

Journal of Economics and Administrative Sciences (JEAS)

Available online at http://jeasiq.uobaghdad.edu.iq DOI: <https://doi.org/10.33095/argab145>

Finding the Optimal Allocation of Checkpoints Using the Dynamic Programming method

Ahmed Aziz Dawood* Wakas Saad Khalaf Leong Wah June Department Of Statistics College of Administration and Economics Management University of Baghdad, Iraq

Department of Industrial Management College of Administration and Economics University of Baghdad, Iraq

dr.wakkas1@coadec.uobaghdad.edu.iq

Institute of mathematical Research , Science Faculty, University Putra Malaysia, UPM, Malaysia

ahmed.aziz2101m@coadec.uobaghdad.edu.iq

***Corresponding author**

Received:27/1/2024 Accepted: 4/3/2024 Published Online First: 30 /4/ 2024

 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International [\(CC BY-NC 4.0\)](https://creativecommons.org/licenses/by/4.0/)

Abstract:

This research aims to use the competent mathematical method through which it is possible to find the best allocation for the main checkpoints in one of the Iraqi Governorates, which contains 17 administrative units. The Dynamic Programming (DP) method and the method of background calculations were used for this method. The problem of the research lies in the fact that many administrative units in this governorate are subjected to organized attacks by terrorist gangs, which lead to the loss of the lives of many citizens, security forces, as well as private and public properties for them. The security reality of some administrative units requires a set of important data through which the best solutions are found to preserve these administrative units from terrorist and criminal operations and incidents. Therefore, this research focused on the use of one of the important scientific methods, the DP method, to find the Optimal Allocation (OA) of checkpoints in those administrative units, which hopefully contributes to reducing terrorist attacks, breaches, and other criminal incidents. The researchers used the checklist, which contains many questions that were asked of some civilians and state employees. The results proved to us that the proposed allocation will lead to an increase in the population density in the governorate by about 38 thousand people through the reallocation of checkpoints to administrative units, as some of them need to reduce the number of checkpoints and others need to increase the number of checkpoints. The used program is Excel.

Paper type: Research Paper **Keywords:** Dynamic Programming, Optimal Allocation, Checklist

1.Introduction:

In this research, we are going to study the allocation of checkpoints to administrative units in one of the Iraqi governorates, through which the highest percentage of preservation of the population of this governorate is achieved. The allocation problem is considered one of the important problems in the field of operations research, and it is one of the applications of linear programming (Taha, 2011). It is also a special case of the transfer problem, which assists in decision-making. There are several methods and ways to solve the allocation problem, and one of these methods is the DP method, through which the optimal solution is found and the best decision is made where the DP style is considered as one of the most important mathematical methods used in sequential decision-making (Hillier, 7th edition). This method does not have a single model that can be applied to all problems; rather, it relies on breaking down the main problem into smaller problems and finding the optimal solution for each smaller problem. This is the general principle of DP (Al-Ashari, 2008). It is also considered a significant method for solving optimization problems, providing a valuable tool for production planning and optimal decision-making (Batikh.2009). The idea behind DP is to decompose the main problem into subproblems aimed at finding the optimal value for a single variable. The advantage of decomposition lies in dealing with a single variable only (Taha, 2011). Subsequently, finding the solution and making the optimal decision rely on solving these sub-problems (Abbas, 2018). The DP determines the optimal solution for a multi-variable problem by dividing it into stages, making it much easier mathematically than dealing with all variables simultaneously (Khalaf, 2021). It is suitable for a wide range of engineering problems that exhibit characteristics of intertwined sub-problems. Besides DP is a simple, gradient-free, efficient, and inevitable optimization method that ensures the optimal solution (Can et al., 2012; Mahmoudimehr, 2018). This approach was applied in one of the Iraqi provinces facing numerous criminal, terrorist, and security challenges. The province comprises seventeen administrative units, each with fixed control points that maintain the security of the area. Our effort, using the DP approach, aimed to restructure these control points in the seventeen areas, preserving the lives of the residents in these regions.

