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Abstract

In this paper a new relation has been found between any natural solution to the hyperbola
equationx? — dy? = c?, where ceN,d a positive square free numberand a form that gives allnatural
solutions to Pell'sequationx? — dy? = 1. Which enable us to obtain all natural solutions for the

m2+n?

above hyperbola equation thena square natural numberu for the Diophantine equation u = P

where (m,n) € N.
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1. Introduction
For m,n € Z such thatl + mn # 0, the Diophantine equation
. m? + n? )
1+mn
has infinitely many real solutions[1]. Indeed, when (m,n) € Z then Eqg. (1) has infinitely many

rational solutions. The integer numbers (m, n) sometimes give square positive integer numberu in
Eq. (1).For example,(m, n) € {(—100,0), (7,0), (0,—50), (1,1)}.In this paper, Eq. (1) serves as an
accurate tool to find all natural pairs(m,n) such thatu is a square natural number. This can be
proved using theorem (3.11) for some (m, n) € N[1].
Foru € {22,32,42,52,62, ...}, there are infinitely many natural pairs that can be obtained fromEg.
(D)resulting in the following hyperbola equation

x? —dy? = c? (2)
whered is a positive square free integer and ¢ € N. Note that, there are only one natural pair
(m,n) = (1,1) foru = 12.
We denote by (s, t,.), r = 1,2,3,...to the infinitely many natural solutions of Eq. (2). These
solutions have been found through this paper by using the relation in Eqg. (13). This relation has
been depended on the following equation

x2—dy*=1 (3)
Which is known as Pell's equation and it was named after John Pell. In the seventeenth century Pell
[2] searched for integer solution of this type. He was not the first to work on this problem, Fermat
[2,3] found the smallest solution for d up to 150,John Wallis[2] solved Eq. (3) ford = 151 or
313.Lagrange[2,3]developedthe general theory of Pell's equation, based on continued fractions and
algebraic manipulations with numbers of the formx + v/dyin (1766-1769).
For EQ.(3), we denote by (x,,y,.),r =1,2,3,.. to all naturalsolutions.The first non-trivial
fundamental solution(x,,y,)for Eqg. (3) can be found using the cyclic method [3], or using the
slightly less efficient but more regular English method defined in [3,4]. The rest of
solutions(x,, y,.),r = 2,3,4, ... are easily computed from(x;, y;). There are another methods to find
this fundamental solution, in this paper we use acontinued fraction method for a real number+/d see
remark (2.6), (For further details on Pell equation see [3,4,5,7]). In theorem (2.9), (x4, y,) has been
used to give the form of finding allthe rest natural solutions(x,., y,),r = 2,3,4, ...forEq.(3).
We givea new relation in Eq. (13) between one of the natural solutions of Eq. (2) and the form in
theorem (2.9) for Eq. (3). By this relationall natural solutions to Eqg. (2) and all pairs(m,n) € N

such that u a square number inEq. (1), will becalculated.
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2. Preliminaries:
In this section, the basic definitions, theorems and remarks which will be used in this workhave
been introduced.
Definition 2.1[3]:The Diophantine equation is a polynomial equation, usually in two or more
unknowns, such that only the integersolutions are sought or studied (an integer solution is a
solution such that all the unknowns take integer values).
Definition 2.2[1]:The square-free, or quadrate free integer, is an integer which is divisible by no
other perfect square than 1. For example, 10 is square-free but 18 is not, as 18 is divisible by 9 =32,
Definition 2.3[6]: The quadratic Diophantine equation of the form x2 —dy? = +1is called a
Pell's equation where d is a positive square free integer. In this paperthe Pell equation of the form
x? — dy? = 1 was discussed.

Example 2.4:
i x2-8y?2=1
i. x2—-13y%2=1
ii. x2-13=-1

The solutions for equations (i), (ii) are given by(x,y) = (3,1), (x,y) = (649,180)
respectively,while equation (iii) does not have any solution; it is not solvable [6].

Definition 2.5[6]: The expression of the form

ag +

a; + il

'+_+...

wherea;'s are integers, is called the continued fraction expressionto any real number denoted by the

notation [ay; aq,a,, as, ay, ..., 2ag,ay, ay, dz, Ay, ..., 2dg,aq,dy, g, Ay, -.. |.THiS expression will be
used to find the fundamental solution (x;, y;)forvd in Eq. (3).

The following remark has beenexplained shortly thecontinued fraction method [2] for finding the
non-trivial fundamental natural solution(x,, y;) toEq. (3).

