

http://dx.doi.org/10.52113/1/2/2023-189-211

Molecular Genotyping of *Echinococcus* species and *In-silico* analysis on NAD and 12SrRNA genes isolated from camels and cattle raised in Sudan ELHag A. M¹, Abakar A. D², Elmahdi I. E¹, Abd Almalaik A. A³, Altayb H. N⁴, Babikir A. M, Salih M. A⁵, Mohammed A. A³, Peter Kern⁶

Abstract

Cystic echinococcosis (CE) is considered a re-emerging disease in various regions, like the Middle East, Central Asia, and northern and eastern Africa. In sub-Saharan Africa, CE is highly endemic. In Sudan, high prevalence estimates of CE in both livestock and definitive hosts were reported. Strain variation and genetic diversity still need to be elucidated in this area. The aim of this study is to genotype and to study the phylogenetic relations and taxonomic status of the Echinococcus species. A total of 418 hydatid cysts were collected from the abattoirs survey from camel and cattle isolates, 12 isolates from camels in the Tamboul area, and 18 isolates from cattle collected from (10,6, and 2 from, Nyala, Addein, and Kass, respectively), isolates (of Echinococcus (Camelus dromedaries) were collected from (Tamboul, Nyala and Addein areas, Sudan. Molecular identification of Echinococcus species was determined by specific G5/6/7 genotype PCR and G6/7 genotype-specific PCR using 1073-1078 bp and 254 bp of mtDNA respectively. Nad1, 12srRNA gene 10 isolates (2,8 respectively) for DNA sequencing were conducted. Sequences alignments reported novel mutations of Nad1, cattle isolates of 12srRNA gene showed 98% Identity within database blasting between Gene bank E. ortleppi isolates, which have both and suggest that the Nad1 gene is continuing to evolve in the face of the current taxonomy profile. Very few bp exchanges differentiate G6 and G7, and 'intermediate' haplotypes have been observed, which merge them into a single genotype G6/7. A further molecular survey is needed to explore the situation of *Echinococcus* genotypes from human patients in Sudan.

Keywords: Cystic echinococcosis, E. ortleppi, Addein areas

- * Correspondence author: ahmedmadani4@gmail.com
- ¹ University of Gezira, Faculty of Health and Environmental Sciences, Sudan.
- ² University of Gezira, Faculty of Medical Laboratory Sciences Department of Medical Parasitology, Wad Medani, Sudan.
- ³ Faculty of Veterinary Science, University of Nyala, Sudan.
- ⁴ University of Sudan, Faculty of Medical Laboratory Sciences.
- ⁵ University of Gezira, National Cancer Institute (NCI).
- ⁶ Head department of biotechnology, Biotechnology Park, Africa city of technology, Sudan.
- ⁷University Clinic of Ulm, Center for Internal Medicine, Albert-Einstein-Allee 23, 89081 Ulm, Germany.

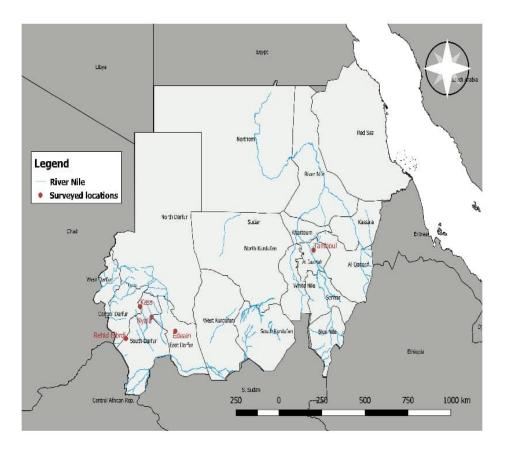
Copyright © 2023 ELHag A. M et al. This is article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Received 12 July 2023; revised 30 October 2023; accepted 12 November 2023, available online 24 November 2023.

Introduction

Cystic echinococcosis (CE) is known as most neglected food-borne infection for human throughout the endemic areas in the tropics. Mammals of the family canidae play a major role in the transmission of the parasite. The life cycle of the parasite involves mainly dogs and wild carnivores as definitive hosts and a wide range of domestic and wild mammals as intermediate hosts, but also humans as aberrant intermediate hosts [1]; [2], 2006 [3] 2011 [4]; [5]. The genotype G6 was found to be responsible for 7.34% of infections worldwide. This strain is known from Africa and Asia, where it is transmitted mainly by camels (and goats), and South America, where it appears to be mainly transmitted by goats [6]. In the past, the G6 genotype had been identified as the etiological agent only in sporadic cases of CE and it was believed that this strain was less infective for humans or not infective at all [7]. Recently, many authors reported an increasing prevalence of G6 genotype in different countries [8]; [9]; [10]; [11]; [12]; [13]; Omer et al., 2007[14]; [15]; but also from areas where *E. granulosus*.

Echinococcus granulosus previously comprised up to 9 sub-specific genotypes (G1-G9) or strains, which develop in the larval (hydatid) stage as cystic echinococcosis (CE) in ungulates or other herbivores. The current view informed by biology, epidemiology and particularly molecular genotyping recommends the inclusion of at least 9 species in the genus. All those species of Echinococcus known to cause CE in the intermediate host may be referred to as E. granulosus sensu lato (s.l.), whereas strains G1–G3 (which are closely related) are now referred to as *E.granulosus sensu strictu* (s.s.). Among these, Echinococcus canadensis is genetically the most variable species, containing various 'strains' that are geographically and epidemiologically separated. Initially described as G6 (camel strain), G7 (pig strain), G8 ('American' cervid strain), and G10 ('Fennoscandian' cervid strain), they form a monophyletic cluster based on mitochondrial genomes and nuclear marker genes [16] [17]. Recently, the 'cattle strain' (G5) and the 'horse strain' (G4) have each been elevated to species level, as *E. ortleppi* and *E. equinus*, respectively [18]. However, CE is also reported in livestock, human and wildlife settings throughout Sudan than previously thought [19]. Up to now, the identification of the various Echinococcus taxa was done by PCR based methods such as RFLP-PCR, [20][21] species specific or multiplex PCRs [22] or DNA amplification with subsequent sequencing which requires even more sophisticated equipment. Recently, loop-mediated isothermal amplification (LAMP) assay has been shown to be highly accurate for the detection of echinococcosis in canine definitive hosts [23][24], where the DNA strand displacement and DNA synthesis occur under isothermal conditions. Therefore, instead of a thermal cycler a simple laboratory water bath


or heating block is sufficient to enable the amplification [25] [23]. particularly interest is the status in sub-Saharan Africa, where *E. canadensis* (G6) is known from a dog–camel lifecycle in vast regions in the northern and north-eastern parts of the continent, but also from further south, where camels are not present and other livestock species (particularly goats) act as intermediate hosts [26]. Despite high diversity, the regional populations of *E. Canadensis* G6/7 showed a lack of geographical genetic differentiation within Africa as well as between Africa and the Middle East (based on the Iranian isolates) as shown in the low values found here. Isolates from those regions originated mainly from camels with some specimens from human patients. Similarly, In a pairwise fixation measure of all *E. canadensis* G6/7 sub-populations and meta-populations included in the study, we observed a lack of genetic differentiation in Africa (Mauritania, Kenya and Sudan), the Middle East (Iran) and between the two regions when the African and Middle Eastern *E. canadensis* G6/7 cox1 sequences were compared with 26 available sequences from human isolates from Mongolia [27][28]. Additionally, collected data of haplotypes included, are reported and analyzed via different approaches such as haplotype networks phylogenetic trees.