1.1 Literature Review:

There have been several studies discussing the DP method and optimal allocation (AO), including:

The study of Og et al. (2014) which addressed the OA of police patrols to prevent crime using DP in Benin City, Nigeria. The research aimed to protect the community and secure the area from crimes such as murder, kidnapping, robbery, and armed robbery. Data were collected from the Nigerian Police Headquarters on crime statistics for eight major routes in Benin City. Ten police patrols were allocated to these routes, and DP resulted in the best probability of crime prevention, reaching 0.0317. This was achieved by assigning five or four patrols to the Oslo route and five or six patrols to the Sable route. This the possibility of a police patrol initiating crime interception is the best value at any guideline method of allocation that has ever deduced.

Ratna et al. (2015) focused on using DP to allocate doctors to health centers. The research goal was to provide the best patient service by allocating ten doctors to three health centers based on visitor (patient) numbers over ten months. The reverse dynamic approach showed optimal allocation, adding one doctor to the first clinic, eight doctors to the second clinic, and one doctor to the third clinic. This allocation would address the needs of 4,418 patients.

Amuji et al. (2017) discussed the benefits of DP in scheduling courses in Nigerian universities. The study addressed challenges faced by lecturers in course allocation, optimizing the allocation of teaching hours to achieve 12 ideal hours for each lecturer per semester.

Abbas (2018) studied the strategic determination of the optimal solution using DP for establishing power stations in Iraq. The critical path method was employed to find the optimal solution for the project completion time using backward DP. The research highlighted the effectiveness of DP in finding the optimal strategy for project completion.

Khalaf (2021) applied DP to maximize the performance of the Iraqi armed forces and determine their optimal paths. The study focused on two strategies: maximizing the performance of the Iraqi armed forces and minimizing the arrival time for optimal paths. DP was used to allocate ten brigades to four border regions, resulting in the optimal assignment of two brigades to the first region, three to the second, four to the third, and one to the fourth, ensuring the best performance.

Jalal et al. (2021) used fuzzy DP to find the optimal solution for sales in a cement manufacturing company. The study, conducted at the Badush Cement Factory, applied both fuzzy logic and DP methods through MATLAB. The integration of fuzzy logic with DP yielded optimal sales volume, providing an opportunity to find ideal solutions.

Hassan (2021) utilized DP to address allocation problems in the Raji Beverage Production Company. The study focused on the allocation problem for a group of beverage companies using DP. The researcher collected machine failure times to calculate the probability of failure for each task. The study revealed that the optimal policy was to allocate tasks based on the first task.

Senthilnathan (2022) used the route determination model (RDM) to minimize the distance from origin to destination, leading to cost reduction and increased company profits. Both forward and backward DP approaches were applied. The results indicated the shortest route from origin to destination as starting from the origin, moving to route 2, then to route 5, and reaching destination D, covering a distance of 110 km, the shortest distance achieved using this method.

The research problem lies in the lack of utilization of scientific and mathematical methods in allocating checkpoints to administrative units, leading to a lack of control over terrorist and criminal incidents in some of these administrative units in the province. This results in the loss of the lives of citizens as well as state personnel and private property. This study aims to employ DP to find the OA of Checkpoints for the main administrative units.

The objective is to maximize security and stability in these administrative units, consequently increasing the survival rates of both citizens and government personnel.

3 .**Materials and Methods:**

The mathematical approach used in this research is the DP Method, which is considered one of the most important techniques in operations research.

2.1 The Mathematical Principles Essential for Dynamic Programming:

1. The problem to be addressed using DP must be divided into stages, where decisions are made at each stage. For instance, in a multi-period production process determining the optimal batch size for incoming materials, the stages represent different time points (Hillier, 9th edition).

2. Each stage in the problem must have a specified number of state variables associated with it. The state variables at each stage are parameters that capture relevant information at that particular stage (Hillier, 7th edition).

3. The impact of a decision at each stage transforms the current state into a state linked to a future stage. In other words, the decision made at a specific stage affects the state or states of the subsequent stage (Khalaf, 2017).

