Adjoint representations for SU(2), su(2) and sl(2)

Saad Owaid, Zainab Subhi

Department of Mathematics, Faculty of Science, Al-Mustansiriyah University, IRAQ Email: Zainabs.math@yahoo.com

ArticleInfo	Abstract			
Received	This work, presents four kinds of adjoint representations Ad_1 , Ad_2 , ad_1 and			
17/1/2016	ad_2 for the special unitary matrix Lie group SU(2) and the special unitary, special linear matrix Lie algebras $su(2)$ and $sl(2)$. In the first two we assume the			
Accepted	vector spaces as the matrix Lie algebras $su(2)$ and $sl(2)$, later cases obtained by			
5/6/2016	exploiting the action of $su(2)$ and $sl(2)$ on themselves. Also, we compute their			
	direct sums $Ad_1 \oplus Ad_2$ and $ad_1 \oplus ad_2$. The results have been displayed as			
	Tables in a nice form.			
	صية			
	الخلاصة			
	الخلاصـه في عملنا هذا، قدمنا اربعة انواع من التمثيلات الملحقة، Ad ₂ , Ad ₁ ad ₁ , ad ₂ وad ₂ لزمرة لي			
	في عملنا هذا، قدمنا اربعة انواع من التمثيلات الملحقة، Ad2, Ad1 ad1 , وad2 لزمرة لي			
	في عملنا هذا، قدمنا اربعة انواع من التمثيلات الملحقة، $\mathrm{Ad}_1~\mathrm{ad}_1$, Ad_2 , ad_2 , ad_2 , ad_2 , bd_2 , \mathrm			
	في عملنا هذا، قدمنا اربعة انواع من التمثيلات الملحقة، $Ad_1 ad_1 ad_2$, $ad_2 d_2$, $ad_2 d_2$ و المصفوفية الواحدية الخاصة وجبور لي المصفوفية الخطية الخاصة (2) su و (3) sl في الأولين افترضنا فضاءات المتجهات هي جبور لي المصفوفية (2) su و(2) . الحالتين الأخرتين وجدت من			

INTRODUCTION

In 1896 Frobenius created the general theory of representations. Representation theory of Lie groups can be described as the seek for all possible behaviors of a given group when acting on a vector space[4]. Mahmoud A. A. Sbaih and his colleagues [7] gave a new representation for the Lie unimodular group SU(4). Adjoint representation plays a fundamental rule in the Lie algebra theory because it enables us to transform its problems problem in linear algebra into а representations. Adjoint representations Ad₁ and Ad₂ associated to the conjugation actions of the special unitary matrix Lie group SU(2) on the matrix Lie algebras su(2) and sl(2), the adjoint representations of the matrix Lie algebras ad₁ and ad₂ associated to their actions on themselves are obtained. Moreover, their direct sums $Ad_1 \bigoplus Ad_2$ and $ad_1 \bigoplus ad_2$ are computed in details.

Preliminaries

Definition 1.1 [2]: A matrix Lie group G is a closed subgroup of the general linear groupGL(n, \mathcal{C}), that is every sequence $\{A_m\}_{m=1}^{\infty}$ of matrices in G with $A_m \rightarrow A \in$ $M_n(\mathcal{C})$ satisfy either $A \in G$ or A is not invertible.

The general linear groupGL(n, $\$) itself and most of its subgroups are matrix Lie groups. In particular those which we are considered in our present work, namely; SL(n, $\$), and SU(n, $\$).See [1-5].

Definition 1.2 [8]: A finite dimensional real (complex) representation of matrix Lie group G is a Lie group homomorphism Π : G \rightarrow GL(V), where V is a finite dimensional real (complex) vector space with dim V \geq 1.

The adjoint map of matrix Lie group G into the general linear group acting on the spacegform a representation called the adjoint representation of G usually denoted by Ad, where $Ad: G \rightarrow GL(g)$, defined by the formula $Ad_A(X) = AXA^{-1}$, for $A \in G, X \in g$.

Definition 1.3 [5]

A representation of the Lie algebra g is a (finite-dimensional) real or complex vector space V together with a homomorphism of Lie algebra i.e. $\pi: g \rightarrow gl(V)$ is a representation of Lie algebra g. If π is a linear map satisfying the following:

 $\pi([x, y]) = \pi(x)\pi(y) - \pi(y)\pi(x); \text{ for all } x, y \in g.$

The adjoint map of matrix Lie algebra g into general linear algebra acting on the space g is a representation of g, called the adjoint representation of g, denoted by $ad: g \rightarrow gl(g)$ and defined $as:ad_X(Y) = [X, Y]$, for all $X, Y \in g$.

Main Results

Theorem 2.1: Let G be a matrix Lie group, V a vector space over a field F such that Π : G \rightarrow GL(V) is a representation of G over V then Π can be completely determined by generators of G and basis of V.

Proof: Let $\{S_1, ..., S_n\}$ be a generators of G , $\{v_1, ..., v_r\}$ be a basis of V then $\prod_{S_i} \in$ GL(V) $\forall i = 1 ... n$. Suppose $A \in G$ then $A = S_1^{n_1} * ... * S_j^{n_j}$ for some $j \in \{1, ..., n\}$ and $n_k \in \{1, ..., j\}, k \in Z$. For each $X \in V$, $X = \sum_{i=1}^r c_i v_i$ for some $c_i \in F$ we have:

$$\begin{aligned} \Pi_{A}^{n}(\bar{X}) &= \Pi_{S_{1}^{n_{1}}*...*S_{j}^{n_{j}}}(X) \\ &= \Pi_{S_{1}^{n_{1}}*...*S_{j}^{n_{j}}}\left(\sum_{i=1}^{r}c_{i}v_{i}\right) \\ &= c_{1}\left[\Pi_{S_{1}^{n_{1}}*...*S_{j}^{n_{j}}}(v_{1})\right] + c_{2}\left[\Pi_{S_{1}^{n_{1}}*...*S_{j}^{n_{j}}}(v_{2})\right] \\ &+ \cdots + c_{r}\left[\Pi_{S_{1}^{n_{1}}*...*S_{j}^{n_{j}}}(v_{r})\right] \\ &= c_{1}\left[\Pi_{S_{1}^{n_{1}}}(v_{1}).\Pi_{S_{2}^{n_{2}}}(v_{1})\dots\Pi_{S_{j}^{n_{j}}}(v_{1})\right] \\ &+ c_{2}\left[\Pi_{S_{1}^{n_{1}}}(v_{2}).\Pi_{S_{2}^{n_{2}}}(v_{2})\dots\Pi_{S_{j}^{n_{j}}}(v_{2})\right] + \cdots \\ &+ c_{r}\left[\Pi_{S_{1}^{n_{1}}}(v_{r}).\Pi_{S_{2}^{n_{2}}}(v_{r})\dots\Pi_{S_{j}^{n_{j}}}(v_{r})\right] \end{aligned}$$
With the action of G on V we are done. \Box