The observation of lower nucleotide diversities of in *E. ortleppi* might be in support of the hypothesis that the younger clades of *Echinococcus* which also are the most widely distributed and 'domesticated' species in the genus have retained lower polymorphism due to small founder population introductions and disruption of ancestral wildlife transmission routes. In Sudan, high prevalence estimates of CE in both livestock and definitive hosts were reported, but train variation and genetic diversity is still in need to be elucidated. The aim of this study was to genotype and to study the phylogenetic relations and taxonomic status of the *Echinococcus* species using samples from *dromedarius* and Cattle species from various geographical areas of The Republic of Sudan.

Materials and Methods

Study area

Surveys were done in Tamboul town (Central Eastern, Sudan), and Addein, Rehed al Birdi and Kass areas (Western Sudan) (Fig 1). These two sites were reported to be endemic areas for CE.

Figure 1.

Study area, Tamboul town (Central Eastern, Sudan) and Addein, Rehed al Birdi and Kass areas (Western Sudan). Source: (GIS software 10.2)

Ethical approval

The field work of the study for animal investigation has been conducted at South Darfur State, Faculty of Veterinary Science, Nyala University and Gezira State, Faculty of Health and Environmental Sciences, University of Gezira. The authors received an ethical clearance from the Veterinary Ethics Committee (VEC). An approval for conducting this research has been obtained from Ministry of Animal Resource, Fisheries and Ranching, South Darfur and Gezira States.

Abattoir Survey

A total of 418 camel carcasses were examined in abattoirs (387, 228,16, 7, 5 and 20 from Tamboul, Wad Elnimer, Elgadarif, Addein, Rehed al Birdi and Kass, respectively), during routine meat inspection at May 2018 to September 2021, for presence of cystic

echinococcosis according to WHO (1981), where 63 isolates from camel (42 from Tamboul and 21 from Addein, Rehed al Birdi and Kass) were collected from abattoirs survey.

Phenotypic Detection

After removal of cysts from tissues of slaughtered animals protoscolices in cysts fluid were detect using stereo microscope.

PCR Technique

DNA extraction

Single protoscolices were separated using protocol described by (Nakao *et al.*, 2003)[29]. DNA was also obtained, and the solution was used directly as a template DNA in the PCR.

PCR of the NAD1 gene

DNA extracted from protoscolices were used as template in PCR to amplify fragment with NADH dehydrogenase subunit 1 (NAD1) (mitochondrial gene). PCR was performed using PCR- buffer (conc. 10 mM Tris-Hcl, pH 8.3; 50 mM Kcl) (applied Biosystem, Germany), 2 mM of Mgcl2 (applied Biosystem, Germany), 200 µM of each deoxy nucleoside triphosphate (Genaxxon biosciences, Germany), 12.5 pmol of Tag DNA polymerase (applied Biosystem, Β" Germany), two conserved primers, forward primer "nad D" TATTAAAAATATTGAGTTTGGGTC primer nad reverse TCTTGAAGTTAACAGCATCACGAT and 2 µl from extract DNA in a 50 µl final volume of reaction mixture.

Positive and negative controls were included. The amplification reactions were carried out in primus 25 thermocycler (PeQlab, Germany) under the following condition; a hot start 94°C for 5 min followed by 35cycles of 30s denaturation at 94°C, 30s annealing at 55°C, 1min extension at 72°C followed by final extension of 5 min at 72°C [30][31]. Amplification product were separated by electrophoresis on 1.5% TBE agarose gel, stained with 2% ethidium bromide and visualized using U.V illumination (Kisker Biotechnology,Germany).

PCR of 12SrRNA gene by specific for E. ortleppi (G5) and E. granulosus G6/7

For the first PCR (G5/6/7) which amplifies 254 bp fragment of *E. ortleppi* (G5) and *E. granulosus* G6/7, the primer pair E.g.cs1for. (5'ATT TTT AAA ATG TTC GTC CTG 3') and E.g.cs1rev. (5'CTA AAT AAT ATC ATA TTA CAA C 3') was used. The100µl reaction mixture consisted of 10 mM Tris–HCl (pH 8.3), 50 mM KCl, 2 mM MgCl2, 200 µM of each dNTP, 25 pmol of each primer and 1.25 units Ampli-Taq Polymerase (Perkin Elmer Biosystems) for 40 cycles (denaturation for 30 sec at 94°C, annealing for 1min at 53°C and elongation for

40 sec at 72°C) (Dinkel *et al.*, 2004) (Gene bank: AY462126–AY462129). The system for diagnosis of *E. granulosus* G6/7 and *E. ortleppi is shown* in Fig. 2. To discriminate between *E. ortleppi* and *E. granulosus* G6/7, semi-nested PCRs specific for G6/7(g6/7PCR; primer pair E.g. camel. for. 5' ATG GTC CAC CTA TTA TTT CA 3' and E.g.cs1rev.) and for *E. ortleppi* (g5 PCR; primer pair e.g. cattle. for. 5' ATG GTC CAC CTA TTA TTT TG 3' and E.g.cs1rev.) were used in a second step, each amplifying a different fragment of 171 bp. The reaction mixtures of 50 µl contained 1.5 µl of amplification product, 10 mM Tris– HCl (pH 8.3), 50 mM KCl, 2 mM MgCl2, 200 µM of each dNTP, 25 pmol of each primer and 1.25 units Ampli-Taq Polymerase (Perkin Elmer Biosystems) for 30 cycles (denaturation for 30 sec at 94°C, annealing for 1min at 60°C and elongation for 30 sec at 72°C). Amplification products were resolved on a 1.5% ethidium bromide-stained agarose gel.

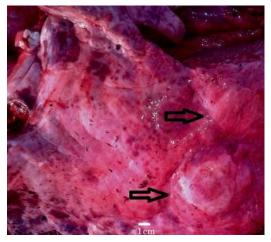
Sequencing Analysis

DNA purification and standard sequencing was performed for both strands of NAD dehydrogenase subunit1,12SrRNA genes by Macrogen Company (Seoul, Korea, Netherlands).

Bioinformatics Analysis

The sequences chromatogram was viewed by Finch TV program,

(http://www.geospiza.com/Products/finchtv.shtml).

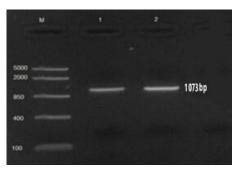

The nucleotides sequences of the NAD1 dehydrogenase sub unit 1 gene were searched for sequences similarity using nucleotide BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) Hailey similarity ratio for all two isolates sequences were retrieved from NCBI and subjected to multiple sequence alignment using Bio Edit software were applied ClustalW Multiple Alignment also to improve the sensitivity of progressive multiple sequencing alignment through sequence weighting, position specific gap penalties and weight matrix choice (Thompson et al 1994) [32].

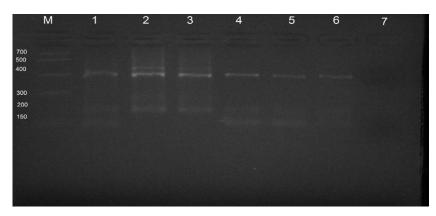
Results

Phenotypic Detection

Out of 418 carcasses of camel examined in Tamboul, Kass, Addein and Rehed al Birdi abattoirs, 140 (33.5%) camel was found infected with C.E contains fertile protoscolices and fertility rate of 45.6% (Fig. 3,4). About 71% of camels slaughtered at Western Sudan abattoirs were females which 71.4% of infected animals up to 9 years ($P \le 0.01$). In addition to that, only one animal 6 year age was found to be infected with CE and the three cysts

encountered were found to be fertile, whereas 25.4% of cysts up to 10 cm with mean volume of cysts (ml) (44.6±18.4) and mean number of protoscolices/ml 67772.0±41095.0 were observed. The lungs were found to be the main predilection site of camel cysts (Fig. 2).


Figure 2. Hydatid cyst on camel lung tissue.


Genotypic Detection of NAD I dehydrogenase

Amplified protoscolices isolates revealed similar band pattern of 1073-1078 bp long fragments (Figures 4 ,5 ,6 ,7).

