{i}$$
 (21)

Easily, there exist vectors such as ϕ, φ with the following properties:

$$a^i = F^i_{j,k} \phi^k \varphi^j \neq 0 , \qquad (22)$$

also
$$a^{ij} = a^{ji} (23)$$

Theorem 2

Affine- connection spaces A_n admits a holomorphically projective mappings onto a non-Kählerian Hermitian spaces \overline{H}_n if and only if the following system of linear differential equations of type Cauchy is solve with respect to unknown function a^{ij} where

$$a^{ij}_{,k} = \psi^{\alpha} F_{\alpha}^{(i} \delta_{k}^{j)} + \psi^{(i} F_{k}^{j)} , \qquad (24)$$

$$\psi^i = a^{\alpha\beta} T^i_{\alpha\beta} \quad . \tag{25}$$

T is a tensor depend on objects in A_n .

The system (24) and (25) dose not have more than one solution for initial conditions

$$a^{ij}(x_0) = a_0^{ii}$$
 under conditions (23) and $a^{ij} = a^{\alpha\beta} F_{\alpha}^{i} F_{\beta}^{j}$. (26)

Proof

We shall investigate the differential conditions of (25) by differentiate them covariantly by x^k in A_n and applying (24) simplification them after contracting with respect to the indices j and l then contracting with $F_i^{i'}$ with replace the index i' by i. We get

$$\psi^{(i} F_{\alpha}^{\ j)} F_{l,k}^{\ \alpha} - \psi^{\alpha} F_{\alpha}^{\ (i} F_{l,k}^{\ j)} = a^{\alpha\beta} T_{\alpha\beta kl}^{(ij)} , \qquad (27)$$

where

$$T_{\alpha\beta kl}^{ij} \stackrel{def}{=} \delta_{\alpha}^{i} F_{\beta,kl}^{j} - \frac{1}{n+2} \left(F_{l}^{i} \left(F_{\delta}^{j} F_{\alpha,k\beta}^{\delta} + F_{\alpha,k\gamma}^{\gamma} F_{\beta}^{j} \right) + \delta_{l}^{i} \left(F_{\alpha,k\beta}^{j} + F_{\alpha,k\gamma}^{\gamma} F_{\beta}^{j} \right) \right)$$

Under the condition (18) we can obtain the vectors ε and η such that $a^i = F_{k,l}^i \varepsilon^l \eta^k \neq 0$. Evidently, the vector a^i is not collinear with the vector $a^\alpha F_\alpha^i$. Hence, there exist a covector λ_i such that

$$\lambda_{\alpha}a^{\alpha}=0, \lambda_{\alpha}F_{\beta}^{\alpha}a^{\beta}=1$$

Now, contracting (27) first with $\varepsilon^l \eta^k$ then with $\lambda_i \lambda_j$ we find

 $\psi^{\alpha} \lambda_{\alpha} = a^{\alpha\beta} T^{ij}_{\alpha\beta kl} \varepsilon^{l} \eta^{k} \lambda_{i} \lambda_{j}$ and contracting λ_{j} we get

$$\psi^{i} = \varepsilon a^{i} + a^{\alpha\beta} T^{i}_{\alpha\beta} , \qquad (28)$$

where $\varepsilon = \psi^{\alpha} F_{\alpha}^{\beta} \lambda_{\beta}$ and

$$T_{\alpha\beta}^{i} = \left(T_{\alpha\beta \ kl}^{(i\gamma)} - T_{\alpha\beta \ kl}^{(\gamma\delta)} \lambda_{\delta} F_{\alpha}^{i} a^{\alpha}\right) \varepsilon^{k} \eta^{l} \lambda_{\gamma}$$

Applying (28) to (27) we obtain

$$\psi\left(a^{(i}F_{\alpha}^{\ j)}F_{l,k}^{\ \alpha}-a^{\alpha}F_{\alpha}^{(i}F_{l,k}^{\ j)}\right)=a^{\alpha\beta}T_{\alpha\beta\,kl}^{(ij)},\qquad(29)$$

where

The bracket on the left –hand side of (29) must be non-vanishing, otherwise there would be $F_{j,k}^{i} = 0$, which is in contradiction with (18). So there exist a tensor field Q_{ii}^{kl} satisfying

$$Q_{ij}^{kl}\left(a^{(i}F_{\alpha}^{j)}F_{l,k}^{\alpha}-a^{\alpha}F_{\alpha}^{(i}F_{l,k}^{j)}\right)=1.$$

Hence from (29) it follows that

$$\varepsilon = a^{\alpha\beta} T^{3ij}_{\alpha\beta kl} Q^{kl}_{ij}$$

and further

$$\psi^i = a^{\alpha\beta} T^i_{\alpha\beta} \quad ,$$

where

$$T_{\alpha\beta}^{i} \stackrel{def}{=} T_{\alpha\beta}^{i} + a^{i} T_{\alpha\beta kl}^{\gamma\delta} Q_{\gamma\delta}^{kl} . \tag{30}$$

End of the proof.

The above theorem is a generalization of the results in [2],[3], [4], [10]

References:

- [1] N.S.Sinyukov . Geodesic mappings of Riemannian spaces .Nauka , Moscow, 1979.
- [2] K.Yano. Differential geometry on complex and almost complex Spaces. Oxford London New York Paris Frankfurt; Pergamon Press. XII, 1965.
- [3] J. Mikeš. Geodesic mappings of affine-connected and Riemannian spaces . J. Math. Sci., New York, 1996.
- [4] Raad j. k. Al lamy . About 2F- planar mappings of affine connection spaces . Coll.on Diff. Geom., Eger (Hungary) 1989.
- [5] Raad j. k. Al lamy, I.N. Kurbatova. Invariant geometric objects of 2F planar mappings of affine connection spaces and Riemannian spaces with affine structure($F^3 = e\delta$). Dep. f Ukraine, VINIVTI (Kiev) ,1990, No.1004, UK90.
- [6] Raad j. k. Al lamy, Some equations about theory of 2F Planar mappings Riemannian spaces with ($F^3 = e\delta$); Ukraine, VINIVTI, No 1 1991.
- [7] Raad j. k. Al lamy, Recurrent Riemannian spaces in 2F Planar mappings Riemannian spaces with ($F^3 = e\delta$)". Ukraine, VINIVTI, No 2 1991.
- [8] Raad j. k. Al lamy, 2F planar mapping affine connection and Riemannian spaces; Moscow, MPGU, 1992.
- [9] Raad J.K. Al lamy, Josef Mikes, Marie Skodova, On linearly pF planar mappings, Diff. Geom. and Its Application, Proc. Conf Prague, August 30-sept. 3, 2004. Charles Univ. Prague (Czech Republic), 2005, 347-353
- [10] Raad.J.K.AL-lami, MARIE SKODOVA, JOSEF MIKES, ON HOLOMORPHICALLY **PROJECTIVE MAPPINGS FROM EOUIAFFINE** GENERALLY RECURRENT **SPACES ONTO** KAHLERIAN **SPACES** ARCHIVUM **MATHEMATICUM** (BRNO) Tomus 42 (2006).