Corollary 2.2: For any matrix Lie group G the adjoint representation

Ad: $G \rightarrow GL(g)$ is completely determined by generators and basis of G and g respectively. For a given matrix Lie group G we can associate matrix Lie algebra as follows:

Definition 2.3 [3]: Matrix Lie algebra g of matrix Lie group G is the set of all matrices A such that e^{At} is in G for all real numbers t. that is:

$$\mathbf{g} = \{\mathbf{A} \in \mathbf{M}_{\mathbf{n} \times \mathbf{n}} | \mathbf{e}^{\mathbf{A}\mathbf{t}} \in \mathbf{G}, \mathbf{t} \in \mathbb{R}\}.$$

Lemma 2.4:

Let V be a vector space over a field F, then
$$\begin{split} &\sum_{i=1}^{m} x_i \sum_{j=1}^{n} y_j = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j \text{ for } x_i, y_j \in V. \\ & \text{Proof:} \\ &\sum_{i=1}^{m} x_i \sum_{j=1}^{n} y_j = [\sum_{i=1}^{m} x_i] (y_1 + y_2 + ... + y_n) \\ &= (x_1 + x_2 + ... + x_m) y_1 + (x_1 + x_2 + ... + x_m) y_2 + ... \\ &+ (x_1 + x_2 + ... + x_m) y_n \\ &= x_1 y_1 + x_1 y_2 + ... + x_1 y_n + x_2 y_1 + x_2 y_2 + \\ &\dots + x_2 y_n + ... + x_m y_1 + x_m y_2 + ... + \\ &x_m y_n = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j. \end{split}$$

Theorem 2.5:

The adjoint representation of matrix Lie algebra g given in definition (1.3) is completely determined by elements of its basis.

Proof: Let $B=\{x_1, x_2, ..., x_n\}$ be a basis for a given Lie algebra. Take $X \in g$, then $X = \sum_{i=1}^{n} c_i x_i$ for some $c_i \in F$.

Now,
$$\forall y \in g, y = \sum_{j=1}^{n} k_j x_j$$
 for some $k_j \in F$.

ad_x(y) = [x, y] = xy - yx

$$= \sum_{i=1}^{n} c_{i} x_{i} \sum_{j=1}^{n} k_{j} x_{j}$$

$$- \sum_{j=1}^{n} k_{j} x_{j} \sum_{i=1}^{n} c_{i} x_{i}$$
by lemma (2.4)

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} k_{j} x_{i} x_{j} - \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} c_{i} k_{j} x_{j} x_{j} - \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} c_{i} k_{j} x_{i} x_{j} - \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} c_{i} k_{j} x_{j} x_{j} - \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=$$

 $\sum_{j=1}^{n} \sum_{i=1}^{n} k_j c_i x_j x_i$

last expression depends only on the action of g on itself by the elements B. □

We define $ad_1: su(2) \rightarrow gl(su(2))$ and $ad_2: sl(2) \rightarrow gl(sl(2))$. Then theorem (2.5) , shows that those representations can be

completely determined using basis and generators of su(2) and sl(2).

Definition 2.6 [5]: Let G be a matrix Lie group and Let $\Pi_1, \Pi_2, ..., \Pi_m$ be a representations of Lie group G acting on a vector spaces $V_1, V_2, ..., V_m$. Then, the direct sum of $\Pi_1, \Pi_2, ..., \Pi_m$ is a representation $\Pi_1 \oplus ... \oplus \Pi_m$ of G acting on the space $V_1 \oplus ... \oplus V_m$, defined by:

 $[\Pi_1 \bigoplus \dots \bigoplus \Pi_m(A)](v_1, \dots, v_m) =$ $(\Pi_1(A)v_1, \dots, \Pi_m(A)v_m) \text{ for all } A \in G.$

Definition 2.7 [5]: If g is a Lie algebra and $\pi_1, \pi_2, ..., \pi_n$ are representations of g acting on V1, V2,..., Vn then we define the direct sum representation of $\pi_1, \pi_2, ..., \pi_n$ acting on V1 \oplus V2 \oplus ... \oplus Vn by:

 $(\pi_1 \oplus \pi_2 \dots \oplus \pi_n)(V1, V2, \dots, Vn) = (\pi_1(X) V1, \pi_2(X) V2, \dots, \pi_n(X)Vn), \text{ for all } X \in \mathfrak{g}$ where $(V1, V2, \dots, Vn) \in V1, V2, \dots, Vn.$

Theorem 2.8: Let $\{\pi_i\}_{i=1}^n$ be a representations of a Lie algebra g on the vector space $\{V_i\}_{i=1}^n$ over a field F. The direct sum $\bigoplus_{i=1}^n \pi_i$ in definition (2.7) below is completely determined by the elements of the basis of $\bigoplus_{i=1}^n V_i$.

