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ABASTRACT
We prove that near the bifurcation point unstable limit cycle arises
from the Lorenz system. In the analysis, we use the method of local
bifurcation theory, especially the center manifold and the normal form
theorem. A computer algebra system using Maple to derive all the formulas
and verify the results presented in this paper.

Keywords: Lorenz system, limit cycle, center manifold and normal form,
Hopf bifurcation

1.Introduction
The following non-linear system of differential equation
XxX=0(y—x)
y=m-y-xz (1)
z=-0z+ xy

was introduced in 1963 by Edward Lorenz [6] ( known as Lorenz
system), where the three parameters ¢ ,3 and r are positive. These equations
also arise in studies of convection and instability in Planetary atmospheres,
models of Lasers and dynamos etc. Lorenz studied the system when ¢ =10,

8
=3 (see[7]). Good notes on Lorenz system can be found in [14]. In general,

Lorenz system can’t be integrable and it is difficult to find analytical
solution for system (1) in the three dimension parameters space, but special
cases for Lorenz system are studied before studying periodic solutions
[9].The behavior of the system (1) is quiet complex.

From the historical point of view the search on the existence of
periodic solution plays a fundamental role in the development of qualitative
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study of dynamical system. There are many methods for locating the
periodic solution,for example the Poincare return map, Melnikov integral,
degree theory and bifurcation theory. In this paper, we shall use Hopf
bifurcation theorem for finding the limit cycle (isolated closed orbits) of the
Lorenz system.

The paper consists of four sections. In section two we start by
recalling the well know center manifold and normal form theorem for the
general equilibrium point. Section three gives a detailed analysis of the
Hopf bifurcation, using the method of local bifurcation theory, especially
the center manifold and normal form theorem, it is proved that unstable
limit cycle arisesd, also limit cycles corresponding to some special values of
o, at the Hopf bifurcation point. The paper ends with a brief discussion of
the results. All the results presented obtained and verified using Maple work
station ([3], [4], and [7]).

2. Center Manifold and Normal Form Theorem.

In this section, we make a brief summary of the techniques we used
to reduce the dimension of system (2) by center manifold theorem and
normal form theorem to simplify the flow in the center manifold (see[5] ,
[11]).

The theory of bifurcations of parameterized dynamical system is
well known. One consider a vector field

x=f,(X) neR, xer” L. (2)
Depending on a parameter p the equilibrium of the vector field are those
x0,u0 such thatfHO (x0)=0.

Perhaps the most important property of equilibrium is its stability. In
the first approximation, which is determined by stability of its liberalized
system around xo, [0

X =D/, (x0) poeR,xpe®" . 3)
Where D f,(x0) is the Jacobian matrix of f, if all the eignvalues of
D f,,(x0) have negative real parts, the equilibrium point is asymptotically

stable. If at least one eignvalues has positive real part, then the equilibrium
is unstable [10]. The topological character of the equilibrium can change at
a equilibrium value of the parameter, perhaps two branches of equilibrium
cross or a branch loses or gains stability. Such a state and parameter is
called bifurcation point of the parameterized vector field. If a conjugate
complex pair crosses the boundary of stability then this bifurcation is called
Hopf bifurcation.
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Theoreml.(Center manifold theorem for flows) [5]
Let f be aC" vector field on R" vanishing at the origin ( (0)=0) and
let A=Df{(0). Divide the spectrum of A into three parts,o,,0,,0, with
<0 if Aeoy,,
RelA=0i A€o,
>0if Aeo,.
Let the (generalized) eignspaces ofo,,0,,ands, be E*,E, and E",

respectively. Then there exists ('stable and unstable invariant
manifolds W’ and W" tangent to E°and Eat 0 and aC’'center manifold

W tangent to E“at 0. The manifolds W*,W",andW* are invariant for the
flow of f.
The stable and unstable manifolds are unique because its invariant,

but I “ needs not be since its center is manifold(see[ 2]).