Remark 2.6: For VdinEq. (3) assume thata, = vd, a, = |a,] . In general,

ap = ag + ﬁ, ap = lakJ Fork = 0,1,2,3,

We Obtaln\/ = [ao; aq,ay,0a3,0, ..., 230, dq,dp,ds3,dy, ..., Zao, dq,dp,d3,dy, ]
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For finding(x4, y,), only the numbers [ay; a4, a,, as, ay, ... ] will be used such that

1 x
\/a = Qg + 1 = =L
a; + 1 71
a, + 1
az + il
au + 1
.t il
Example 2.7: The continued fraction expression for
1 8 «x
1+— 71
1+7

where, V7 = [ay; a4,ay, ..., 23,3y, ap, .., 2dg,a1, 32, ] = [2;1,1,1,4,2,1,1,1,4, ...]
Remark 2.8:A continued fraction is purely periodic with period m if the initial block of partial
quotients ay, ay, ..., a;,—1 repeats infinitely and no block for length less than m is repeated, and it

is periodic with period m if it consists of an initial block of length n followed by a repeating block

of length m.Purely periodic continued fraction— [ay;ay, ...,am—1]. Periodic continued fraction —

[ag; @1, ) @t-1, 30 et 1 s At+m—1]
the length of the period was denoted by t .
Theorem 2.9[6]: If (a, b)is a solution to x? —dy? = 1where a > landb > 1, then(x,y)is

also a solution such that

x +yVd = (a + bVd)’
forj = 1,2,3,4,...,.Similarly, If (c,k)is a solution to x? —dy? = —1where ¢ > landk >

1, then (x, y)is also a solution such that

x +yVd = (c+k\/a)j

forj = 1,3,5,7,....
Theorem 2.10[6]: The equation x2? — dy? = 1 is always solvable and the fundamentalsolution is
(A ,Byx) Where k = t or 2t and A, /Byis a convergent tov/d. The equation x? — dy? = 1 is
solvable if and only if the period length of the continued expansion of v/d is odd. The fundamental
solution is (A, By ) wWhere k = tort + 1.

3. The main result

In this section, theorem (3.11) has been proved that u in Eq. (1) is a square natural number for
somepairs(m,n) € N, sou € {12,22%,32%,42,52,62, ... }. We give a new relation in Eq. (13)to find

all natural solutions forEq.(2)then all natural pairs (i, n) in theorem (3.11)toEq.(1).
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Theorem 3.11 [1]: A number u = 7"
1+mn

is a square of some natural numbers?

Proof: Let us use indirect way to prove this statement. Supposethat there are some pairs(m, n) of

m2+4n?

natural numbers such that (m) is a natural numberbut not a square. If m = n, then we have

m2+n2_ 2m?
1+mn 1+ m?

But the only natural number less than 2 equals 1, and 1 is a square. foreach pair (m,n) such

<2

thatm # n we take s = max{m, n}.
Let Xrepresents the set of all numbers s € N obtained using this way. This set is nonempty because
there are some pairs(m,n) as we supposed. By Minimum Principle Theorem, we have s, =
max{m,, ny }jrepresents the smallest element belongs to X. Therefore,
my? + ny?
Trmoe = Y 4
is a natural number which is not square. It can be proved that m, < nyor my, > n,, here we
take m, < ny. The equality in Eq. (4) shows that n, is a root of the quadratic equation
ng —uymeng + m3 — uy = 0, this is the same  x2 — ugmyx + mé —u, = 0.
Let us denote by n, to the second root of this equation. Then using Viete's formula, n; + ny, =
uymy, from whichn, is an integerand nyn, = m3 — u,.As result, we have

m(z) — U n(z) —Up
n1 = < < no.
Ny L)

It follows thatmax{m,, n,} < max{m,, ny} = s,. Moreover,
mé + n?
Thmon, = % (5)

andn, € Z which give n; € Nand this is contradiction. Because if n; < 0 then the denominator of

the fraction inEqg. (5) would be negative and this would give the negativeness ofu, and, ifn; = 0

then we would have 0 = nyn; = m3 — u,, and u, would be a square.This contradiction shows that

. m? + n? )
1+mn

is a square number. [

Note thatEqg. (6) is the same asEq. (1). In this paper the following cases for Eq. (6)have been

discussedwhen u = 12,22, 32and similarly, can be done for u = 42,52,62, ...

Casel: If u = 12, thenEq. (6)is

_m?+n?