Proof: Let $B_i = \{b_{ij}\}_{j=1}^{f_i}$ be a basis of V_i , $i \in [1, ..., n]$ where $f_i = \text{Dim}(V_i)$, $\forall i$ fix $X \in g, \forall Y \in \bigoplus_{i=1}^n V_i, Y = (y_1, y_2, ..., y_n)$ with $y_i \in V_i$. we have : $y_i = \sum_{j=1}^{f_i} c_{ij} b_{ij}$ and $[\bigoplus_{i=1}^n \pi_i(x)]Y = [\bigoplus_{i=1}^n \pi_i(x)] \left(\sum_{j=1}^{f_1} c_{1j} b_{1j}, ..., \sum_{j=1}^{f_n} c_{nj} b_{nj}\right)$, by definition (2.6) $= \left(\pi_1(x) \left(\sum_{j=1}^{f_1} c_{1j} b_{1j}\right), ..., \pi_n(x) \sum_{j=1}^{f_n} c_{nj} b_{nj}\right)$ $= \left(\sum_{j=1}^{f_1} c_{1j} \pi_1(x) (b_{1j}), ..., \sum_{j=1}^{f_n} c_{nj} \pi_n(x) (b_{nj})\right)$.

By the action of g on $V_i \forall i$ last expression belongs to $\bigoplus_{i=1}^{n} V_i$. Matrix Lie algebras are vector spaces, we consider the associated matrix Lie algebras sl(2) and su(2) of the matrix Lie groups SL(2), SU(2) respectively. In the rest of this section, we compute adjoint representations of SU(2) acting on sl(2) and su(2) and the adjoint representations of su(2) and sl(2), then find their direct sum, we have:

Case (I): Ad₁: SU(2) \rightarrow GL(su(2)) First recall that a square matrix A is called Hermitian if A = A^{*}, where (A^{*} = $\overline{A^{tr}}$ is the adjoint matrix of A).

The unitary group U(n) is a subgroup of $GL(n,\mathbb{C})$ satisfy:

U(n)

$$= \{A_{n \times n} \in GL(n, \complement) \big| A.A^* = I_n, i. e, A^* = A^{-1} \}$$

The special unitary group SU(n) is a set of all $n \times n$ unitary matrices with determinant one ,this is a subgroup of U(n) ,and hence $GL(n,\mathbb{C})$.

 $SU(n) = \{A \in U(n) | |A| = 1\}, see [6].$

SU(2) is the set of all two dimensional, complex unitary matrices with generators is the set of three linearly independent, traceless 2×2 Hermitian

matrices;
$$F_1 = \begin{pmatrix} 0 & 1/2 \\ 1/2 & 0 \end{pmatrix}$$
, $F_2 = \begin{pmatrix} 0 & -i/2 \\ i/2 & 0 \end{pmatrix}$,
 $F_3 = \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix}$.

the Lie algebra of SU(n) is the space of all $n \times n$ complex matrices A such that $A^* = -A$ and trace(A) = 0, denoted su(n). su(n)

 $= \{A_{n \times n} \in GL(n, \mathbb{C}) | A^* = -A, trace(A) = 0 \}.$ The basis for su(2) is: $H_1 = \begin{pmatrix} i/2 & 0 \\ 0 & -i/2 \end{pmatrix}, H_2 = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix},$ $H_3 = \begin{pmatrix} 0 & i/2 \\ i/2 & 0 \end{pmatrix}.$ Therefore using corollary (2.2) we can compute Ad₁ as follows: Ad_{1A}(U) = AUA⁻¹ = AUA^{*} for all A \in **SU**(2) and U \in **su**(2). Our computations illustrated in Table (1) below.

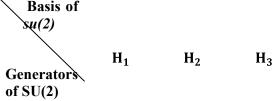


Table (1) Adjoint representation Ad₁ of SU(2) acting on space *su*(2)

Case (II): Ad_2 : $\operatorname{SU}(2) \to \operatorname{GL}(sl(2))$

The associated Lie algebra of the matrix Lie group $SL(n, \mathbb{C})$ is the space of all $n \times n$ complex matrices with trace zero, denoted by $sl(n, \mathbb{C})$.

$$sl(\mathbf{n}, \mathbb{C}) = \{\mathbf{A} \in \mathbf{M}_{\mathbf{n} \times \mathbf{n}}(\mathbb{C}) | trace(\mathbf{A}) = \mathbf{0} \}.$$

The following matrices form a basis for $sl(2, \mathbb{C})$: $X_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, X_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, X_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Using the formula: $Ad_{2A}(V) = AVA^{-1} = AVA^*$ for all $A \in$ SU(2) and $V \in sl(2)$, we get Table (2) below.

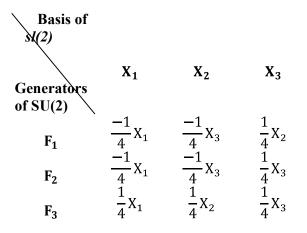
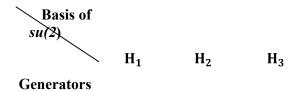



Table (2) Adjoint representation of SU(2) acting on sl(2).

Case III: ad_1 : $su(2) \rightarrow gl(su(2))$.

of <i>su(2)</i>			
H ₁	0	H ₃	$-H_2$
H ₂	$-H_3$	0	H_1
H ₃	H ₂	$-H_1$	0

Table (3): Adjoint representation ad_1 of su(2) acting on itself.

Case IV: $ad_2: sl(2) \rightarrow gl(sl(2))$.

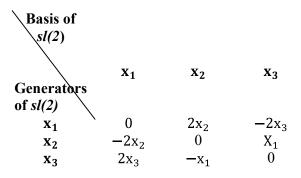


Table (4): Adjoint representation ad_2 of sl(2) acting on itself.