4. A recursive mathematical relationship must be established to provide the optimal solution for each stage of the problem. This relationship depends on the associated state, meaning that the state of the current stage influences the solution and, consequently, the state of the next stage (Afaq, 2010).

5. For each state and specific stage of the problem, the sequence of optimal decisions relies on the decision made in the preceding stage. This implies that the chosen path for decisions is based on the choices made in previous stages, forming a series of dependent decisions (R. Luus, 2008). 6. DP provides a systematic procedure by working backwards, starting with the final stage of the problem and progressing towards the ultimate solution. Decisions are made for each stage, and problems can also be solved by working forward to reach the final stage (Kupta et al., 2008). 7. The recursive relationship is defined as the optimal policy for stage n, relying on the optimal policy for the subsequent stage (n+1). The recurrence relation for finding the optimal allocation is illustrated below, along with an explanation of the symbols mentioned in the equation (1):

 $f_n^*(s) = \min(c_n x_n + f_{n+1}^*(x_n))$ (1) $N =$ Number of Stages $n =$ Current Stage (e.g., $n = 1, 2, 3,... N$) $Sn = Current State$ at Stage n X_n = Decision Variable for Stage n $fn(Sn, Xn) =$ Objective function for Stages $(n, n + 1, \ldots, N)$ In the case where the system begins with Sn at Stage n

3.3.3 The Advantages of The Dynamic Programming :

For DP, there are several advantages, including (Atikpo et al., 2017; Khalaf, 2021):

a)DP determines the optimal solution for a multi-variable problem by dividing it into stages, with a sub-problem for each stage aiming to find the optimal value for only one variable. The distinctive advantage lies in dealing with a single variable, which is much easier mathematically than handling all variables simultaneously. The model consists of a set of consecutive equations connecting different stages of the original problem in a way that ensures the best possible solution for the original problem, ultimately including all the optimal solutions obtained when solving sub-problems for different stages.

b) It is Perfectly Suitable for Multi-Stage, Multi-Point, or Sequential decision-making processes. c)It is suitable for linear or non-linear problems, discrete or continuous variables, deterministic, and probabilistic problems.

d) DP attempts to exploit properties (optimal substructure and overlapping sub-problems) to provide a more reasonable solution than heuristic and trial-and-error solutions.

2.1.2 The Principle of Optimization:

 The optimality principle states that the optimal policy has the property that, regardless of the initial state and the initial decision, the remaining decisions must form an optimal policy concerning the state resulting from the initial decision (Bellman, 1972).

 This principle means that a wrong decision made at some stages does not prevent the optimal decision-making for subsequent stages. This principle is the fundamental basis for the DP technique. In light of this, we can formulate the recursive relationship, enabling us to make optimal decisions at each stage (Murthy, 2007).

• The Optimality Principle does not delve into the details of how to improve the sub-problem, and the reason is the general nature of the sub-problem. It can be linear or nonlinear, and the number of alternatives can be limited or unlimited. The optimality principle works to decompose the original problem into more computationally manageable sub-problems (Taha, 2017).

2.1.3Assumptions of Dynamic Programming :

Here are the assumptions of DP (Amuji et al., 2022):

1. The optimal decision in the future stage is independent of the optimal decision in the previous stage.

2. The optimal solution contains optimal sub-solutions.

3. The Problem has overlapping sub-problems. Through the recursive relationship, we can find the optimal solution if the problem has an ideal sub-structure. If the problem involves overlapping sub-problems, we can calculate each sub problem only once through recursive execution.

These three conditions are necessary and sufficient for the application of DP.