We know that the complete stability and qualitative behavior of an
equilibrium point depends on the behavior of the dynamics on the center
manifold [2]. We first note that center, stable and unstable manifolds are
invariant under the O.D.E. Assume that the O.D.E are

X =A%+ fi(x,,2)

y=Ay+ f,xy2y L. 4

z=A"z+ f3(x,y,z)

Where A°, A*and A" on the blocks are in the canonical form whose
diagonals contain the eignvalues with ReA=0, ReA<0 and ReA>0,
respectively, (X, y,z) e R°x R’x R",c=dim E° since the system(4)has ¢
eigenvalues with zero real part (E° is called the center eigenvector), s= dim
E’and u = dimE", f,, f,and f; Vvanish along with their first partial
derivatives at the origin.

Let y = h,(x) be a stable manifold and z = 4, (x) be unstable
manifold where x is on the center manifold then 4, (x)and h,(x)satisfy the

following equations:
D Mool A x+ f,x B0, hyeonl— A by - f5 By (0, By (x)=0

Dh,0[ A x+ fix, By, hyoonl- A" hy o fix By, hyen=0 (5)
And the dynamics on center manifold is
X= A%+ fi(x, h (%), hy(x)) ... (6)
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because it’s the most physically interesting case (among them Lorenz
system at the Hopf bifurcation), we assume that the unstable manifold is
empty, in this case (4) becomes:

X= A%+ f,(x,y)

j/ = A'y+ fz(x, y) (7)

In this formE‘={x, y), y=0} andE’= {x, y), x =0}, note
also £,(0,0)=D f,(0,0)=0 and f,(0,0)=D f£,(0,0)=0 .

The local Center manifold theorem[2] states that :

There exists aC”, center manifold W, (0) = {(x, y): y=h(x), [x|<,
h(0)=Dh(0)=0} Such that the dynamics of (7) restricted to the center
manifold are given by

X=Ax+fix,hx) (8)
Theorem 2. [2].

If the origin for(8) is locally asymptotically stable (resp. unstable) then
the origin of eq (7) is also locally asymptotically stable (resp. unstable).

Remark: Theorem 2 shows that equation (8) is a good approximation of
eq(7).

We now show how h(x) can be calculated or at least approximated.
Substitute y=h(x) in the second component of eq(7) and using the chain rule,
we obtain:

N (h(x)) =D h(x) [ A x+ /1 (x, h(x))] - A" h(x) ~-f,(x,h(x)=0 ... (9)
With boundary conditions h (0)=D h (0) = 0.This differential equation for h(x)
not can be solved exactly in most cases, but its solution can be
approximated arbitrarily close, as a Taylor series at x=0.

Theorem 3. [2].
If a function ¢(x) with ¢0)=D¢p0)=0 can be found such that
N(@(x))=o(|xF) for some p>1 as |x|— 0 then it follows that h(x)=¢(x)+

of|xf) as |x|>o.

This theorem tells us that we can approximate the center manifold to
any degree of approximation by solving the N-equation to the same degree
of approximation. A standard approach to analyzing the behavior of the
parameterized ordinary differential equation (2) around a bifurcation point is
to treat the parameter as an additional state variable with dynamics 2z = 0

and to compute the center manifold of the extended dynamics through the
bifurcation point and the dynamics restricted to this manifold [5]. The center
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manifold is an invariant manifold of the differential equation which is
tangent at the bifurcation to the eignspase of the neutrally stable
eigenvectors. In practice, one does not compute the center manifold and its
dynamics exactly, in most cases of interest, an approximation of degree two
or three suffices.

For simplifying the flow in the center manifold the normal form
theorem is used in order to remove all non necessary terms up to a certain
order while retaining the right qualitative behavior of the system at the
bifurcation point. The result of this simplification is the so called normal
form of the flow. Normal form theory has been widely used in the study of
non linear vector field, in order to simplify the analysis of the original
system,it provides a convenient tool to transform a given system to an
equivalent system whose dynamical behavior is easier to analyze ([16], and
[18]).