Case V: $\operatorname{Ad}_1 \bigoplus \operatorname{Ad}_2: \operatorname{SU}(2) \longrightarrow$ $\operatorname{GL}(su(2) \bigoplus sl(2))$

Let SU(2) be the special unitary matrix Lie group and Let Ad_1, Ad_2 be an adjoint representations of SU(2) acting on vector spaces su(2), sl(2) respectively. Then according to definition (2.6) the direct sum of Ad_1, Ad_2 is a representation $Ad_1 \oplus Ad_2$ of SU(2) acting on the space $su(2) \oplus sl(2)$ is defined by:

 $\begin{array}{l} \operatorname{Ad}_1 \oplus \operatorname{Ad}_2 : \operatorname{SU}(2) \longrightarrow \operatorname{GL}(\operatorname{su}(2) \oplus \operatorname{sl}(2)) \\ [\operatorname{Ad}_1 \oplus \operatorname{Ad}_2(F)](\operatorname{H}, X) = \\ (\operatorname{Ad}_1(F)\operatorname{H}, \operatorname{Ad}_2(F)X) \text{for} \quad \text{all} \quad F \in \operatorname{G}, \operatorname{H} \in \\ \operatorname{su}(2), X \in \operatorname{sl}(2). \end{array}$

Together with the results obtained in case (I) and Case (II) we have:

$$[\mathrm{Ad}_1 \oplus \mathrm{dA}_2(\mathrm{F}_i)](\mathrm{H}_j, \mathrm{X}_k)$$

= $(\mathrm{Ad}_1(\mathrm{F}_i)\mathrm{H}_j, \mathrm{dA}_2(\mathrm{F}_i)\mathrm{X}_k)$
1 $\leq i, j, k \leq 3.$

Generators
Basis of
$$SU(2)$$

Basis of
 $su(2) \oplus sl(2)$
 (H_1, X_1) $\left(\frac{-1}{4}H_1, \frac{-1}{4}X_1\right) \left(\frac{-1}{4}H_1, \frac{-1}{4}X_1\right) \left(\frac{1}{4}H_1, \frac{1}{4}X_1\right)$

$$\begin{array}{ll} (\mathbf{H_1}, \mathbf{X_2}) & \left(\frac{-1}{4} H_1, \frac{1}{4} X_3\right) & \left(\frac{-1}{4} H_1, \frac{-1}{4} X_3\right) & \left(\frac{1}{4} H_1, \frac{1}{4} X_2\right) \\ (\mathbf{H_1}, \mathbf{X_3}) & \left(\frac{-1}{4} H_1, \frac{1}{4} X_2\right) & \left(\frac{-1}{4} H_1, \frac{1}{4} X_3\right) & \left(\frac{1}{4} H_1, \frac{1}{4} X_3\right) \\ (\mathbf{H_2}, \mathbf{X_1}) & \left(\frac{-1}{4} H_2, \frac{-1}{4} X_1\right) & \left(\frac{1}{4} H_2, \frac{-1}{4} X_1\right) & \left(\frac{-1}{4} H_2, \frac{1}{4} X_1\right) \\ (\mathbf{H_2}, \mathbf{X_2}) & \left(\frac{-1}{4} H_2, \frac{1}{4} X_3\right) & \left(\frac{1}{4} H_2, \frac{-1}{4} X_3\right) & \left(\frac{-1}{4} H_2, \frac{1}{4} X_2\right) \\ (\mathbf{H_2}, \mathbf{X_3}) & \left(\frac{-1}{4} H_2, \frac{1}{4} X_2\right) & \left(\frac{1}{4} H_2, \frac{1}{4} X_3\right) & \left(\frac{-1}{4} H_2, \frac{1}{4} X_3\right) \\ (\mathbf{H_3}, \mathbf{X_1}) & \left(\frac{1}{4} H_3, \frac{-1}{4} X_1\right) & \left(\frac{-1}{4} H_3, \frac{-1}{4} X_1\right) & \left(\frac{-1}{4} H_3, \frac{1}{4} X_1\right) \\ (\mathbf{H_3}, \mathbf{X_2}) & \left(\frac{1}{4} H_3, \frac{1}{4} X_2\right) & \left(\frac{-1}{4} H_3, \frac{1}{4} X_3\right) & \left(\frac{-1}{4} H_3, \frac{1}{4} X_3\right) \\ (\mathbf{H_3}, \mathbf{X_3}) & \left(\frac{1}{4} H_3, \frac{1}{4} X_2\right) & \left(\frac{-1}{4} H_3, \frac{1}{4} X_3\right) & \left(\frac{-1}{4} H_3, \frac{1}{4} X_3\right) \\ \end{array}$$

Table (5) Direct sum of adjoint representations $(Ad_1 \oplus Ad_2)$.

Case

VI: $\operatorname{ad}_1 \oplus \operatorname{ad}_2: su(2) \oplus sl(2) \rightarrow$ gL(su(2) $\oplus sl(2)$)

Let $g = su(2) \oplus sl(2)$ is a Lie algebra and ad_1 is an adjoint representation of su(2) acting on vector space su(2) and ad_2 is adjoint representation of sl(2) acting on vector space sl(2), then we define the direct sum $ad_1 \oplus$ ad_2 acting on $su(2) \oplus sl(2)$ by : $[ad_1 \oplus ad_2(H_i, X_i)](H_i, X_i)$ = $[ad_{11} \oplus ad_{22}](H_i, X_i)$

$$= \left[ad_{1H_i} \bigoplus ad_{2X_i} \right] (H_i, X_i)$$

 $= (ad_{1H_i}(H_i), ad_{2X_i}(X_i)), \text{ where } 1 \le i \le 3.$

Together with the results obtained in case (III) and Case (IV) we have

The sum $ad_1 \oplus ad_2$ illustrated by the following: 1- $[ad_1 \oplus ad_2(H_1, X_1)](H_1, X_1) =$ $[ad_{1H_1} \oplus ad_{2X_1}](H_1, X_1)$

$$= (ad_{1H_1}(H_1), ad_{2X_1}(X_1)) = (0,0).$$

2-
$$[ad_1 \oplus ad_2(H_1, X_1)](H_1, X_2) = [ad_{1H_1} \oplus ad_{2X_1}](H_1, X_2)$$

 $= (ad_{1H_1}(H_1), ad_{2X_1}(X_2)) = (0, 2X_2).$ 3- $[ad_1 \oplus ad_2(H_1, X_1)](H_1, X_3) = [ad_{1H_1} \oplus ad_{2X_1}](H_1, X_3)$