12 = ——
1+mn

ye
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1+mn=m?+n’=> m?—mn+n?=1
By multiplying both sides by4, givesdm? — 4mn + 4n? = 4
Add and subtract n?,yields4m? — 4mn + 4n?> —n? + n? = 4
4m? —4mn+n?+3n2 =4
(2m —n)? +3n? =4 (7)

It follows that Eq. (7)is a Diophantine equationand(m, n) € N.
Since 3n? < 4, then n = 1andEq. (7) is
2m-n)?2+3=4=2m-1)?%?=1=> 2m=F1+1,
hencem = 1, (m = 0 neglected asm € N ). So the natural solution toEq. (6) when u = 12 is only
the pair (m,n) = (1,1).
Case2: If u = 22 in Eq. (6), then
_m?+n?

1+mn
4+4mn=m?+n?> m?—4mn+n?=4

Add and subtract 4n?,then

22

m? — 4mn + 4n? — 4n? + n? = 4=>(m — 2n)? —3n? =4
This equation has infinitely many solutions (s, t,.), r = 1,2,3, ...that is,
forr =1,2,3,... wehave, m —2n =s,, and n =t, then
5,2 —3t.%2=4 8)

Equation (8) is ahyperbola equation.
Case3: If u = 3% in Eq. (6), thus
_m?+n?

1+mn

94+9mn=m?+n?> >m?>—-9mn+n®>=9

32

By multiplying both sides by 4, then 4m? —36mn + 4n? = 36 Add and subtract 81n?

givesdm? — 36mn + 4n? + 81n? — 81n? = 36
(2m)? — 2(2m)(9n) + 81n? — 77n%=36
(2m —9n)? — 77n% = 36
Then for r = 1,2,3, ... we obtain,2m —9n =s,., n = t, such that
s,2 —77t,2 = 36 9)
Hence Eq. (9) is ahyperbola equation.

ra
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In order to find all pairs(m,n) € N suchthat u = 22, 32in Eq. (6), we have to solve Eq. (8), Eq. (9)
in Case2, Case3 respectively which are hyperbolic equations having the same form of Eq. (2).Also
Eq. (6) for u = 42,52,62, ... has the same form of Eq. (2). That is, we need to solveEq. (2).
3.1Finding of the new relation
In the following steps, we give a new relation that will be used to find all natural
solutions(s, , t,.),r = 1,2,3, ...forEq. (2).
Stepl: We are looking for a natural solution to(x, y) = (s, , t;)toEq. (2).
Solving the equationx? — dy? = ¢?=x% = c? + dy? = x = F./c? +dy?2.
The required natural solution is,x = \/c2 + dy? (10)
From Eq. (10) the pair(x,y) = (s, ,t;)such thaty = s; + Vdt, , § =s; —Vdt,
¥8 = (sy +Vdt,)(s; — Vdt,) = 5,2 — dt,* = ¢?
y+68=(sy +Vdty) + (s; — Vdt,) = 25,
By this step we have been found one natural solution (s;,t;) to Eq. (.2) such that
Yy =5+ \/Etl
Step2: In general, assume that all natural solutions of Eq. (2) are (x,y) = (s, t,.), r = 1,2,3, ...
¥ = s, +Vdt,, 8, = s, —Vdt,
Vr + 6, =ST+\/EtT+sr—\/Etr = 25,
¥-6r = (s + \/Etr)(sr - \/Etr) =52 —dt,? =c?
Step3: Take the following Pell equation:
x2—dy*=1 (11)
Step4: Assume that (x, ,y;) is the fundamental natural solution toEq. (11),whichhas been found by
continued fraction expression forv/d in remark(2.6) such that
a=x,+Vdy, , B=x, —Vdy,
af = (x; +Vdy,)(x; — Vdy,) = 5,2 —dy, > =1
Hereby, we obtain the fundamental natural solution(x; , y;)for Eq. (11) such that
a=x + \/Hyl
Step5:All natural solutions(x,-,y,-), r = 1,2,3,4, ...for Eq. (11) will be given, as follows: We have
in Step4 a = x, + Vdy;, using theorem (2.9)for r = 1,2,3, ... then
a’ = (x; +Vdy,)" (12)is a natural solution forEq. (11) .