If the system (2) has Hopf bifurcation at xq, po then D £, (x,) has a

simple pair of pure imaginary eignvalues, *i®w, ®>0 and no other
eigenvalues with zero real part. By smooth changes of coordinates the
Taylor series of degree three for the general problem can be brought to the
following form ([5], [8], and [17])

i=(dpu+a(P+y))x—(o+cp+b(X*+)7))y

y= (o+cpu+b (P +y*)x+(dp+a (> +y%))y e (8)
This is expressed in polar coordinates :

s 2

p=ldutaptyp )

O=(w+cu+bp?)
Since the p in equation (9) separates from 0, we see that there are periodic
orbits of (8) which are circles p= const., obtained from the nonzero
solution of p in equation (9) ; if a #0 and d #0 these solutions lie along the

2
parabola ,u:—%. This implies that the surface of periodic orbits has a

quadratic tangency with its tangent plane u=0 in R?xR. The content of the
Hopf bifurcation theorem is that the qualitative properties of equation (8)
near the origin remains unchanged if higher order terms are added to the
system.

Theorem 4 (Hopf Bifurcation theorem) [5]

Suppose that the system X= f (x), neR, xe R" has equilibrium (x,,
uo) at which the following properties are satisfied:
(H1) D f,,(x0) has a simple pair of pure imaginary eignvalues and no other

eignvalues with zero real parts.
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d
(H2) —Re(4y3(w))| =d=0,

ap pu=po
where Re(4,,; (1)) denotes the real part of 4 which is a smooth function of .
Then there exists a unique three-dimensional center manifold passing
through (x,, py) InR” x R and a smooth system of coordinates (preserving the
planes p=const.) for which the Taylor expansion of degree three on the
center manifold is given by (8). If a #0, there is a surface of periodic
solution in the center manifold which has quadratic tangency with the

eigenspace of k(uo),Z(uo) agreeing to second order with the parabolic p=-
%(x2 +y?). If a<0, then this periodic solution is stable limit cycles, while if

a>0, the periodic solutions are repelling (unstable limit cycles).

3. Stability and Hopf Bifurcation analysis

Now Our aim is to apply the method described in section two, to
system (1) the goal of analyzing the Lorenz system at the equilibrium points
and analyzes the Hopf bifurcation theorem of system (1),calculations have
been done with the symbolic processor Maple.

3.1-Equilibrium points and Stability.
From the definition of equilibrium point, it is easy to verify that,

when r <1 system (1) has only one-equilibrium point, which is the origin,
but when r >1 it has three equilibrium points :

0=(0,0,0), A.=(F/B(r—1),F/B(r—1) ,r-1)
Let 33 _ 72.2_ k1 — D = o be the characteristic polynomial for a

three-component system, where T,D indicate the trace and determinant rest,
then a Hopf bifurcation takes place of the transit through the surface

TK+D=0 if T,K,D<0O (10)
This condition is a necessary condition for a Hopf bifurcation(
[1]and [13]).
If T,K,D<0 and TK+D>0 e (11)

then all eignvalues has negative real part, this is the necessary and sufficient
condition which is required for stability of equilibrium points of a three
dimensional system and are called Routh-Hurwitz criterion[12].

The Jacobian matrix of system (1) at O =(0, 0, 0) is:

- o 0
Jo=| v -1 0| (12)
0 0 -p
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characteristic equation of J,, is:

24+ B+D2+(Blo+1)+o(l-r)A+ Bo(l-r) =0

...... (13)
Then T=-(+p+1) (14)
K=-B(c+1)-c(l-ry (15)
D=-Bo(l-vy (16)
TK+D=f(c+)+A0” +))+2B0+c(c+]) —ro(o+]) >0 ifr<l ... (17)

It follows from the Routh-Hurwitz criterion with (14-17) that the
origin is stable within the range 0<r<I.