 $= (ad_{1H_1}(H_1), ad_{2X_1}(X_3)) = (0, -2X_3). = (ad_{1H_1}(H_2), ad_{2X_2}(X_2)) = (H_3, 0).$ $= (ad_{1H_1}(H_2), ad_{2X_2}(X_2)) = (H_3, 0).$ $[ad_{1H_1}(H_2), ad_{2X_2}(X_2)) = (H_3, 0).$

$$(ad_{1H_{1}}(H_{2}), ad_{2X_{1}}(X_{1})) = (H_{3}, 0).$$
5-
$$[ad_{1}\oplus ad_{2}(H_{1}, X_{1})](H_{2}, X_{2}) =$$

$$[ad_{1H_{1}}\oplus ad_{2X_{1}}](H_{2}, X_{2})$$

$$= (ad_{1H_{1}}(H_{2}), ad_{2X_{1}}(X_{2})) = (H_{3}, 2X_{2}).$$
6-
$$[ad_{1}\oplus ad_{2}(H_{1}, X_{1})](H_{2}, X_{3}) =$$

$$[ad_{1H_{1}}\oplus ad_{2X_{1}}](H_{2}, X_{3})$$

$$= (ad_{1H_{1}}(H_{2}), ad_{2X_{1}}(X_{3})) = (H_{3}, -2X_{3}).$$
7-
$$[ad_{1}\oplus ad_{2}(H_{1}, X_{1})](H_{3}, X_{1}) =$$

$$[ad_{1H_{1}}\oplus ad_{2X_{1}}](H_{3}, X_{1})$$

$$= (ad_{(H_{1})}) ad_{(X_{1})} = (H_{1}, 0)$$

=

 $= (ad_{1H_1}(H_3), ad_{2X_1}(X_1)) = (-H_2, 0).$ 8- $[ad_1 \oplus ad_2(H_1, X_1)](H_3, X_2) = [ad_{1H_1} \oplus ad_{2X_1}](H_3, X_2)$

 $= (ad_{1H_1}(H_3), ad_{2X_1}(X_2)) = (-H_2, 2X_2).$ 9- $[ad_1 \oplus ad_2(H_1, X_1)](H_3, X_3) = [ad_{1H_1} \oplus ad_{2X_1}](H_3, X_3)$

$$= (ad_{1H_1}(H_3), ad_{2X_1}(X_3)) = (-H_2, -2X_3).$$

10- $[ad_1 \oplus ad_2(H_1, X_2)](H_1, X_1) = [ad_{1H_1} \oplus ad_{2X_2}](H_1, X_1)$

=

$$(ad_{1H_1}(H_1), ad_{2X_2}(X_1)) = (0, -2X_2).$$

11- $[ad_1 \oplus ad_2(H_1, X_2)](H_1, X_2) = [ad_{1H_1} \oplus ad_{2X_2}](H_1, X_2)$

 $(ad_{1H_1}(H_1), ad_{2X_2}(X_2)) = (0,0).$ $12-[ad_1 \oplus ad_2(H_1, X_2)](H_1, X_3) =$ $[ad_{1H_1} \oplus ad_{2X_2}](H_1, X_3)$

 $(ad_{1H_1}(H_1), ad_{2X_2}(X_3)) = (0, X_1).$ $13- [ad_1 \oplus ad_2(H_1, X_2)](H_2, X_1) =$ $[ad_{1H_1} \oplus ad_{2X_2}](H_2, X_1)$

$$= (ad_{1H_1}(H_2), ad_{2X_2}(X_1)) = (H_3, -2X_2).$$
14- $[ad_1 \oplus ad_2(H_1, X_2)](H_2, X_2) =$
 $[ad_{1H_1} \oplus ad_{2X_2}](H_2, X_2)$

$$=$$
 $(ad_{1H_1} \oplus ad_{2X_2}](H_2, X_2) = (H_2, X_2)$

15- $[ad_1 \oplus ad_2(H_1, X_2)](H_2, X_3) =$ 26- $\left[\operatorname{ad}_{1H_1} \oplus \operatorname{ad}_{2X_2}\right](H_2, X_3)$ $(ad_{1H_1}(H_2), ad_{2X_2}(X_3)) = (H_3, X_1).$ $[ad_1 \oplus ad_2(H_1, X_2)](H_3, X_1) =$ 27-16- $\left[\operatorname{ad}_{1H_1} \oplus \operatorname{ad}_{2X_2}\right](H_3, X_1)$ $= (ad_{1H_1}(H_3), ad_{2X_2}(X_1)) = (-H_2, -2X_2).$ 17- $[ad_1 \oplus ad_2(H_1, X_2)](H_3, X_2) =$ 28- $\left[\operatorname{ad}_{1H_1} \oplus \operatorname{ad}_{2X_2}\right](H_3, X_2)$ $(ad_{1H_1}(H_3), ad_{2X_2}(X_2)) = (-H_2, 0).$ 18- $[ad_1 \oplus ad_2(H_1, X_2)](H_3, X_3) =$ $\operatorname{ad}_{1H_1} \oplus \operatorname{ad}_{2X_2}(H_3, X_3)$ $(ad_{1H_1}(H_3), ad_{2X_2}(X_3)) = (-H_2, X_1).$ $[ad_1 \oplus ad_2(H_1, X_3)](H_1, X_1) =$ 19- $\left[\operatorname{ad}_{1H_1} \oplus \operatorname{ad}_{2X_3}\right](H_1, X_1)$ $(ad_{1H_1}(H_1), ad_{2X_3}(X_1)) = (0, 2X_3).$ 20- $[ad_1 \oplus ad_2(H_1, X_3)](H_1, X_2) =$ 31- $\left[\operatorname{ad}_{1H_1} \oplus \operatorname{ad}_{2X_2}\right](H_1, X_2)$ $(ad_{1H_1}(H_1), ad_{2X_3}(X_2)) = (0, -X_1).$ $21-[ad_1 \oplus ad_2(H_1, X_3)](H_1, X_3) =$ 32- $\left[\operatorname{ad}_{1H_1} \oplus \operatorname{ad}_{2X_3}\right](H_1, X_3)$ $(ad_{1H_1}(H_1), ad_{2X_3}(X_3)) = (0,0).$ $[ad_1 \oplus ad_2(H_1, X_3)](H_2, X_1) =$ 33-22 $ad_{1H_1} \oplus ad_{2X_3} (H_2, X_1)$ $(ad_{1H_1}(H_2), ad_{2X_3}(X_1)) = (H_3, 2X_3).$ 23- $[ad_1 \oplus ad_2(H_1, X_3)](H_2, X_2) =$ 34- $\left[\operatorname{ad}_{1H_1} \oplus \operatorname{ad}_{2X_3}\right](H_2, X_2)$ $(ad_{1H_1}(H_2), ad_{2X_2}(X_2)) = (H_3, -X_1).$ $[ad_1 \oplus ad_2(H_1, X_3)](H_2, X_3) =$ 35-24- $\operatorname{ad}_{1H_1} \oplus \operatorname{ad}_{2X_3}(H_2, X_3)$ $(ad_{1H_1}(H_2), ad_{2X_3}(X_3)) = (H_3, 0).$ $[ad_1 \oplus ad_2(H_1, X_3)](H_3, X_1) =$ 25-36- $\left[\operatorname{ad}_{1H_1} \oplus \operatorname{ad}_{2X_3}\right](H_3, X_1)$ $= (ad_{1H_1}(H_3), ad_{2X_3}(X_1)) = (-H_2, 2X_3).$