Yv
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Step6: From the use of Stepland Step5, we have y = s, +Vdt;, and a = (x; +

Vdy,)'respectively.All natural solutions(s, , t,), r = 1,2,3,4, ... to Eq. (2) can be obtained from the

following relation

s, + Vdt, = ya'(13)

wherei = 0,1,2,3, ... . Using these solutions to calculated the square number u for (m,n) € N
inEq. (6).

We have been applied the relation in Eq. (13)to the previous cases:

In Case2 we will solveEg. (8) by using Eq. (13)as follows:

By Steplx? — 3y? = 4=x = /c2 + dy2.Here ¢? = 4, d = 3, therefore, lety =2 = x =
4,resulting(sy , t;) = (4,2) such thaty = 4 + 2+/3.

By Step3 the Pell equation x? — 3y2 =1 (14)

By Step4 we use the continued fraction expression of +/3for Eq. (14) to find(x; , y;):Assume that

ay=vVd =v3=17 and a,=|17] =1

+1 V3 1+1 !
Qg = a —_— = = —_— D =
0 0 aq aq ! V3 -1

1 V3+1 V3+1

a; = * = >a, =13 =1
'TV3-1 V3+1 2 1= 113

+1 V3+1 1+1
= — = — R
*1= M a, 2 a,
2 V3+1 2(V3+1)
a, = * = =V34+1 = a,=[27]=2
*TV3-1 V3+1 2 ’
1 1
a=a,+— = V3+1=2+—
as as
1 V3+1 3] = 1
a3 = = = = Ay = . =
3 \/§_1 2 1 3
+1 V3+1 ) 1
= _— = = R
%3 = s ay 2 ay
2(V3+1
a4=¥=\/§+1=a2 :a4=l271=2
Andsoonthenil =a; =az;=as=a;, =-+,2=a, = a4 = ag =+ .Hence

V3 =1[1;1,2,1,2, ...]. The continued fraction expression for
1 2 x

3=1 —_= —=
V3 +o=1 ”

YA
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Thatis, (x;,y,) = (21) = a=2++3.
ByStep6using Eq. (13) gives ya' = s, + v3t,where i = 0,1,2,3,..,.and r = 1,2,3, ...

yai = (4+2v3)(2 + \/§)i = s, +V3t,
Fori =0, r = 1=ya® = (4 +2v3)(2 +v3) =5, + V3t

4423 =5, +t;V3=> (si,ty) = (4,2)
Fori=1,r=2=ya*=(4+2V3)(2 + \/§)1=Sz ++/3t,

=14+ 8V3=5,+t,V3 = (5, t,) = (14,8)
Fori=2, r=3 =ya?=(4+2V3)(2+ \/5)2 =5, +/3t,

ya? = (4 +2V3)(7 + 4V3) = s; + V3¢5

=52+430V3 =55 + t3v3 = (s3,t3) = (52,30).

And so on for i = 3,4,5,6,...and r = 4,5,6, ...wewill get the rest of all natural solutions(s,, t,.), for
Eq. (8). By using these solutions, all natural pairs(m, n) to Eq. (6) such that u = 22will be obtained
as follows:

From previous supposed we have, m — 2n = s,, n = t,, wherer = 1,2,3, .., that is,

m2+n? _ 68
1+mn 17

Forr=1,(s,t) = (4,2) > (mn)=(8,2) = u= = 22

m?4n? 964 5

1+mn 241

Forr = 2,(s,,t,) =(14,8) = (m,n) = (30,8) = u =

m2+n? 13444

= 22
1+mn 3361

Forr = 3,(s3,t3) = (52,30) = (m,n) = (112,30) = u =
And so on for i = 3,4,5,...,r = 4,5,6, ... giving all the other natural pairs(m, n)for Eg. (6) such
that u = 22,

In Case3we solve Eq. (9) by using Eq. (13)then:

By Steplx? — 77y% = 36=x = /c2 + dy? .Since c? = 36,d = 77. Lety =

3 then x = 27 \we get(s, , t,) = (27,3) such thaty = 27 + 3/77.