2.1.3 Methods of Dynamic Programming Solution

There are two methods to find the OA in DP, (Taha, 2007; Naji, 2011; Khalaf, 2017):

1- Forward Computation Method:

 This method relies on the values of the functions arranged in ascending order. The recursive equation is first used to calculate the value of the initial function, denoted as F (1), in the first stage, subsequently, F (2) is calculated in the second stage. This process continues, computing the functions one after another until reaching the function $F(N)$, which represents the final function of the recursive equation. This method is known as "Forward Computation," as illustrated in the equations (2, 3 and 4) as follows:

$$
fn(sn, xn) = cn(xn) + f_{n-1}^{*}(xn)
$$
\n(2)

$$
f_n^*(s_n) = \max_{x_n = 0, 1, \dots s_n} \{c_n(x_n) + f_{n-1}^*(s_n - x_n)\}
$$
(3)

$$
f_n^*(s_n) = \min_{x_n = 0, 1, \dots, sn} \{c_n(x_n) + f_{n-1}^*(s_n - x_n)\}\tag{4}
$$

2- Backward Computation Method:

The second method involves solving recursive equations by computing the values of functions F (i) in a manner opposite to the first method, arranging the functions in descending order. In this approach, the recursive equation is used to find the return value for the final stage, N. Then, a step-by-step descent is performed using the same recursive equation to find the return values for the other stages until reaching the initial stage. This method is known as "Backward Computation," and it can be illustrated in the equations (5, 6 and 7) as follows:

$$
fn(sn, xn) = cn(xn) + f_{n+1}^{*}(xn)
$$
\n(5)

$$
f_n^*(s_n) = \max_{x_{n=0,1,\dots sn}} \{c_n(x_n) + f_{n+1}^*(s_n - x_n)\}
$$
(6)
OR

$$
f_n^* = \min_{x_{n=0,1,\dots sn}} \{c_n(x_n) + f_{n+1}^*(s_n - x_n)\}
$$
(7)

Forward and backward recursion relationship for the last stage will always be of the form:

$$
f_n^*(s_n) = \max_{x_n = 0, 1, \dots s_n} f_n(s_n, x_n)
$$
 (8)

$$
f_n^*(s_n) = \min_{xn=0,1,\dots sn} f_n(s_n, x_n)
$$
\n(9)

In This study, the backward computation method of DP was employed to obtain the optimal solution.

2.2 Data Collection Method:

 After obtaining the population density for each administrative unit from the statistics department in this province, a checklist was used. This checklist included numerous important questions posed during personal interviews with citizens and government employees, both civilian and military. The answers were obtained and analysed. Table 1 illustrates the checklist and the questions posed in it.

P-ISSN 2518-5764 E-ISSN 2227-703X

3.1 The analysis of the checklists:

Table 2 shows the analysis of the checklist that has been analyzed.

The source: Prepared by the researchers based on the Excel program

 Depending on the percentage and population density, we can use DP to find the best allocation, which achieves the preservation of the largest number of lives of the inhabitants of this province, for example, when allocating one checkpoint, the percentage in administrative unit 1 is 0.7977 and depending on the population of this area, which is approximately 42030 people, the percentage is multiplied by the population density $(0.7977* 52685= 42030)$, that is, the checkpoint will keep about 42 thousand people from the population of this administrative unit, which will prevent the entry of cars. This is except for the role of intelligent and national security, as well as the points of mobile inspection and patrols in the area and the cooperation of the community with the security forces, which is one of the essential elements for the preservation of the area. When allocating two checkpoints, the percentage will be 0.83109, and when multiplied by its population, it will maintain approximately 43786 (0.83109* $52685 =$ 43786). These results above represent Administrative Unit No. 1, but in other administrative units, the table below shows the results when allocating checkpoints in all administrative units, which are 17 administrative units, where the same formula was used above in administrative unit No. 1 and the population of administrative unit No. 2 (32108), No. 3 (138747), No. 4 (91486), No. 5 (155416), No. 6 (44435), and No. 7 (207464), No. 8 (68109), No. 9 (215737), No. 10 (80715), No. 11 (55943), No. 12 (260875), No. 13 (20838), No. 14 (77521), No. 15 (94014), and No. 16 (124661). The last administrative unit has a population of (92068) and table 3 shows that.

P-ISSN 2518-5764 E-ISSN 2227-703X

Table 3: Population figures for each administrative unit are maintained when allocating checkpoint scores.