 $[ad_1 \oplus ad_2(H_1, X_3)](H_3, X_2) =$ $\left[\operatorname{ad}_{1H_1} \oplus \operatorname{ad}_{2X_3}\right](H_3, X_2)$ $= (ad_{1H_1}(H_3), ad_{2X_3}(X_2)) = (-H_2, -X_1).$ $[ad_1 \oplus ad_2(H_1, X_3)](H_3, X_3) =$ $\left[\operatorname{ad}_{1H_1} \oplus \operatorname{ad}_{2X_3}\right](H_3, X_3)$ $(ad_{1H_1}(H_3), ad_{2X_3}(X_3)) = (-H_2, 0).$ $[ad_1 \oplus ad_2(H_2, X_1)](H_1, X_1) =$ $[ad_{1H_2} \oplus ad_{2X_1}](H_1, X_1)$ $= (ad_{1H_2}(H_1), ad_{2X_1}(X_1)) = (-H_3, 0).$ $29-[ad_1 \oplus ad_2(H_2, X_1)](H_1, X_2) =$ $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_1}\right](H_1, X_2)$ $= (ad_{1H_2}(H_1), ad_{2X_1}(X_2)) = (-H_3, 2X_2).$ $30-[ad_1 \oplus ad_2(H_2, X_1)](H_1, X_3) =$ $[ad_{1H_2} \oplus ad_{2X_1}](H_1, X_3)$ $= (ad_{1H_2}(H_1), ad_{2X_1}(X_3)) = (-H_3, -2X_3).$ $[ad_1 \oplus ad_2(H_2, X_1)](H_2, X_1) =$ $\left[\operatorname{ad}_{1H_{2}} \oplus \operatorname{ad}_{2X_{1}}\right](H_{2}, X_{1})$ $(ad_{1H_2}(H_2), ad_{2X_1}(X_1)) = (0,0).$ $[ad_1 \oplus ad_2(H_2, X_1)](H_2, X_2) =$ $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_1}\right](H_2, X_2)$ $(ad_{1H_2}(H_2), ad_{2X_1}(X_2)) = (0, 2X_2).$ $[ad_1 \oplus ad_2(H_2, X_1)](H_2, X_3) =$ $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_1}\right](H_2, X_3)$ $(ad_{1H_2}(H_2), ad_{2X_1}(X_3)) = (0, -2X_3).$ $[ad_1 \oplus ad_2(H_2, X_1)](H_3, X_1) =$ $ad_{1H_2} \oplus ad_{2X_1}$ (H₃, X₁) $(ad_{1H_2}(H_3), ad_{2X_1}(X_1)) = (H_1, 0).$ $[ad_1 \oplus ad_2(H_2, X_1)](H_3, X_2) =$ $ad_{1H_2} \oplus ad_{2X_1} (H_3, X_2)$ $(ad_{1H_2}(H_3), ad_{2X_1}(X_2)) = (H_1, 2X_2).$ $[ad_1 \oplus ad_2(H_2, X_1)](H_3, X_3) =$ $[ad_{1H_2} \oplus ad_{2X_1}](H_3, X_3)$ $= (ad_{1H_2}(H_3), ad_{2X_1}(X_3)) = (H_1, -2X_3).$

37- $[\mathrm{ad}_1 \oplus \mathrm{ad}_2(\mathrm{H}_2, \mathrm{X}_2)](\mathrm{H}_1, \mathrm{X}_1) =$ $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_2}\right](H_1, X_1)$ $= (ad_{1H_2}(H_1), ad_{2X_2}(X_1)) = (-H_3, -2X_2).$ $[ad_1 \oplus ad_2(H_2, X_2)](H_1, X_2) =$ 38- $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_2}\right](H_1, X_2)$ $(ad_{1H_2}(H_1), ad_{2X_2}(X_2)) = (-H_3, 0).$ $39-[ad_1 \oplus ad_2(H_2, X_2)](H_1, X_3) =$ $\left[ad_{1H_2} \oplus ad_{2X_2}\right](H_1, X_3)$ $(ad_{1H_2}(H_1), ad_{2X_2}(X_3)) = (-H_3, X_1).$ $[ad_1 \oplus ad_2(H_2, X_2)](H_2, X_1) =$ 40- $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_2}\right](H_2, X_1)$ $= (ad_{1H_2}(H_2), ad_{2X_2}(X_1)) = (0, -2X_2).$ $[ad_1 \oplus ad_2(H_2, X_2)](H_2, X_2) =$ 41- $\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_2}(H_2, X_2)$ $(ad_{1H_2}(H_2), ad_{2X_2}(X_2)) = (0,0).$ $[ad_1 \oplus ad_2(H_2, X_2)](H_2, X_3) =$ 42- $\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_2}(H_2, X_3)$ $(ad_{1H_2}(H_2), ad_{2X_2}(X_3)) = (0, X_1).$ $[\mathrm{ad}_1 \oplus \mathrm{ad}_2(\mathrm{H}_2, \mathrm{X}_2)](\mathrm{H}_3, \mathrm{X}_1) =$ 43- $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_2}\right](H_3, X_1)$ $= (ad_{1H_2}(H_3), ad_{2X_2}(X_1)) = (H_1, -2X_2).$ 44- $[ad_1 \oplus ad_2(H_2, X_2)](H_3, X_2) =$ $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_2}\right](H_3, X_2)$ $= (ad_{1H_2}(H_3), ad_{2X_2}(X_2)) = (H_1, 0).$ 45- $[ad_1 \oplus ad_2(H_2, X_2)](H_3, X_3) =$ $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_2}\right](H_3, X_3)$ $= (ad_{1H_2}(H_3), ad_{2X_2}(X_3)) = (H_1, X_1).$ $46- [ad_1 \oplus ad_2(H_2, X_3)](H_1, X_1) =$ $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_3}\right](H_1, X_1)$ $= (ad_{1H_2}(H_1), ad_{2X_3}(X_1)) = (-H_3, 2X_3).$ 47- $[ad_1 \oplus ad_2(H_2, X_3)](H_1, X_2) =$ $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_3}\right](H_1, X_2)$ $= (ad_{1H_2}(H_1), ad_{2X_3}(X_2)) = (-H_3, -X_1).$ $48-[ad_1 \oplus ad_2(H_2, X_3)](H_1, X_3) =$ $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_3}\right](H_1, X_3)$