Figure 4.

PCR product of nad1 gene. Lane M, Marker; Lane 1, G6; Lane 2, positive control.

Figure 5.

PCR digest of restriction enzyme hph1 for nad1 gene. Lane M, Marker; Lane 1, G6, Lane 2, 3 Mutant isolates; Lane 4, 5 G6, Lane6 positive control, Lane 7 Negative control.

Genotypic Detection of 12S rRNA gene

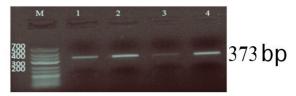
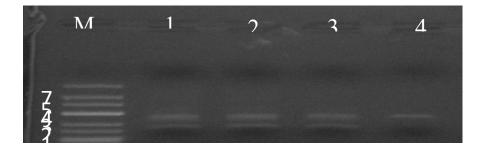
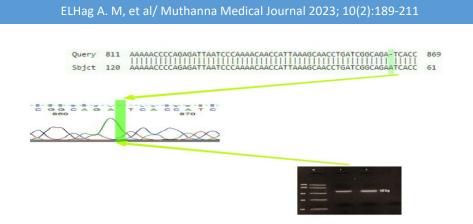



Figure 6.

Cestode specific PCR. M; marker, 1-3 cattle protoscolice, 4; positive control.

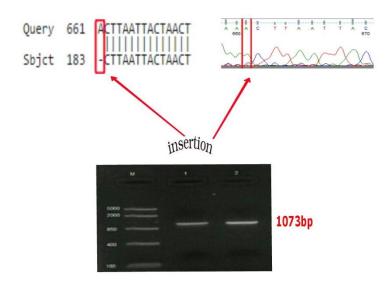
Figure 7.

G6/7 specific PCR. M; marker, 1-2 G6/7, 3; G6/7 positive control, 4; G5 isolate.

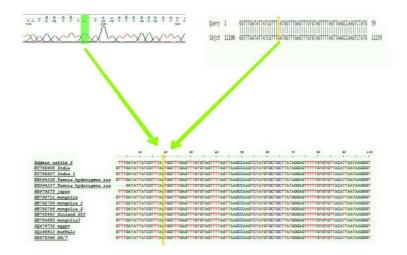

Bioinformatics Analysis

Multiple Sequence Alignment

The multiple sequence alignment of the mutant isolate with similar nucleotide sequences that obtained from BLASTn was carried out to find the homology and evolutionary relation between these sequences.


ClustalW Alignment

As shown by BioEdit software there was deleted A base in mutant Tamboul isolate (Figure 8). Insertion mutation on Abase in Tamboul NAD1 gene camel isolate was shown in (Figure 9). Insertion mutation on Abase in Mutant on addein cattle isolate was shown in (Figure 10). Two deletions in addein cattle isolate were shown in (Figure 11). Some information related on data base isolates showed highly heterogeneity with some strains isolated from the same camel species from Sudan and many counters (Table1). Multiple alignments sequencing between mutant isolate and other countries strains was shown in (Figure 12). Multiple Sequencing Alignment of Addein 12S rRNA gene cattle isolate was shown in (Figure 13). Further result on multiple sequencing alignment of the mutant isolate found highly similarity with Iranian strain (Iran2 (ID HM749615)) isolated in camel larval stage and shown novel haplotype with it (Figure 14).


Figure 8.

Deletion mutation on A base on Tamboul camel isolate within site 864 in query

Figure 9.

Insertion mutation on Abase in Tamboul camel isolate.

Figure 10.

Deletion mutation on addein cattle isolate.

Two deletion sites on T, A base on Addein 12SrRNA grne cattle isolate

		Multiple Alignm		ſ
ID	Country	Host	Туре	Genotype
KX 010873	Kenya	dromedary	CE	Echinococcus canadensis
KT363811	Mauritania	dromedary	CE	Echinococcus canadensis
<u>KX010887</u>	Sudan	dromedary	CE	<u>Echinococcus canadensis</u>
KX010884	Sudan	dromedary	CE	<u>Echinococcus canadensis</u>
KX893481	Iran	H.sapiens	CE	<u>Echinococcus canadensis</u>
KX010881	Sudan	dromedary	CE	<u>Echinococcus canadensis</u>
KX010878	Kenya	goat	CE	<u>Echinococcus canadensis</u>
KX010887	Sudan	dromedary	CE	<u>Echinococcus canadensis</u>
KX010877	Sudan	dromedary	CE	<u>Echinococcus canadensis</u>
HM749615	Iran	dromedary	CE	Echinococcus granulosus
KX510135	Serbia	Pig	CE	Echinococcus canadensis
KX010875	Kenya	dromedary	CE	<u>Echinococcus canadensis</u>
KX010892	Slovakia	Pig	CE	<u>Echinococcus canadensis</u>
KX010897	Hungary	Pig	CE	Echinococcus canadensis
KX231668	Armenia	Pig	CE	Echinococcus canadensis
KX010889	Namibia	oryx	CE	Echinococcus canadensis

	Table 1	
Multiple	Alignment	Information

	210	220 • • • • • • • • •	230	240	250	260	270	280	290	300
tamboul 11	CATGAAA-ATATA	ATATATGACAATA	TACTCACAA	GCAAACAAGCA	CGTAAAATA1	ATACCACTAT	ACTCAACATT	AAATCCTCTA	ACCAATTCACT	TTCA
kenya KX010873	GGTTTGCTGCAG	AGGTTTGCCGATT	TGTTGA-A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGI	GTTT
Mauritania KT363811	GGTTTGCTGCAG	AGGTTTGCCGATT	TGTTGA A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGI	GTTT
sudan KX010887	GGTTTGCTGCAG	AGGTTTGCCGATT	TGTTGA-A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGI	GTTT
sudan2 KX010884	GGTTTGCTGCAG	AGGTTTGCCGATT	TGTTGA-A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGT	GTTT
Iran KX893481	GGTTTGCTGCAG	AGGTTTGCCGATT	TGTTGA A	GTTACTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGT	GTTT
sudan3 KX010881	GGTTTGCTGCAG	AGGTTTGCCGATT	TGTTGA A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGT	GTTT
sudan4 KX010878	GGTTTGCTGCAG	AGGTTTGCCGAT	TGTTGA A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGI	GTTT
sudan5 KX010877	GGTTTGCTGCAG	AGGTTTGCCGATT	TGTTGA A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGI	GTTT
Serbia KX510135	GGTTTGCTGCAG	AGGTTTGCTGATT	TGTTGA-A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGT	GTTT
kenya2 KX010875	GGTTTGCTGCAG	AGGTTTGCCGATT	TGTTGA A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	-CAGAGTCGT	AGGTATGTTG	GTTTATTTGGT	GTTT
Slovakia KX010892	GGTTTGTTGCAG	AGGTTTGCCGAT	TGTTGA A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGT	GTTT
Hungary KX010897	GGTTTGCTGCAG	AGGTTTGCCGATT	TGTTGA-A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGT	GTTT
Armenia KX231668	GGTTTGCTGCAG	AGGTTTGCTGATT	TGTTGA A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGI	GTTT
Namibia KX010889	GGTTTGCTGCAG	AGGTTTGCCGATT	TGTTGA A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGT	GTTT
Kenya3 KX010879	GGTTTGCTGCAG	AGGTTTGCCGAT	TGTTGA A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGI	GTTT
Iran3 KX893481	GGTTTGCTGCAG	AGGTTTGCCGATT	TGTTGA A	GTTACTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGI	GTTT
Slovakia2 KX010895	GGTTTGCTGCAG	AGGTTTGCCGATT	TGTTGA-A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGT	GTTT
sudan7 KX010885	GGTTTGCTGCAG	AGGTTTGCCGATT	TGTTGA A	GTTAGTAATTA	AGTTTAAGAA	TTTTTACTTT	CAGAGTCGT	AGGTATGTTG	GTTTATTTGGT	GTTT