The Jacobian matrix of system (1) at 4, is:

-0 o 0

J, = 1 -1 ~Jper-n| L. (18)
VB =1 Br-1) -p

The characteristic equation of J, is:
2 +(o+B+D) 2+ Blo+r)A+2Bo(r—-1) =0

....... (19)
Then
T=-(c+p+) (20)
K=-B(c+r) ... (21)
D=-2Bc(r-1) .. (22)
TKeD=Bdot fiy—rfo—p-) >0 ifren =2 (23)

o1
it follows from the Routh-Hurwitz criterion with (20-23) that 4. is stable
within the range

l<r<r, = G(%BT) when >4 (gee figurel).
o-B-—

Since at r =1 change of stability occurs, at which TK+D# 0 then a Hopf
bifurcation cannot appear of the Lorenz system at the origin. But also at r =

7,= o (o +p+3) change of stability occurs, at which TK+D= Othen a Hopf
c-p-1

bifurcation appears of the Lorenz system at the 4, .
Remark: the bifurcation at r =1 is called Pitch fork bifurcation [6].
3.2 - Hopf Bifurcation
If the parameters satisfy the condition r =7,= GE:;BB) ,then the matrix

J, has one negative and two purely imaginary eignvalues:

A== (otpt1)

L. 2Bo(c+1)
=4+ =
Ay3 =t i where o =,/ s—p-1_ (24)
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So the first condition for a Hopf bifurcation (theorem 4) is fulfilled.
Nevertheless for applying the Hopf bifurcation theorem a second condition
must be fulfilled. The conjugate of complex eignvalue which is imaginary at
the bifurcation point, A, , (r) must, if the parameter r is varied and the other

parameters are fixed, cross the imaginary axes in the simple way.

di(Re(AZ/g,(r») ~ 440
:

r=ro

where Re 4,,; ((r)) denotes the real part of A which are smooth functions of r.
We now calculate d without solving (19) explicitly. Let A,=u,+
iv, ,l3=/72=u1-i viand A, be eignvalues of J .AsJ, has two non-zero pure
imaginary eignvalues when r =r,, it follows that for r near 7, two of the
eignvalues will be complex conjugates. 4, , 2, and A, satisfy
2 = Quy + )% + (2|7 +2u ) x|, 2, =0

Equating coefficients with equation(19) resulting

- (ot+B+1) =2u,+A1

2Bor-1) =| 4| 4,

B(c+r)=|/12 |2 2u, 4,
Thus
2p0(r—1)

ot f+ls 2, 22U, (c+p+1+2u,) = B(c+r)
Implicitly differentiating u,=u, (r), we obtain:
_ po+f+1+2u)(c—-F-1-2u)
4Bo(r—1)+2(c+ f+1+4u)(o+ f+1+2u)’
At r=r, where Re (4,) = u,=0, after some calculation we obtain:
B(o—p-17
4Bo(c+1)+2(c+B+1)*(c-p-1) 25)

1

u, (ry)=
Since o>p+1, we have u, (#,)=d>0.

Thus, also the second condition for a Hopf bifurcation is fulfilled
and the Hopf bifurcation theorem holds.
Remark: Because system (1) is invariant under the transformation (x, y, z) —
(-x,-y, z), one only needs to consider the stability of system (1) at 4, .

We now analyse the Hopf bifurcation of system (1) in detail. At first,
we are given an expression for the flow in the center manifold W °at the

bifurcation point which is two-dimensional (W “ has some dimension as the
eignspase of the conjugate complex eignvalue with zero real part). Before
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using the center manifold theorem one has to translate the equilibrium point
A, to in the origin. In the new coordinates.

x-Npr=D-y, y-/fr=-1)>y,, z@D> y,
System (1) reads:
Vi=0(y,-))
V=V - Vs= V-Br=-ys (26)
V3= Vi Vaarl B(r=1) (X +1)-BY;