By StepY the Pell equation x? — 77y? = 1 (15)

By Step¢we use the continued fraction expression of +/3for Eq. (15) to find(x; ,y;): Assume that

ay =Vd =77 =8.77 =a,=18.77] =8

1 1 1
a0=a0+_ = \/ﬁzl‘l'_ = a, =
aq aq V77 —8

1 V77+8 7748
o = * =
YU J77-8 V77 +8 13

= a, =[1.29] =1

Y4
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+1 V77 + 8 1+1 1 V77 + 8 1 V77 —5
= _— — = —_— = — e ——
a=hTy 13 a0 13 13

13 7745 7745
a, = * =
2T 77 -5 7745 4
1 \/77+5_3 1 1 V7745 3_\/7 —7

a, =a, +— =
2 2 as 4 a3 Qs 4 4

4 NVT7+7 7747
Ay = * =
STTT =7 NTT+7 7
1 7747 1 1 7747 NT7 =7
Gg=ayt—>—— =24 —m>—=— =" "
ay 7 Ay 7 7
7 NT7+7 NT7+7
= * =
YT =7 7T +7 4
1 \/77+7_3 1 1 7747 3_\/77—5

A, =04 +—>= +—=—=
4 4 as 4 as as 4 4

4 V77 +5 7745
A = * =
T \J77—5 7745 13
1 \/77+5_1 1 1 V77 +7 1_\/77—7

= _— —_ s —=
s =ds+ - 13 T w13 13

13 77 +7
Ay = * =
C T 7T =7 N7T+7

1 1 1
ag=ag+— > V77+8=16+— > —=+77—8

a; a; a;
1 V77 +8 7748
a- = * =
7T J77-8 7748 13
1 \/77+8_1 1 1 V77+8 1_\/77—5

= _— —_— s —=
a7 = a7+ o 13 Y w13 13

13 V77+5 7745
Ao = * =
® T \V77-5 V7745 4
Andsoonthen ag=a3;=2, a;p=a,=3,a;; =as =1, ..., thatis,

V77 =1[8;1,3,2,3,1,16,1,3,2,3,1,16, ... ]. The continued fraction expression for

=344 = a, = [3.44] =3

=225 = a,=[2.25] =2

=39 = q,=[39] =3

=1.05 = a;=|1.05] =1

V77 +8=16.77 = aq=[16.77] =16

> a,=|129=1=q

=4 a8 = l344J :3 :az



Journal of College of Education for pure sciences(JCEPS)
Web Site: http://eps.utg.edu.ig/ Email: com@eps.utg.edu.iq
Volume 6, Number 1, September 2016

1 1 1 1 31
1+ ———g— 1+ ——— 1+— 1+=7
3+ ——4— 3+—7 3+5 5
2+—7 2+7 z
3+7
351 x
40y,

Thus(xy,y;) = (351,40) = a = 351 + 4077
ByStep6using Eq. (13) givess, + V77t = ya'where i = 0,1,2,3,...and r = 1,2,3, ...

yat = (27 +3v77)(351 + 40\/ﬁ)i =s, +V77t,
Ifi=0,r=1 2ya® = (27 + 3v77)(351 + 40V77)’ = 5, + V77t,

27 +3V77 = 5, + V77 = (sq,t;) = (27,3)
Ifi=1, r = 1oyal = (27 + 3v77)(351 + 40V77) " = s, + V77t,
= 18717 4 2133V77 = 5, 4+ t,777 = (s,,t,) = (18717,2133)

Ifi =2, r=3ya? = (27 + 3V77)(351 + 40V77)" = s, +VT7t,
= 887202 + 101106V77 = s; + t3v/3 = (s3,t3) = (887202,101106).
And so on for i = 3,4,5,6,...and r = 4,5,6, ...we will get the rest of all natural solutions(s,, t,-), for
Eq. (9).By using these solutions, all natural pairs (m, n) to Eq. (6) such that u = 3?will be obtained
as follows:

As we supposed that, 2m —9n =s,, n = t,, where r = 1,2,3, ..., gives,

m?4+n? 738 9
1+mn 82

Forr = 1,(s1,t1) = (27,3) = (m,n) = (27,3) = u =

m?+n? 363917538
Forr = 2,(sy,t;) = (14,8) = (m,n) = (18975,2133 ) = u = o = 20435708 9

2 2
Forr =3, (s5,t3) = (52,30) = (m,n) = (13307787,1497363) = u="—""=
179339290791138 _
19926587865682

And so on for i = 3,4,5,...,r = 4,5,6, ... giving all the other natural pairs(m, n)for Eq. (6) such
thatu = 32.

Conclusion: We give a new relation (13) between any natural solutions to the hyperopia Eq. (2) and
the Pell equationEg. (3). By using this relation we have been found all natural solutions to Eqg. (2)

then these solutions have been used to find all natural pairs (m, n)such thatu is a natural square

number in Eq. (1).The Diophantine Eq. (1) has been discussedwhenu = 12,22, 32 similarly foru =
42,52 62, ...
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