	310	320	330	340	350	360	370	380	390	400
tamboul 11	GCCTCCCCATAATC-									
kenya KX010873	TGTTGTTGATAGTTT									
Mauritania KT363811	TGTTGTTGATAGTTT	TGGTTGTGGT	TATTCGTT1	ATTTATGGTA	GATATTATA	GAGTTAGTTA	TAGTATGCTT	TCTGTGTTA	TGATTTTTAG	CTGCT
sudan KX010887	TGTTGTTGATAGTTT	TGGTTGTGGT	TATTCGTT1	ATTTATGGTA	GATATTATA	GAGTTAGTTA	TAGTATGCTT	TCTGTGTTA	-TGAGTTTTAG	CTGCT
sudan2 KX010884	TGTTGTTGATAGTTT	TGGTTGTGGT	<i>GTATTCGTT1</i>	ATTTATGGTA	GATATTATA	GAGTTAGTTA	TAGTATGCTI	TCTGTGTTA	-TGATTTTTAG	CTGCT
Iran KX893481	TGTTGTTGATAGTTT	TGGTTGTGGT	JTATTCGTT1	ATTTATGGTA	GATATTATA	GAGTTAGTTA	TAGTATGCTI	TCTGTGTTA	-TGATTTTTAG	CTGCT
sudan3 KX010881	TGTTGTTGATAGTTT		Contraction of the second	The second s						
sudan4 KX010878	TGTTGTTGATAGTTT	TGGTTGTGGT	FATTCGTT1	CATTTATGGTA	GATATTATA	GAGTTAGTTA	TAGTATGCTT	TCTGTGTTA	-TGATTTTTAG	CTGCT
sudan5 KX010877	TGTTGTTGATAGTTT									
Serbia KX510135	TGTTGTTGATAGTTT	TGGTTGTGGT	JTATTCGTT1	ATTTATGGTA	GATATTATA	GAGTTAGTTA	TAGTATGCTT	TCTGTGTTA	-TGATTTTTAG	CTGCT
kenya2 KX010875	TGTTGTTGATAGTTT		A CARLES AND A CARL							
Slovakia KX010892	TGTTGTTGATAGTTT									
Hungary KX010897	TGTTGTTGATAGTTT									10 C C C C C C C C C C C C C C C C C C C
Armenia KX231668	TGTTGTTGATAGTTT			and the second second						
Namibia KX010889	TGTTGTTGATAGTTT									
Kenya3 KX010879	TGTTGTTGATAGTTT								Contraction of the second second	1000
Iran3 KX893481	TGTTGTTGATAGTTT									
Slovakia2 KX010895	TGTTGTTGATAGTTT									
sudan7 KX010885	TGTTGTTGATAGTTT	TGGITGIGGI	STATTCG111	ATTTATGGTA	GATATTATA	GAGTTAGTTA	TAGTATGCTT	TCTGTGTTA	-TGATTTTTAG	CTGCT

kenya i	KX010873
Maurit	ania KT363811
sudan i	KX010887
sudan2	KX010884
Iran K	X893481
sudan3	KX010881
sudan4	KX010878
sudan5	KX010877
Serbia	KX510135
kenya2	KX010875
SLovak.	ia KX010892
Hungar	y KX010897
Armeni	a KX231668
Namibi	a KX010889

	47.0				450					500
	41 0	420	430	440	450	460	470	480	490	500
ACTA							CATAAAACAAG			
TCTA	GAATTTCTAGG	TATTCCTTG	TTGTGTACTG	TTGGGGTAG	TTACAATAGT	TATT-CTTT	TTAAGGTCGG	TCGATGTGC	TTTGGATCTG	TAG
TCTA	GAATTTCTAGG	TATTCCTTG	TTGTGTACTG	TTGGGGTAG	TTACAATAGT	TATT-CTTT	TTAAGGTCGG	TCGATGTGC	TTTGGATCTG	TAG
1000	GAATTTCTAGG									2000 B (1)
	GAATTTCTAGG									
	GAATTTCTAGG	100 C 200 C								
	GAATTTCTAGG				1					100 B
10000	GAATTTCTAGG									
10000	GAATTTCTAGG									
	GAATTTCTAGG									
	GAATTTCTAGA	Contraction of the second second								1000
	GAATTTCTAGG							1. TO		100 C
	GAATTTCTAGG									
	GAATTTCTAGG							and the second second		
	GAATTTCTAGG									100 C
ICIA	GAATTICIAGG	TALICUIG	116161ACIG	31100001AG	LIACAAIAGI	TALL-CITL	LI LAAGGICGG.	I COATGIGCI	TITIGGAICIG.	THG
	510	520	530	540	550	560	570 55	590	600	
							570 58			

	510	520	530	540	550	560	570	580	590	600
No. 1995 INCOME.	•••••				Contraction of the second	Contraction of the second				10.00
tamboul 11	ACATCGAACCGACC	TTAAAAAAG-A	ATAACTATTG	TAACTACCCC.	AACCAGTACA	ACAACAAGGAA	TACCTAGAAA	TTCTAGAAGC	AGCTAAAAAT	CATAA
kenya KX010873	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	TTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
Mauritania KT363811	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	TTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
sudan KX010887	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	TTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
sudan2 KX010884	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	TTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
Iran KX893481	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	TTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
sudan3 KX010881	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	TTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
sudan4 KX010878	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	TTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
sudan5 KX010877	GTTTGAGACTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	TTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
Serbia KX510135	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	CTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
kenya2 KX010875	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	TTGTTGTGGG	TATAATTTGA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
Slovakia KX010892	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	CTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
Hungary KX010897	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	CTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
Armenia KX231668	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	CTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
Namibia KX010889	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	CTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
Kenya3 KX010879	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	TTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GGTTA
Iran3 KX893481	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	TTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
Slovakia2 KX010895	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	CTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA
sudan7 KX010885	GTTTGAGGCTTGTT	TATGTGTGTG	GTTATTTTT	GCGCTTTATG	TTGTTGTGGG	TATAATTTAA	TTGATTTTTA	TTATAGTTAC	TGGTGAAGTT	GATTA