P-ISSN 2518-5764 E-ISSN 2227-703X

P-ISSN 2518-5764 E-ISSN 2227-703X

P-ISSN 2518-5764 E-ISSN 2227-703X

3.2 DP model to find the OA for Checkpoints:

After applying Equation 8, the results of the last stage were obtained. While when applying Equation 6, the results of the other stages were obtained

P-ISSN 2518-5764 E-ISSN 2227-703X

Stage 17

Table 4: Represents checkpoints that have been designated to maintain the highest population

Stage 16

Table 5: Represents checkpoints that have been designated to maintain the highest population.

Thus, the application of Equation 6continues until Stage 1 is reached.

Stage1

Table6: Represents checkpoints that have been designated to maintain the highest population.

The results revealed the allocation in this province is as illustrated below:

Table 7: Represents the administrative units and the number of checkpoints allocated to each administrative unit.

 From the above results, it is evident that some areas had checkpoints added, while others had a reduction in checkpoints. In region number 5, a checkpoint was added, replacing the previous allocation of 4 checkpoints, and now there are 5 checkpoints assigned. This leads to an increase in the population of this administrative unit to the maximum possible. In Administrative Unit Number 9, one checkpoint was added, and in Administrative Unit Number 12, two checkpoints were added, contributing to the preservation of the population in these administrative units. As for the administrative units where checkpoints were removed and their numbers were minimized, the reason is that the presence of these additional checkpoints caused hindrances to the residents of these areas, an increase in traffic congestion, and disruptions to the transportation of commercial goods. Therefore, what we must do is ensure the well-being of the residents in these areas in terms of security, traffic flow, commerce, tourism, and similar aspects. Furthermore, reducing the checkpoints from 58 to 50 signifies a reduction in the costs incurred for each checkpoint, including salaries for personnel, officers, weapons, vehicles, and electrical devices. All of these constitute expenses for the state, it is therefore necessary to consider all conditions. Thus, our primary goal is to preserve the largest possible number of residents in these areas.

4. Conclusions:

 Based on the obtained results, we can conclude that the DP approach is a significant and highly useful mathematical method for obtaining a series of interconnected decisions and finding optimal allocations for checkpoints in this province. This has led to an increase in the preservation of the population in this province, where the city's population has grown to approximately 38,000. This is considered a positive outcome, in addition to reducing the number of checkpoints from 58 to 50. Each checkpoint has its associated costs, including weapons, soldiers, officers, and specific vehicles to each control point. Furthermore, there has been an effort to minimize traffic congestion in these areas as much as possible.

Authors Declaration:

Conflicts of Interest: None

-We Hereby Confirm That All The Figures and Tables In The Manuscript Are Mine and Ours. Besides, The Figures and Images, Which are Not Mine, Have Been Permitted Republication and Attached to The Manuscript.

- Ethical Clearance: The Research Was Approved By The Local Ethical Committee in The University.

References:

1- Nasser, Omar. 2008. The Use of Dynamic Programming in Solving the Static Periodic inspection model of the storage problem with a practical application in Al-Aqsa Trading Company for the import of generators. *Journal of Economic and Administrative Sciences.* 52(14), pp. 275-284.

2- Bakhit, A., Batikh, A. And Atta, K. W. 2009. Determining the Optimal Resolution in the Production Process Using the Method of Dynamic Programming. *University of Baghdad. College of Administration and Economics.* 5 (5), pp. 168–182.

3-Taha. H. 2011. Introduction to Operations Research. First Edition. Mars Publishing House. 4- Abbas. A. 2018. A Study to find the strategy and determine the optimal solution using the method of dynamic programming for the construction of electric power plants in Iraq. *Journal of the Iraqi N. Khwarizmi Society.* 2(2), pp. 49–59.

5-Mohammed, A., and Albazaaz, Z. M. 2021. The Use of Fuzzy Dynamic Programming in Finding the Optimal Solution for sales for Badush cement plant stores. *Iraqi Journal of Statistical Sciences.* 18(33), pp. 126–139.