Using the eigenvectors as a base for a new coordinate system, we set
bl u

Yo | =Py
V3 w
where
o(c+l)  e(wo-o(c+)i) e(oc+o(cH)i)
e(cB-1) @ 4o+ o +o(c+H)
"7 B)(oH) el 1)) elokc Holc+)i)
e(cB-1) o 4o+ o +o(c+H)
1 1 1 |
u | (@+ps 0 0 u au’ +a,v’ +a,w’ +auv+auw+a,yw
v rlo de 0 v + e’ +e,v’ +e,w’ +euv+euw+ e yw
I v eu’ +e,v’ +e,w’ +euv+euw+evw

..(27)

With: 4 :G(U+1)2(0'—2—2,B)
: Ac-p-D)
Y —(o—p-D[oA30” —3+3B+0f)—iaNo” —0° —20° f—o+1—0fF +20- )]
2~ 2
24(c-1)

_—doH)-0 H-A3+2-0) 6D+ o+H) 20" 2 +4o—45+25/3-2)]
a} =
Ao
_—oBc-p-D(c+1-p)
A(o-1)
o = odyle(o — f—1)d, — (o +1)(B +1)d;]
‘ Blo-B-D(c+p+1)

ay
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Az(d—ﬂ )F2eo f(o—Dd, —o A4+ o—Do+/+D)d;
2,&6—1) (o+)(o+p+)
idt-do—)o—p-Dd, + 2o o) o—f-1)d]
28— (o+))o+p+)
0. . 20— F-D2ecfioc—d, ~off4f+(o-Dio+ [+ D)
’ 2R (o +D)o+f+])
| Hid-do Do~ f-Ddy + 204+ (0-Dio~ f-DK]
2 o— 1) (c+)(c+p+])
o= _Aolao+p+)E —1-Plo—f-)Y +eaXo—B-DQ+ P d,
eato—1)oc—f-1)(o+p+])
} +ildo+)Qo f+(o—F-1 )+ Ao—B-D o+ S+ o+))dy]
eao-1)(o— Do+ +))
AzO[a(U"‘ﬁ"‘l)(Oz —1-fo—- )Y, +eao— -2+ P
ecfo—1)o—B-N)o+[+])
ido+1)Qopr(c—p-1)d; + Ao—f-No+S+Do+)K]
edfo-1)(o—-F-1)c+[/+])
_Ayo(o—p-1D[2ed, +(c+ p+1)d;]

o (67 o+ B+1)
B(c+B+1)(c+1)
c—p-1
4 _—w-i(c+])
2 2ec04

d =d~f-1- & —Eo+é f-20—0" +¢* ~203

—i(& fo+df +0@ +Bd +0Bd—0°¢ +&0)
d, = 00-00 200 +i(-* o’ +& 6+’ p—* &* —G »°)
d3=—Gzeoo—ecsoo+i(2602+ec52[3+ec5[3+ec53 +e0)

And
A=’ 4364307 +00* +° +1+B+2Boc+P o’ +f o —e* - P
Where an over bar denotes complex conjugation. According to the

center manifold theorem W ¢ is tangent to £°= span {v,w}. Therefore, W ¢
can be approximated for the two variables v,w by equation
u=h(v,w)=a v’ +6vw+yW2 +0(3)
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Where O(3) denotes terms of order ¥ , v2w, v w? and W’ .With

. oh . Oh .
u= Ev +—w (29)
it follows together with eq(27) and eq(28), after comparison of the
coefficients for v* , vwand w? obtains:
o= a, ’ — a, and ¥ = L
o+ pB+1-2iw o+ p+1 o+ f+1+2iw
Also
a
u=h(v,w)= : — 2
o+ pf+1-2iw
a a
4 2 w? +03) (30)

vw +
o+ p+1 o+ f+1+2iw
In the same way according to theorem (3) one can approximate the center
manifold up to any order.
After inserting u=h(v,w) to in the equations for v,w in eq(27) obtains an
approximated expression for the flow in the center manifold:

v -iov e, v’ +ew’ +eyw+ (e,v+ewu
- +04)...(31)
w iow ev’ +e,w’ +eyw+ (v +e,wu

In the second step we now simplify the expression for the flow in
the center manifold by removing all of the redundant non linear terms. The
simplest expression is the normal form which still contains all information
about the qualitative behavior of the system of the bifurcation point. With a
further linear coordinate transformation system (31) can be rewritten in to a
form which only contains real numbers giving the so-called standard form.
With

v ¢ 1 -1
w X 1 i
It follows

1

> — — — 2 — — — .
¢ = -0+ 5(—63—63—62—624-66 +eg) Xty (e3+es+e;+e;+eg+es) C2+1

| _
o, — e ~ e 02 a4 az
— 1
_ @ ay a, 3. - 3a,
+ +e) (- ————
e e“)(a+ﬂ+1—zjw o-+ﬂ+1+0'+,8+1+2ia))]C to et o+ B+1-2iw
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_ a4 + 52 )+( es +é4 )(_ a2 + a4 + 52
o+f+1 o+ pB+1+2iw o+p+1-2iw o+p+] o+p+1+2w
1 3a a a
+ 4 [(e,+&)(- 2 4 4 2 e +e,)(—2
2 [(eFe) o+f+1-2w o+ f+1 a+/5’+1+2ia)) (esFe)( o+f+1-2w
— 1
2 _
SRR —Cx + 75 il(e, +e)( = B
o+ f+1 o+p+1+2w o+p+1-2iw o+ f+1
B ete (B M L @& gy

o+ pf+1+2iw o+f+1-2w o+ f+1 o4 f+1+2iw

i
. — — — 2 . _ — _
X =0C- §(e3—e3 +ey,—e,—ect+egs) A -;7 (—es+e3—e,+e, —es+eg)

I _
Pt (—es—s+e,+0,) + [(e, —e)( —2—— +_ % 4+ &
P 207 PR ouBrl-2io giftl o+ filt2ie
- 1
_ 3 _
+(es —e,)( #4- a4 a, ) C -5[(64—65)
o+f+1-2w o+p+1 o+f+1+2iw

3a, a, a, = ) a
(- + +es —e, ) +
o+f+1-2iwo+f+1 o+ pf+1+2iw o+p+1-2%w o+pf+1
7 i _ a a
+L)] +5 [(e4 _es )(_ 3a’2 ‘ + 4 ¥ 2 .
o+f+1+2%w o+f+1-2iw o+ [f+] o+pf+1+2w
7 1
— a a _
+(es —e,)( S -7 [(e,—e)
o+f+1-2w o+ p+1 o+f+1+2w
a, A N a, Je—2,)- a, N a,
o+p+1-2%w o+ f+1 o+pf+1+2w o+p+1-2%w o+p+1
a, 3
—))] X
a+ﬂ+1+2ia))] .......... (32)

Guckenheimer and Holmes have explicitly [5] shown that on the
basis of the normal form theorem one finds a nonlinear coordinate
transformation which transforms every system with the structure.

C'Z-mx+0(|C| ,|X|)
v=oC+0 (g, ) ... (33)

to in the system

1= -ov+ (au-bv) (u>+v*) + 0 (4)

v=omu + (autbv) (u>+v*) + O (4) .. (34)
This is expressed in polar coordinates as:
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: 3
p=ap
0 = w+bp? - (33)

It can be seen that the sign of determining the stability of the
equilibrium point is at the Hopf  bifurcation point. Guckenheimer and
Holmes [5] carried out the procedure for calculating the coefficient a and
gave the formula:

1
a= T6 (fxxx+fxyy+ngy+ g}’yy+(l/0'))(fxy (fxx+fyy)

_gxy(gxx+gyy)_fxx gxx+fyy gyy)) (36)
0/(0.0) - i
where f_ denotes , etc. And f,g are the functions containing the
v 0x0y

nonlinear terms of equation (33)(for more detail see[5]) . Also the
coefficient b gives the formula:

1 1
b:E [gxxx+ gxyy_ fxxy_fyyy+ 3 0 (S(fxx gxy+fxy gyy_fxx fyy_fy?v

- gxx gyy -gix)- 2(f:é+f:vi+g,3y+g)2))) )+f}y gxy—’_f\”y g,\:x)] e (37)
Applying the equation (36, 37) to expression (32) which has
structure of (33) to obtain:
_1 a,¢s a,e; L% (e, +e,)
2|0+ f+1-2iw o+ p+1+2i0 o+ p+1

i _
+—(—eye, +e,¢,)
[40]

_,1 4 a6 a,(e,—¢,) -
b= {l[a+ﬂ+l Aw a+ﬂ+1+2zco+ a+,8+l] 3(6266 R 6(6666)]}

...(38)
using Maple program to simplify eq(38) after substituting the values of
aj,a4, €2,e3,e4,e5,€6,a2,82,63, €4, €5, €6, A, A2, eand o obtains

oV (B +205+66 20 F 1 P o5+ $o-266-1 &A1 -9 20 -1 & +4o+3)
Za+ﬁ+l)©z )0 130+ —op-0-1- 3 306 +7 +9p6-o+ofop-1-36-30 )

Xto -l
G(ml)b%wﬁﬂ (0 +9p5+7 +opo-op--1-38 30 -3B6+0 —op-o-1-38 %ﬁ)

205+ 20-4EF WP +8F0-1 150 +46° 1966 55 —p-1PF +25 58 20 +9 o

+11P6" +44 085" —20° +128 +40* 108 —156° f —5085° +1To8+5 505 —60° 5 —376°
+958°c+330° B-1750° % —104% - g +1495° 5] (39)
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Since o> f+1, we can write o = f+1+c,c>0 after substituting
o=/p+1+c in eq (31), Maple program tells us a>0 and b<0 for allo, S
defined above. It follows from a>0 that the equilibrium point 4, at the
bifurcation point is unstable. Since ®>0 and b<0 it can be seen from (35)
that there is a critical value p = p~ where the direction of rotation changes.

Since a>0 according to the Hopf bifurcation theorem, the system (1) has
unstable limit cycle (sub critical Hopf bifurcation). If we take

o=10,4= % as example then a =0.004580131420 and b =-0.05344960599

since a>0 system (1) has unstable limit cycle see ,figure (2).
From eq(9) because the p is separated,so.

du
Ap ) 2
o

p:
(a+

Since the parameters a and d are known from (eq (39),eq (25)) we
have an up to third order approximate expression for the radius of the limit
cycle and the dynamics with which the limit cycle will be reached
depending on the parameter p.

Ky

(2)
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14.5

(b)
Figure (1): Equilibrium bifurcation diagrams of Lorenz system dependence
onr of: (a) X,y; (b) z. The solid curves depict stable behavior and the doted
curves depict unstable behavior

Figure(2.a)phase portraite for system(1)when 5 — 10,8 = 2 andr =22

95



Azad.l.Amen and Rizgar .H. Salih

40]
30:
zitpor

107

Figure (2.b): phase portrait for system (1)

when o-=10,ﬂ=§ and =310
3 19

407
a0
Z(1)

20

10

Figure (2.c): phase portrait for system (1) when o =10, § = g and r =28.

96



Limit Cycles of Lorenz ...

Conclusions

In this paper we began to study the Lorenz system. Some insights on
stability and bifurcation are obtained. The system posses a Hopf bifurcation
and, in particular the case which is analyzed obtained that bifurcation is
subcritical (unstable limit cycle) . Analyzing the Hopf bifurcation we show
that the arising unstable limit cycle is near a bifurcation point. It means that,
for the Lorenz system, the appearance and location of limit cycles in vicinity
at the equilibrium only occurs at very specific values of the parameters
defining the equations.
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