	610 620 630 640 650 660 670 68 		700
tamboul 11	C-ACAGAAAGCATACTATAACTAACTCTATA-ATATCTACCATAAATAAA	CAAAACACCAAATAAA	ICCAA
kenya KX010873	TTATTCCCATTAATTTATGGGTTATTCTTGGTGTGTGTGT		
Mauritania KT363811			
sudan KX010887	TTATTCCCATTAATTTATGGGTTATTCTTGGTGTGTGTGT		
sudan2 KX010884 Iran KX893481	TTATTCCCATTAATTTATGGGTTATTCTTGGTGTGTGTGT		
sudan3 KX010881	TTATICCCATTAATTTATGGGTTATTCTTGGTGTGTGTGTGTGTG		
sudan4 KX010878	TTATTCCCATTAATTTATGGGTTATTCTTGGTGTGTGTGT		
sudan5 KX010877	TTATTCCCATTAATTTATGGGTTATTCTTGGTGTGTGTGT	GCTGAAAGTGAATTGG	TTAG
Serbia KX510135	TTATTCCCATTAATTTATGGGTTATTCTTGGTGTGTGTGT	GCTGAAAGTGAATTGG	TTAG
kenya2 KX010875	TTATTCCCATTAATTTATGGGTTATTCTTGGTGTGTGTGT		
Slovakia KX010892	TTATTCCCATTAATTTATGGGTTATTCTTGGTGTGTGTGT		
Hungary KX010897	TTATTCCCATTAATTTATGGGTTATTCTTGGTGTGTGTGT		
Armenia KX231668 Namibia KX010889	TTATTCCCATTAATTTATGGGTTATTCTTGGTGTGTGTGT		
Kenya3 KX010879	TTATTCCCATTAATTTATGGGTTATTCTTGGTGTGTGTGT		
Iran3 KX893481	TTATTCCCATTAATTTATGGGTTATTCTTGGTGTGTGTGT		
Slovakia2 KX010895	TTATTCCCACTAATTTATGGGTTATTCTTGGTGTGTGTGT	GCTGAAAGTGAATTGG	TTAG
sudan7 KX010885	TTATTCCCATTAATTTATGGGTTATTCTTGGTGTGTGTGT	GCTGAAAGTGAATTGG	TTAG
		780 790	800
tamboul 11	CATACCTACGACTCTGAA-AGTAAAAATTCTTAAACTTAATTACTAACTTCAACAAATCGGCAAACCTCTGCAGCAA		
kenya KX010873	AGGATTTAATGTTGAGTATAGTGGTATATATTTTTACGTGCTTGTTGCTTGTGGGGTATATTGTCATATATAT		
Mauritania KT363811	AGGATTTAATGTTGAGTATAGTGGTATATATTTTACGTGCTTGTTTGCTTGTGAGTATATTGTCATATATAT		
sudan KX010887	AGGATTTAATGTTGAGTATAGTGGTATATATTTTACGTGCTTGTTTGCTTGTGAGTATATTGTCATATATAT		
sudan2 KX010884	AGGATTTAATGTTGAGTATAGTGGTATATATTTTACGTGCTTGTTTGCTTGTGAGTATATTGTCATATATAT	TGGTTGGTGGTGGT	ATTGTT
Iran KX893481	AGGATTTAATGTTGAGTATAGTGGTATATATTTTACGTGCTTGTTGCTTGTGAGTATATTGTCATATATAT	TGGTTGGTGGTGGT	ATTGTT
sudan3 KX010881	AGGATTTAATGTTGAGTATAGTGGTATATATTTTACGTGCTTGTTTGCTTGTGAGTATATTGTCATATATAT	TGGTTGGTGGTGGT	ATTGTT
sudan4 KX010878	AGGATTTAATGTTGAGTATAGTGGTATATATTTTACGTGCTTGTTTGCTTGTGAGTATATTGTCATATATAT		
sudan5 KX010877	AGGATTTAATGTTGAGTATAGTGGTATATATTTTACGTGCTTGTTTGCTTGTGAGTATATTGTCATATATAT		and the second se
Serbia KX510135	AGGATTTAATGTTGAGTACAGTGGTATATATTTTACGTGCTTGTTTGCTTGTGAGTATATTGTCGTATATATA		
kenya2 KX010875	AGGATTTAATGTTGAGTATAGTGGTATATATTTTACGTGCTTGTTGCTTGTGAGTATATTGTCATATATAT		
Slovakia KX010892 Hungary KX010897	AGGATTTAATGTTGAGTATAGTGGTATATATTTTACGTGCTTGCT		
Armenia KX231668	AGGATTIAATGTTGAGTATAGTGGTATATATTTTACGTGCTTGTTGCTTGTGGGTATATTGTCGTATATATA		
Namibia KX010889	AGGATTTAATGTAGAGTATAGTGGTATATATTTTACGTGCTTGTTGCTTGTGAGTATATGTCGTATATATA		
Kenya3 KX010879	AGGATTTAATGTTGAGTATAGTGGTATATATTTTACGTGCTTGTTTGCTTGTGAGTATATTGTCATATATAT		
Iran3 KX893481	AGGATTTAATGTTGAGTATAGTGGTATATATTTTACGTGCTTGTTTGCTTGTGAGTATATTGTCATATATAT	TGGTTGGTGGTGGT	ATTGTT
Slovakia2 KX010895	AGGATTTAATGTTGAGTATAGTGGTATATATTTTACGTGCTTGTTTGCTTGTGAGTATATTGTCGTATATATA	TGATTGGTGGTGGT	ATTGTT
sudan7 KX010885	AGGATTTAATGTTGAGTATAGTGGTATATATTTTACGTGCTTGTTTGCTTGTGAGTATATTGTCATATATAT	- TGGTTGGTGGTGGT	ATTGTT
	810 820 830 8 4 0 850 860 870	880 890	900
	AGGGCCCTTACGAAATTGAGAATACCCCAAAACCTTACGTTCACCTAAAACAAAAAAGCAATTGACAAACTAAT	1. The second	5 (B)
tamboul 11 kenya KX010873	-GGTTGGTGGTGGTATTGTTGGTATGTTGGTATGTTCATGT-TGGTGTTTAATTA-CAAAAAAAGCAATTATTAACAAACTAAT		CCACGT
Mauritania KT363811	-GGTTGGTGGTGGTATGTTGGTATGTTCATGT-TGGTGTTTAATTTA CTGTTTTTATGTGGGCTC		CCACGT
sudan KX010887	-GGTTGGTGGTGGTATGTTGGTATGTTCATGT-TGGTGTTTAATTTA-CTGTTTTTATGTGGGGCTC		CCACGT
sudan2 KX010884	-GGTTGGTGGTGGTATGTTGGTATGTTCATGT-TGGTGTTTAATTTACTGTTTTTTATGTGGGGCTC		CCACGT
Iran KX893481	-GGTTGGTGGTGGTATTGTTGGTATGTTCATGT-TGGTGTTTTATTTACTGTTTTTTATGTGGGGCTC		CCACGT
sudan3 KX010881	-GGTTGGTGGTGGTATTGTTGGTATGTTCATGT-TGGTGTTTAATTTACTGTTTTTTATGTGGGGCTC		CCACGT
sudan4 KX010878	-GGTTGGTGGTGGTATTGTTGGTATGTTCATGT-TGGTGTTTAATTTACTGTTTTTTATGTGGGGCTC		CCACGT
sudan5 KX010877	-GGTTGGTGGTGGTATTGTTGGTATGTTCATGT-TGGTGTTTAATTTACTGTTTTTATGTGGGGCTC	GAGCGACTTTA	CCACGT
Serbia KX510135	-GGTTGGTGGTGGTATTGTTGGTATGTTCATGT-TGGTGTTTAATTTACTGTTTTTTATGTGGGGCTC	GAGCGACTTTA	CCACGT
kenya2 KX010875	-GGTTGGTGGTGGTATTGTTGGTATGTTCATGT-TGGTGTTTAATTTATTGTTTTTTATGTGGGGCTC	GAGCGACTTTA	CCACGT
Slovakia KX010892	-GGTTGGTGGTGGTATTGTTGGTATGTTCATGT-TGGTGTTTAATTTACTGTTTTTTATGTGGGGCTC		CCACGT
Hungary KX010897	-GGTTGGTGGTGGTATTGTTGGTATGTTCATGT-TGGTGTTTAATTTACTGTTTTTTATGTGGGGCTC		CCACGT
Armenia KX231668	-GGTTGGTGGTGGTATTGTTGGTATGTTCATGT-TGGTGTTTAATTTACTGTTTTTATGTGGGGCTC		-CCACGT
Namibia KX010889	-GGTTGGTGGTGGTATTGTTGGTATGTTCATGT-TGGTGTTTAATTTACTGTTTTTTATGTGGGGCTC		-CCACGT
Kenya3 KX010879	-GGTTGGTGGTGGTATTGTTGGTATGTTCATGT-TGGTGTTTAATTTACTGTTTTTTATGTGGGGCTC		CCACGT
Iran3 KX893481	-GGTTGGTGGTGGTATTGTTGGTATGTTCATGT-TGGTGTTTAATTTACTGTTTTTTATGTGGGCTC		CCACGT
Slovakia2 KX010895	-GGTTGGTGGTGGTATTGTTGGTATGTTCATGT-TGGTGTTTAATTTACTGTTTTTTATGTGGGCTC		CCACGT
sudan7 KX010885	-GGTTGGTGGTGGTATTGTTGGTATGTTCATGT-TGGTGTTTAATTTACTGTTTTTATGTGGGCTC	GAGCGACTTTA	CCACGT
Figure 12.			