6-Ahmed, M. 2021. Using Dynamic Programming to Solve Customization Problems with a Practical Application. *Master thesis, University of Baghdad. College of Administration and Economics.*

7-Khalaf, W. 2018. Find the fuzzy maximum flow of Imam Kadhimen visitors using fuzzy dynamic programming. *Journal of Economic and Administrative Sciences.* 24(103), pp. 102- 127.

8 –Mahmoud, H. 2010. Using Dynamic Programming and Neural Networks to Find the Ideal Storage for the Stores of the General Company for Vegetable Oils. Master's Thesis. *University of Baghdad.*

9-Khalaf, W. and Halim, D. 2019. Finding the shortest path and the least time for the visitors of Imam Al-Kazim (P) using the method of dynamic programming. *Journal of AL-Turath University College*. 27. pp. 457–480.

10-Naji, R. 2011. The Use of Fuzzy Dynamic Programming in the Control of the Storage of Some Department of Commerce Stores*. Master thesis*, *University of Baghdad. College of Administration and Economics.*

11-Khalaf, W. 2021. Maximizing the performance of the Iraqi Armed Forces and determining the optimal path for them using dynamic programming. *International Journal of Nonlinear and Applications.* 12. pp. 847-860. http://dx.doi.org/10.22075/ijnaa.2021.5465*.*

12-Gagula, S. and Can, M. 2012. Inventory Control Using Fuzzy Dynamic Programming," *Southeast Europe Journal of Soft Computing.* 1(1), pp. 37–42.

13-Mahmoudimehr, J. and Sebghati, P. 2018. A Novel Multi-Objective Dynamic Programming Optimization Method: Performance Management of a Solar Thermal Power Plant as a Case Study. *Faculty of Mechanical Engineering. University of Guilan. Rasht. Iran.* pp. 796-814*.*

14-Ogbereyivwe, Og. And Ogundele, S. 2014. On Optimal Allocation of Crime Preventing Patrol Team Using Dynamic Programming. *International Journal of Mathematics and Statistics Invention.* 2(8), pp. 7–17.

15-Tongo, I. and Agbadudu, B. 2010. A dynamic programming model for optimal distribution of police patrol efforts in Nigeria: a case study of Lagos State. *International Journal of Operational Research.* 8. pp. 110–126.

16-Wulan, R. and Lathifah, I. 2015. The Use of Dynamic Programming on Allocation of Added Health Services Servers. *Australian Journal of Basic and Applied Sciences.* 9(7), pp. 113–116. 17-Amuji O., Ugwuanyim, U., Ogbonna, J., Iwu, C., and Nwanyibuife, O. B. 2017. The

Usefulness of Dynamic Programming in Course Allocation in Nigerian Universities. *Open Journal of Optimization.* 6(4), pp. 176–186. [https://doi.org/10.4236/ojop.2017.64012.](https://doi.org/10.4236/ojop.2017.64012)

18-Senthilnathan, S. 2022. Dynamic Programming: A Base for Initial Understanding. *SSRN Electronic Journal.* pp. 1–9*.*

19-Frederick, H. and Gerald, L. 2001. "Introduction to Operations Research. Seventh Edition. Americas. New York: McGraw-Hill. An Imprint of the McGraw-Hill Companies,

20-Frederick, H. and Gerald, L. 2010. Introduction to Operations Research. Ninth Edition.

Americas. New York: McGraw-Hill. A Business Unit of the McGraw-Hill Companies. Inc.

21-Luus, R .2008. Dynamic Programming: Optimal Control Applications. *Encycl. Optim.* pp. 862-869. doi: 10.1007/978-0-387-74759-0_151.

22-Gubta, ER. P. and HIRA, S. 2008. Operation Research. Ram Nazar. New Delhi.

23- Bellman, 1972. Dynamic Programming. A Rand Corporation Research Study. *Princeton University Press. ISBN 0-691-07951-X, Sixth Printing*.

24- Rama, M. 2007. Operations Research. Second Edition, New Delhi.

25- Taha, H. 2017. Operations Research: An Introduction. Tenth Edition. London.