 $(ad_{1H_2}(H_1), ad_{2X_3}(X_3)) = (-H_3, 0).$ $[ad_1 \oplus ad_2(H_2, X_3)](H_2, X_1) =$ 49- $\left[\operatorname{ad}_{1\mathrm{H}_{2}}\oplus\operatorname{ad}_{2\mathrm{X}_{3}}\right](\mathrm{H}_{2},\mathrm{X}_{1})$ = $(ad_{1H_2}(H_2), ad_{2X_3}(X_1)) = (0, 2X_3).$ 50- $[ad_1 \oplus ad_2(H_2, X_3)](H_2, X_2) =$ $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_3}\right](H_2, X_2)$ $(ad_{1H_2}(H_2), ad_{2X_2}(X_2)) = (0, -X_1).$ $[ad_1 \oplus ad_2(H_2, X_3)](H_2, X_3) =$ 51- $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_3}\right](H_2, X_3)$ $(ad_{1H_2}(H_2), ad_{2X_3}(X_3)) = (0,0).$ $[ad_1 \oplus ad_2(H_2, X_3)](H_3, X_1) =$ 52- $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_3}\right](H_3, X_1)$ $(ad_{1H_2}(H_3), ad_{2X_3}(X_1)) = (H_1, 2X_3).$ 53- $[ad_1 \oplus ad_2(H_2, X_3)](H_3, X_2) =$ $[ad_{1H_2} \oplus ad_{2X_3}](H_3, X_2)$ $(ad_{1H_2}(H_3), ad_{2X_3}(X_2)) = (H_1, -X_1).$ $[ad_1 \oplus ad_2(H_2, X_3)](H_3, X_3) =$ 54- $\left[\operatorname{ad}_{1H_2} \oplus \operatorname{ad}_{2X_3}\right](H_3, X_3)$ $(ad_{1H_2}(H_3), ad_{2X_3}(X_3)) = (H_1, 0).$ $[ad_1 \oplus ad_2(H_3, X_1)](H_1, X_1) =$ 55- $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_1}\right](H_1, X_1)$ $(ad_{1H_3}(H_1), ad_{2X_1}(X_1)) = (H_2, 0).$ $56-[ad_1 \oplus ad_2(H_3, X_1)](H_1, X_2) =$ $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_1}\right](H_1, X_2)$ $(ad_{1H_3}(H_1), ad_{2X_1}(X_2)) = (H_2, 2X_2).$ $57-[ad_1 \oplus ad_2(H_3, X_1)](H_1, X_3) =$ $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_1}\right](H_1, X_3)$ $= (ad_{1H_3}(H_1), ad_{2X_1}(X_3)) = (H_2, -2X_3).$ 58- $[ad_1 \oplus ad_2(H_3, X_1)](H_2, X_1) =$ $[ad_{1H_3} \oplus ad_{2X_1}](H_2, X_1)$ $(ad_{1H_3}(H_2), ad_{2X_1}(X_1)) = (-H_1, 0).$ 59- $[ad_1 \oplus ad_2(H_3, X_1)](H_2, X_2) =$ $\left[\mathrm{ad}_{1\mathrm{H}_{3}}\oplus\mathrm{ad}_{2\mathrm{X}_{1}}\right](\mathrm{H}_{2},\mathrm{X}_{2})$