Figure 12.

Multiple Sequencing Alignment of Tamboul NAD1 gene camel isolate.

	10	20	30	40	50	60	70	80	90	200
Sudan_ Iran2 HM749615	ССАБАААААТТТААС ССАБАААААТТТААС	AAAAAAATC	TAACGAACAC	GTGGTAAAGI	CGCTCGAGCC	CACATAAAAA	ACAGTAAATT	AAACACCAAC	ATGAACATAC	CAACA
	210	120	130	140	150	160	170	180	190	200
Sudan Iran2 HM749615	ATACCACCACCAACC ATACCACCACCAACC	AACAATACC	ACCACCAACCA	TGAAAATATA	TATATGACAA	TATACTCACA	AGCAAACAAG	CACGTAAAAT	ATATACCACT	ATACT
	210	220	230	240	250	260	270	250	230	300
udan ran2 HM749615	CAACATTAAATCCTC CAACATTAAATCCTC	TAACCAATT	CACTTTCAGCC	TCCCCATAAT	CAAATGGAGT	ACGATTAGTC	TCACACAACA	CACACACCAA	GAATAACCCA	TAAAT
	310	220	330	340	350	260	370	380	390	400
udan ran2 HM749615	TAATGGGAATAATAA TAATGGGAATAATAA	TCAACTTCA	CAGTAACTAT	AATAAAAATC	AATTAAATTA	TACCCACAAC	AACATAAAGC	SCAAAAAAT A	ACCACACACA	TAAAA
udan_ ran2 HM749615	410 CAAGCCTCAAACCTA CAAGCCTCAAACCTA	ACAGATCCA	AAAGCACATCG	AACCGACCTI	AAAAAAGAAT	AACTATTGTA	ACTACCCCAA	CCAGTACACA	ACAAGGAATA	CCTAG
udan ran2 HM749615	AAATTCTAGAAGCAG	CTAAAAATC	TAACACAGAA	AGCATACTAT	AACTAACTCT	ATAATATCTA	CCATAAATAA	ACGAATACAC	CACAACCAAA	ACTAT
	610 	620 · · · · I · · · · I	630 • • • • • • • •	640 • • • • • • • • • • •	650	660 • • • • 1 • • • • 1	670	680 • • • • • • • • • •	690 • • • • • • • • • • •	700
Sudan Iran2 HM749615	CAACAACAAAAACACC		AACATACCTAC	GACTCTGAAA GACTCTGAAA	GTAAAAATTC GTAAAAATTC	ТТАААСТТАА ТТАААСТТАА	TTACTAACTT TTACTAACTT	CAACAAATCG	GCAAACCTCT GCAAACCTCT	GCAGC GCAGC

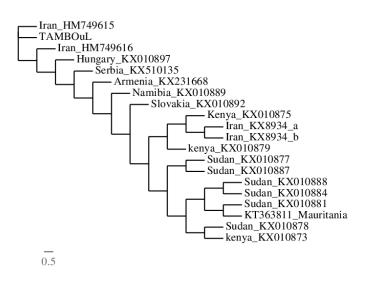
Figure 13.

Multiple Sequencing Alignment of Addein 12S rRNA gene cattle isolate

10

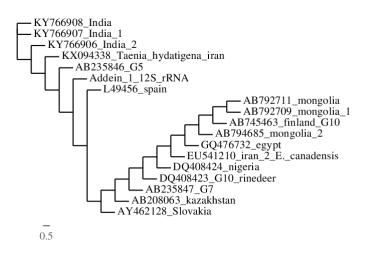
	10	20	30	40	50	60	70
Addein 12S rRNA	-GTTTGA-ATTATCGI						
India KY766908	-GTTTGATATTATCGI						
India 1 KY766907	-GTTTGATATTATCGI						
India 2 KY766906	-GTTTGATATTATCGI						
T.hydatigena iran KX094338	-GTTTGATATTATCGI						
G5 AB235846	-GTTTGATATTATCG1						
<u>G3 AB233846</u> Japan G5 AB979275	GTTTGATATTATCGI						
Mongolia AB792711	-GTTTGATATTATCGI						
Mongolia 2 AB792709	-GTTTGATATTATCGI						
*	-GTTTGATATTATCGI						
Finland AB745463							
Mongolia 3 AB794685	-GTTTGATATTATCGI						
Egypt GQ476732	-GTTTGATATTATCGI						
iran 3 E.canadensis EU541210	-GTTTGATATTATCGI						
Nigeria DQ408424	-GTTTGATATTATCGI						
G10 rinedeerDQ408423	-GTTTGATATTATCG1						
G7 AB235847	-GTTTGATATTATCGI						
Kazakhstan AB208063	-GTTTGATATTATCGI						
Slovakia AY462128	-GTTTGATATTATCGI						
Spain L49456	-GTTTGATATTATCGI	TTAATGGTT	IGAGTTTGTG	TAGTTTTAGTT	AAGCCAAG	TCTATGTGCTGC	TTATG
	110	120					
	.						
Addein 12S rRNA	TGTTGTTGTAATATGA						
India KY766908	TGTTATTGTAATATGA	TATTATTTA	;				
<u>India 1 KY766907</u>	TGTTATTGTAATATGA	TATTATTTA	3				
India 2 KY766906	TGTTATTGTAATATGA	TATTATTTA	;				
T.hydatigena iran KX094338	TGTTATTGTAATATGA	TATTATTTA	3				
G5 AB235846	TGTTATTGTAATATGA	TATTATTTA	3				
Japan G5 AB979275	TGTTATTGTAATATGA	TATTATTTA	3				
Mongolia AB792711	TGTTGTTGTAATATGA	TATTATTTA	3				
Mongolia 2 AB792709	TGTTGTTGTAATATGA	TATTATTTA	3				
Finland AB745463	TGTTGTTGTAATATGA	TATTATTTA	3				
Mongolia 3 AB794685	TGTTGTTGTAATATGA	TATTATTTA	3				
Egypt GQ476732	TGTTGTTGTAATATGA	TATTATTTA	3				
iran 3 E.canadensis EU541210	TGTTGTTGTAATATGA	TATTATTTA	3				
Nigeria DQ408424	TGTTGTTGTAATATGA	TATTATTTA	3				
G10 rinedeerDQ408423	TGTTGTTGTAATATGA	TATTATTTA	3				
G7 AB235847	TGTTGTTGTAATATGA	TATTATTTA	3				
Kazakhstan AB208063	TGTTGTTGTAATATGA	TATTATTTA	3				
Slovakia AY462128	TGTTGTTGTAATATGA	TATTATTTA	3				
Spain L49456	TGTTGTTGTAATATGA						
-							

40


= 0

60

Figure 14. Multiple Sequencing Alignment of Addein cattle isolate


Phylogenetic Tree

The drawn phylogenetic tree of Tamboul camel isolate revealed that our mutant Nad 1 gene was so closed to Iranian Nad1 gene (Figure 15). The drawn phylogenetic tree of addein cattle isolate 12SrRNA gene with some cattle's isolate was presented in (Figure 16).