26-Taha, H. 2007. Operations Research: An Introduction. Eighth Edition. United States of America.

27-Amuji, H. O., Onwuegbuchunam, E., Aponjolosun, O., Okeke, O., Mbachu, C., and Ojutalayo, F. 2022. The dynamic programming model for optimal allocation of laden containers to Nigerian seaports. *Journal of Sustainable Development of Transport and Logistics*. 7(2), pp. 69–79. doi:10.14254/jsdtl.2022.7–25.

28-Ilaboya, R., Atikpo, E., Ekoh, O., Ezugwu, O., and Umukoro, L. 2017. Application of dynamic programming to solving reservoir operational problems. *Journal of Applied Technology in Environmental Sanitation.* 1(3), pp. 251-262.

إيجاد التخصيص الأمثل لنقاط التفتيش باستخدام طريقة البرمجة الديناميكية

جامعة بغداد/ كلية الإدارة والاقتصاد قسم الاحصاء

احمذ عزيز داود وقاص سعذ خلف ليونج واه جون جامعة بغداد/ كلّبة الإدارة والاقتصاد جامعة بوترا ماليزيا UPM الماليزية قسم الادارة الصناعبة

/ كلية العلوم معهد البحوث الرياضية

dr.wakkas1@coadec.uobaghdad.edu.iq ahmed.aziz2101m@coadec.uobaghdad.edu.iq

Received:27/1/2024 Accepted: 4/3/2024 Published Online First: 30 /4/ 2024

 هذا العمل مزخض جحث اجفاقية المشاع االبذاعي نَسب المُصنَّف - غيز ججاري - الحزخيض العمومي الذولي 3.3 [Attribution-NonCommercial 4.0 International](https://creativecommons.org/licenses/by/4.0/) (CC BY-NC 4.0) BY NC SA

مسحخلض البحث:

يهدف هذا البحث الى استخدام اسلوب رياضي كفوء يمكن من خلاله ايجاد افضل تخصيص لنقاط التفتيش الرئيسية في احدى المحافظات العراقية والتي تحتوي على 17 وحدة ادارية حيث تم استخدام اسلوب البرمجة الديناميكية وطريقة الحسابات الخلفية لهذا الاسلوب . تكمن مشكلة البحث على انه هنالك العديد من الوحدات الادارية في هذه المحافظة تتعرض لْمُجمَّات منظمة من قبل العصابات الارهابية والتي نؤدي الى فقدان حياة العديد من ۖ المواطنين والقوات الامنية اضافة الي الممتلكات الخاصة ۖ والممتلكات العامة لمهم . فالواقع الأمني لبعض الوحدات الادارية بحتاج الى مجموعة من البيانات المهمة التي من خلالها بنع ايجاد افضل الحلول للحفاظ على هذه الوحدات الادارية من العمليات والحوادث الار هابية والجنائية _.لذلك ركز هذا البحث على استعمال احد الاساليب العلمية المهمة وهو اسلوب البرمجة الديناميكية لأيجاد التخصيص الامثل لنقاط التفتيش في تلك الوحدات الادارية والتي من المؤمل تساهم في تقليل المهجمات الارهابية والاختراقات والحوادث الجنائية الاخرى . استعمل الباحث قائمة الفحص والتي تحتوي على العديد من الاسئلة والتي تم طرحها على بعض الاشخاص المدنيين وموظفي الدولة . اثبتت لنا النتائج ان التخصيص المقترح سيؤدي الى زيادة الكثافة السكانية بالمحافظة بحوالي 38 الف نسمة وذلك من خلال اعادة تخصيص نقاط التفتيش على الوحدات الادارية حيث ان بعضها يحتاج الى تقليل عدد نقاط التفتيش والبعض الاخر يحتاج الى زيادة عدد نقاط التفتيش.

> **نوع البحث:** ٔسقخ ثحضٛخ **.** ا**لمصطلحات الرئيسة للبحث:** البرمجة الديناميكية , التخصيص الامثل _, قائمة الفحص