 $= (ad_{1H_3}(H_2), ad_{2X_1}(X_2)) = (-H_1, 2X_2).$ $[\mathrm{ad}_1 \oplus \mathrm{ad}_2(\mathrm{H}_3, \mathrm{X}_1)](\mathrm{H}_2, \mathrm{X}_3) =$ 60- $[ad_{1H_3} \oplus ad_{2X_1}](H_2, X_3)$ $= (ad_{1H_3}(H_2), ad_{2X_1}(X_3)) = (-H_1, -2X_3).$ $[ad_1 \oplus ad_2(H_3, X_1)](H_3, X_1) =$ 61- $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_1}\right](H_3, X_1)$ $(ad_{1H_3}(H_3), ad_{2X_1}(X_1)) = (0,0).$ $[ad_1 \oplus ad_2(H_3, X_1)](H_3, X_2) =$ 62- $[ad_{1H_3} \oplus ad_{2X_1}](H_3, X_2)$ $(ad_{1H_3}(H_3), ad_{2X_1}(X_2)) = (0, 2X_2).$ $[ad_1 \oplus ad_2(H_3, X_1)](H_3, X_3) =$ 63- $[ad_{1H_3} \oplus ad_{2X_1}](H_3, X_3)$ $(ad_{1H_3}(H_3), ad_{2X_1}(X_3)) = (0, -2X_3).$ 64- $[ad_1 \oplus ad_2(H_3, X_2)](H_1, X_1) =$ $\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_2}(H_1, X_1)$ $= (ad_{1H_3}(H_1), ad_{2X_2}(X_1)) = (H_2, -2X_2).$ $[ad_1 \oplus ad_2(H_3, X_2)](H_1, X_2) =$ 65- $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_2}\right](H_1, X_2)$ $(ad_{1H_3}(H_1), ad_{2X_2}(X_2)) = (H_2, 0).$ $66-[ad_1 \oplus ad_2(H_3, X_2)](H_1, X_3) =$ $ad_{1H_3} \oplus ad_{2X_2}$ (H₁, X₃) $(ad_{1H_3}(H_1), ad_{2X_2}(X_3)) = (H_2, X_1).$ 67- $[ad_1 \oplus ad_2(H_3, X_2)](H_2, X_1) =$ $|ad_{1H_3} \oplus ad_{2X_2}|(H_2, X_1)|$ $= (ad_{1H_3}(H_2), ad_{2X_2}(X_1)) = (-H_1, -2X_2).$ $[ad_1 \oplus ad_2(H_3, X_2)](H_2, X_2) =$ 68- $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_2}\right](H_2, X_2)$ $(ad_{1H_3}(H_2), ad_{2X_2}(X_2)) = (-H_1, 0).$ $[\mathrm{ad}_1 \oplus \mathrm{ad}_2(\mathrm{H}_3, \mathrm{X}_2)](\mathrm{H}_2, \mathrm{X}_3) =$ 69- $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_2}\right](H_2, X_3)$ $= (ad_{1H_3}(H_2), ad_{2X_2}(X_3)) = (-H_1, X_1).$ 70- $[ad_1 \oplus ad_2(H_3, X_2)](H_3, X_1) =$ $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_2}\right](H_3, X_1)$

 $= (ad_{1H_3}(H_3), ad_{2X_2}(X_1)) = (0, -2X_2).$ $[ad_1 \oplus ad_2(H_3, X_2)](H_3, X_2) =$ 71- $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_2}\right](H_3, X_2)$ $(ad_{1H_3}(H_3), ad_{2X_2}(X_2)) = (0,0).$ 72- $[ad_1 \oplus ad_2(H_3, X_2)](H_3, X_3) =$ $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_2}\right](H_3, X_3)$ $(ad_{1H_3}(H_3), ad_{2X_2}(X_3)) = (0, X_1).$ $[ad_1 \oplus ad_2(H_3, X_3)](H_1, X_1) =$ 73- $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_3}\right](H_1, X_1)$ $(ad_{1H_3}(H_1), ad_{2X_3}(X_1)) = (H_2, 2X_3).$ 74- $[ad_1 \oplus ad_2(H_3, X_3)](H_1, X_2) =$ $[ad_{1H_2} \oplus ad_{2X_2}](H_1, X_2)$ $(ad_{1H_3}(H_1), ad_{2X_3}(X_2)) = (H_2, -X_1).$ $75-[ad_1 \oplus ad_2(H_3, X_3)](H_1, X_3) =$ $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_3}\right](H_1, X_3)$ $(ad_{1H_3}(H_1), ad_{2X_3}(X_3)) = (H_2, 0).$ 76- $[ad_1 \oplus ad_2(H_3, X_3)](H_2, X_1) =$ $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_3}\right](H_2, X_1)$ $= (ad_{1H_3}(H_2), ad_{2X_3}(X_1)) = (-H_1, 2X_3).$ 77- $[ad_1 \oplus ad_2(H_3, X_3)](H_2, X_2) =$ $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_3}\right](H_2, X_2)$ $= (ad_{1H_3}(H_2), ad_{2X_2}(X_2)) = (-H_1, -X_1).$ 78- $[ad_1 \oplus ad_2(H_3, X_3)](H_2, X_3) =$ $|ad_{1H_2} \oplus ad_{2X_2}|(H_2, X_3)|$ $(ad_{1H_3}(H_2), ad_{2X_3}(X_3)) = (-H_1, 0).$ $[ad_1 \oplus ad_2(H_3, X_3)](H_3, X_1) =$ 79- $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_3}\right](H_3, X_1)$ $(ad_{1H_3}(H_3), ad_{2X_3}(X_1)) = (0, 2X_3).$ $[ad_1 \oplus ad_2(H_3, X_3)](H_3, X_2) =$ 80- $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_3}\right](H_3, X_2)$ $(ad_{1H_3}(H_3), ad_{2X_3}(X_2)) = (0, -X_1).$ $[ad_1 \oplus ad_2(H_3, X_3)](H_3, X_3) =$ 81- $\left[\operatorname{ad}_{1H_3} \oplus \operatorname{ad}_{2X_3}\right](H_3, X_3)$

 $(ad_{1H_3}(H_3), ad_{2X_3}(X_3)) = (0,0).$

REFERENCES

- [1] Baker A., " An introduction to matrix groups and their applications ", Scotland, University of Glasgow, 2000.
- [2] Bourbaki, N., "General Topology", 2ndedSpringer-Verlag, New York, London, 1989.
- [3] Curtis, M., "Matrix Groups", 2nd ed. Springer-Verlag, New York, 1984.
- [4] Fulton, W., and Harris, J.," Representation Theory", Springer-Verlag, New York, INC, 1991.
- [5] Hall, B. C., "Lie Groups, Lie Algebras and Representations, An Elementary Introduction", Springer, USA, May, 2004.

- [6] Helmer A.,"Determining summands in tensor products of Lie algebra representations", National University of Singapore, Singapore 0511, Singapore, 15 June 1992.
- [7] Mahmoud A. A. Sbaih, Moeen KH. Srour, M. S. Hamada and H. M. Fayad, "Lie Algebra and Representation of SU(4)", Al Aqsa University, P. O. Box 4501, Gaza, Palestine, EJTP 10, No. 28 (2013) 9–26.
- [8] Sattinger, D. H., "Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics", Springer-Verlag, New York, Applied Mathematical Sciences, Volume 61, (1985), pp.164-180.