Tamboul camel isolate phylogenetic tree

Addein cattle isolate phylogenetic tree

Discussions

The reports of novel mutation of Nad 1 gene that have both suggest that the Nad1 gene are continuing to evolve in the face of current taxonomy profile. Highly similarity between Tamboul isolate and Camel Iranian strain, those mutations are modified the phylogenetic taxonomy. In addition, the extent and phylogenetic relevance of interbreeding among species is unclear, because most recent studies focused on mitochondrial sequences, which are not subject to recombination. Differences between the phylogenies of nuclear and mitochondrial genomes could explain biological differences between isolates of the same or closely related mitochondrial genotypes. In addition, the extent of intraspecific diversity is insufficiently known, particularly within *E. canadensis* [17]. Although DNA-based methods are useful for taxonomy at the level of genus, species and subspecies, use of such methods often requires careful attention to design of primers and preparation of pure DNA in adequate quantities (McManus & Thompson, 2003; Rahimi et al., 2007) [33] [34]. Mitochondrial and nuclear DNA analyses have previously been used successfully in a few molecular studies on *E. granulosus* in Iran. In the initial study by (Zhang et al. 1998) [35], the DNA sequence variation (assessed using PCR-RFLP) within regions of the mitochondrial cox1 and nad1 genes of 16 isolates of E. granulosus indicated the transmission of two strains, G1 and G6. In the study by (Fasihi Harandi et al. 2002)[36], Very few bp exchanges differentiate G6 and G7, and 'intermediate' haplotypes have been observed, which merge them into a single genotype G6/7(Addy et al., 2017) [28]. The Mitochondrial and nuclear DNA analyses have previously been used successfully in a few molecular studies on E. granulosus in Sudan, this close affinity between G6 and G7 was later confirmed by analysis of longer sequences including the entire mitochondrial genomes (Nakao et al., 2013) [16], G6 has been identified from goats and G7 from pigs (Soriano et al., 2010) [37] that is opening the suggest more infectivity with in deferent intermediate hosts , also the low level of nucleotide diversity within G6/7. This study showed a rather high haplotype diversity, suggesting that there is a higher degree of isolate variance than would be naturally observed under random mutational conditions (Addy et al., 2017) [38].

Conclusions

From the results obtained we summarize these findings on NAD1 Gene detected in Sudan *Echinococcus canadensis* strain, this is new mutant isolate is completely different from NAD1 gene in its genotypic characterization by using ClustalW Multiple Alignment, also the some mutations are done it change phylogenetic tree of *E. canadensis*, also with the present study, the described LAMP assay should facilitate rapid detection and genotyping

of hydatid cyst strains in a poorly molecular diagnosis tools in the tropics. In the present study, the potential of LAMP assay for rapid and accurate detection of CE was investigated, on a practical scale for the first time in Sudan. The LAMP assay provides high levels of diagnostic sensitivity and specificity when testing a variety of cysts sampled from human and domestic livestock.

Abbreviations

Not applicable

Declarations

Ethics approval and consent to participate

Funding

No funds from any institute

Authors' contributions

All authors are contributed in study design, analysis results, and match proof manuscript.

Competing Interests

The authors declare that the research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

The authors kindly thank all who helped during this work. Special thanks are due to German research foundation (DFG) for financial support and fruitful training and qualification in molecular diagnostics. Authors greatly indebted to colleagues constituting the Working group (CESSARI).

Discussions

The reports of novel mutation of Nad 1 gene that have both suggest that the Nad1 gene are continuing to evolve in the face of current taxonomy profile. Highly similarity between Tamboul isolate and Camel Iranian strain, those mutations are definitely modified the phylogenetic taxonomy. In addition, the extent and phylogenetic relevance of interbreeding among species is unclear, because most recent studies focused on mitochondrial sequences, which are not subject to recombination. Differences between the phylogenetics

of nuclear and mitochondrial genomes could explain biological differences between isolates of the same or closely related mitochondrial genotypes. In addition, the extent of intraspecific diversity is insufficiently known, particularly within *E.canadensis* [17]. Although DNA-based methods are useful for taxonomy at the level of genus, species and subspecies, use of such methods often requires careful attention to design of primers and preparation of pure DNA in adequate guantities (McManus & Thompson, 2003; Rahimi et al., 2007) [33] [34]. Mitochondrial and nuclear DNA analyses have previously been used successfully in a few molecular studies on *E. granulosus* in Iran. In the initial study by (Zhang et al. 1998) [35], the DNA sequence variation (assessed using PCR-RFLP) within regions of the mitochondrial cox1 and nad1 genes of 16 isolates of E. granulosus indicated the transmission of two strains, G1 and G6. In the study by (Fasihi Harandi et al. 2002) [36], Very few bp exchanges differentiate G6 and G7, and 'intermediate' haplotypes have been observed, which merge them into a single genotype G6/7(Addy et al., 2017) [28]. The Mitochondrial and nuclear DNA analyses have previously been used successfully in a few molecular studies on E. granulosus in Sudan, This close affinity between G6 and G7 was later confirmed by analysis of longer sequences including the entire mitochondrial genomes (Nakao et al., 2013) [16], G6 has been identified from goats and G7 from pigs (Soriano et al., 2010)[37] that is opening the suggest more infectivity with in deferent intermediate hosts , also the low level of nucleotide diversity within G6/7. This study showed a rather high haplotype diversity, suggesting that there is a higher degree of isolate variance than would be naturally observed under random mutational conditions (Addy et al., 2017) [38].

Conclusions

From the results obtained we summarize these findings on NAD1 Gene detected in Sudan *Echinococcus canadensis* strain , this is new mutant isolate is completely different from NAD1 gene in its genotypic characterization by using ClustalW Multiple Alignment., also the some mutations are done it change phylogenetic tree of *E.canadensis*, also with the present study, the described LAMP assay should facilitate rapid detection and genotyping of hydatid cyst strains in a poorly molecular diagnosis tools in the tropics. In the present study, the potential of LAMP assay for rapid and accurate detection of CE was investigated, on a practical scale for the first time in Sudan. The LAMP assay provides high levels of diagnostic sensitivity and specificity when testing a variety of cysts sampled from human and domestic livestock.

Acknowledgments

The authors kindly thank all who helped during this work. Special thanks are due to German research foundation (DFG) for financial support and fruitful training and qualification in molecular diagnostics. Authors greatly indebted to colleagues constituting the Working group (CESSARI).

References

- J. Eckert, M. A. Gemmell, F.-X. Meslin, and Z. S. Pawlowski, "WHO-OIE Manual on Echinococcosis in Humans and Animals: A Public Health Problem of Global Concern." World organisation for animal health Paris, 2001.
- E. MOKS, I. J. GISALU, H. VALDMANN, and U. SAARMA, "First report of Echinococcus granulosus G8 in Eurasiaand a reappraisal of the phylogenetic relationshipsof 'genotypes' G5-G10," *Parasitology*. 2008;135:647 654.
- E. Moks, I. Jõgisalu, U. Saarma, H. Talvik, T. Järvis, and H. Valdmann, "Helminthologic survey of the wolf (Canis lupus) in Estonia, with an emphasis on Echinococcus granulosus," *J. Wildl. Dis.*, vol. 42, no. 2, pp. 359–365, 2006.
- P. Deplazes, F. van Knapen, A. Schweiger, and P. A. M. Overgaauw, "Role of pet dogs and cats in the transmission of helminthic zoonoses in Europe, with a focus on echinococcosis and toxocarosis," *Vet. Parasitol.*, vol. 182, no. 1, pp. 41–53, 2011.
- 5. L. Laurimaa *et al.*, "First report of highly pathogenic Echinococcus granulosus genotype G1 in dogs in a European urban environment," *Parasit. Vectors*, vol. 8, no. 1, p. 182, 2015.
- C. A. A. Rojas, T. Romig, and M. W. Lightowlers, "Echinococcus granulosus sensu lato genotypes infecting humans--review of current knowledge," *Int. J. Parasitol.*, vol. 44, no. 1, pp. 9–18, 2014.
- A. Casulli *et al.*, "Molecular evidence of the camel strain (G6 genotype) of Echinococcus granulosus in humans from Turkana, Kenya," *Trans. R. Soc. Trop. Med. Hyg.*, vol. 104, no. 1, pp. 29–32, 2010.
- J. L. Badaraco, F. J. Ayala, J. M. Bart, B. Gottstein, and K. L. Haag, "Using mitochondrial and nuclear markers to evaluate the degree of genetic cohesion among Echinococcus populations," *Exp. Parasitol.*, vol. 119, no. 4, pp. 453–459, 2008, doi: 10.1016/j.exppara.2008.02.004.
- 9. J. M. Bart *et al.*, "EmsB, a tandem repeated multi-loci microsatellite, new tool to investigate the genetic diversity of Echinococcus multilocularis," *Infect. Genet.*

Evol., vol. 6, no. 5, pp. 390–400, 2006, doi: 10.1016/j.meegid.2006.01.006.

- A. Dinkel *et al.*, "A PCR system for detection of species and genotypes of the Echinococcus granulosus-complex, with reference to the epidemiological situation in eastern Africa," *Int. J. Parasitol.*, vol. 34, no. 5, pp. 645–653, 2004, doi: 10.1016/j.ijpara.2003.12.013.
- E. A. Guarnera, A. Parra, L. Kamenetzky, G. García, and A. Gutiérrez, "Cystic echinococcosis in Argentina: Evolution of metacestode and clinical expression in various Echinococcus granulosus strains," *Acta Trop.*, vol. 92, no. 2, pp. 153–159, 2004, doi: 10.1016/j.actatropica.2004.06.008.
- 12. L. Kamenetzky *et al.*, "Several strains of Echinococcus granulosus infect livestock and humans in Argentina," *Infect. Genet. Evol.*, vol. 2, no. 2, pp. 129–136, 2002.
- C. Manterola, F. Benavente, A. Melo, M. Vial, and J. C. Roa, "Description of Echinococcus granulosus genotypes in human hydatidosis in a region of southern Chile," *Parasitol. Int.*, vol. 57, no. 3, pp. 342–346, 2008, doi: 10.1016/j.parint.2008.02.005.
- R. A. Omer *et al.*, "Strain characterisation of human hydatidosis in Sudan," in *AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE*, 2007, vol. 77, no. 5, p. 107.
- S. J. Santivañez *et al.*, "Human hydatid disease in Peru is basically restricted to Echinococcus granulosus genotype G1," *Am. J. Trop. Med. Hyg.*, vol. 79, no. 1, pp. 89–92, 2008.
- M. Nakao *et al.*, "Mitochondrial phylogeny of the genus Echinococcus (Cestoda: Taeniidae) with emphasis on relationships among Echinococcus canadensis genotypes.," *Parasitology*, vol. 140, no. 13, pp. 1625–36, 2013, doi: 10.1017/S0031182013000565.
- T. Romig, D. Ebi, and M. Wassermann, "Taxonomy and molecular epidemiology of Echinococcus granulosus sensu lato," *Vet. Parasitol.*, vol. 213, no. 3, pp. 76–84, 2015.
- 18. R. C. A. Thompson and D. P. McManus, "Towards a taxonomic revision of the genus Echinococcus," *Trends Parasitol.*, vol. 18, no. 10, pp. 452–457, 2002.
- I. E. Elmahdi, Q. M. Ali, M. M. a Magzoub, a M. Ibrahim, M. B. Saad, and T. Romig, "Cystic echinococcosis of livestock and humans in central Sudan.," *Ann. Trop. Med. Parasitol.*, vol. 98, no. 5, pp. 473–479, 2004.
- 20. "Bowles McManus 1993 Molecular variation in echinococcus.pdf."
- 21. M. Hüttner and T. Romig, "Echinococcus species in African wildlife.," *Parasitology*, vol. 136, no. 10, pp. 1089–95, 2009.

- 22. S. Štefanić, B. S. Shaikenov, P. Deplazes, A. Dinkel, P. R. Torgerson, and A. Mathis, "Polymerase chain reaction for detection of patent infections of Echinococcus granulosus ('sheep strain') in naturally infected dogs," *Parasitol. Res.*, vol. 92, no. 4, pp. 347–351, 2004.
- 23. M. Wassermann, U. Mackenstedt, and T. Romig, "A loop-mediated isothermal amplification (LAMP) method for the identification of species within the Echinococcus granulosus complex," *Vet. Parasitol.*, 2014.
- 24. X.-W. Ni *et al.*, "A comparison of loop-mediated isothermal amplification (LAMP) with other surveillance tools for Echinococcus granulosus diagnosis in canine definitive hosts," *PLoS One*, vol. 9, no. 7, p. e100877, 2014.
- Notomi *et al.*, "Loop-mediated isothermal amplification of DNA," *Nucleic Acids Res*, vol. 28, no. 12, p. E63, 2000.
- F. Addy *et al.*, "Prevalence and diversity of cystic echinococcosis in livestock in Maasailand, Kenya," *Parasitol. Res.*, vol. 111, no. 6, pp. 2289–2294, 2012.
- A. Ito *et al.*, "Echinococcus species from red foxes, corsac foxes, and wolves in Mongolia," *Parasitology*, vol. 140, no. 13, pp. 1648–1654, 2013.
- F. Addy *et al.*, "Genetic differentiation of the G6/7 cluster of Echinococcus canadensis based on mitochondrial marker genes," *Int. J. Parasitol.*, no. August, pp. 1–9, 2017.
- 29. M. Nakao, Y. Sako, and A. Ito, "Isolation of polymorphic microsatellite loci from the tapeworm Echinococcus multilocularis," *Infect. Genet. Evol.*, vol. 3, no. 3, pp. 159–163, 2003.
- M. Hüttner *et al.*, "Genetic characterization and phylogenetic position of Echinococcus felidis Ortlepp, 1937 (Cestoda: Taeniidae) from the African lion," *Int. J. Parasitol.*, vol. 38, no. 7, pp. 861–868, 2008.
- M. Hüttner, L. Siefert, U. Mackenstedt, and T. Romig, "A survey of Echinococcus species in wild carnivores and livestock in East Africa," *Int. J. Parasitol.*, vol. 39, no. 11, pp. 1269–1276, 2009.
- 32. J. D. Thompson, D. G. Higgins, and T. J. Gibson, "CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice," *Nucleic Acids Res.*, vol. 22, no. 22, pp. 4673–4680, 1994.
- D. P. McManus and R. C. a Thompson, "Molecular epidemiology of cystic echinococcosis.," *Parasitology*, vol. 127 Suppl, no. Suppl 1, pp. S37–S51, 2003.
- 34. H. R. Rahimi *et al.*, "A new primer pair in ITS1 region for molecular studies on Echinococcus granulosus," *Iran. J. Public Health*, vol. 36, no. 1, pp. 45–49, 2007.

- 35. L. Zhang, A. Eslami, S. H. Hosseini, and D. P. McManus, "Indication of the presence of two distinct strains of Echinococcus granulosus in Iran by mitochondrial DNA markers," *Am. J. Trop. Med. Hyg.*, vol. 59, no. 1, pp. 171–174, 1998.
- M. F. Harandi, R. P. Hobbs, P. J. Adams, I. Mobedi, U. M. Morgan-Ryan, and R. C. A. Thompson, "Molecular and morphological characterization of Echinococcus granulosus of human and animal origin in Iran," *Parasitology*, vol. 125, no. 4, pp. 367–373, 2002.
- 37. S. V Soriano *et al.*, "Molecular characterization of Echinococcus isolates indicates goats as reservoir for Echinococcus canadensis G6 genotype in Neuquén, Patagonia Argentina," *Parasitol. Int.*, vol. 59, no. 4, pp. 626–628, 2010.
- 38. F. Addy *et al.*, "Genetic differentiation of the G6/7 cluster of Echinococcus canadensis based on mitochondrial marker genes," *Int. J. Parasitol.*, 2017.