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Abstract 

In this paper a new relation has been found between any natural solution to the hyperbola 

equation𝑥2 − 𝑑𝑦2 = 𝑐2, where 𝑐𝜖𝑁,𝑑 a positive square free numberand a form that gives allnatural 

solutions to Pell'sequation𝑥2 − 𝑑𝑦2 = 1. Which enable us to obtain all natural solutions for the 

above hyperbola equation thena square natural number𝑢 for the Diophantine equation 𝑢 =
𝑚2+𝑛2

1+𝑚𝑛
 

where (𝑚, 𝑛) ∈ 𝑁.  
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 الخلاصة

𝑥2 في هذا البحث  وجدنا علاقة جديدة بين اي حل طبيعي لمعادلة القطع الزائد  − 𝑑𝑦2 = 𝑐2 حيثc  عدد طبيعي و d عدد

𝑥2 صحيح موجب لا تحتوي مجموعة عواملة عدد مربع،والصيغة التي تعطينا كل الحلول الطبيعية لمعادلة بيل  − 𝑑𝑦2 = 1 .

,𝑚)هذه العلاقة تمكنا من ايجاد كل الحلول الطبيعية لمعادلة القطع الزائد أعلاهثم ايجادكل الازواج الطبيعية  𝑛)  التي تجعل𝑢  عدد

𝑢طبيعي مربع في المعادلة الديفونتية =
𝑚2+𝑛2

1+𝑚𝑛
. 
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1. Introduction 

For  𝑚, 𝑛 ∈ 𝑍 such that1 + 𝑚𝑛 ≠ 0, the Diophantine equation 

                                                                   𝑢 =
𝑚2 + 𝑛2

1 + 𝑚𝑛
                                                                   (1) 

has infinitely many real solutions[1]. Indeed, when (𝑚, 𝑛) ∈ 𝑍 then Eq. (1) has infinitely many 

rational solutions. The integer numbers (𝑚, 𝑛) sometimes give square positive integer number𝑢 in 

Eq. (1).For example,(𝑚, 𝑛) ∈ {(−100,0), (7,0), (0, −50), (1,1)}.In this paper, Eq. (1) serves as an 

accurate tool to find all natural pairs(𝑚, 𝑛) such that𝑢 is a square natural number. This can be 

proved using theorem (3.11) for some (𝑚, 𝑛) ∈ 𝑁[1].  

For 𝑢 ∈ {22, 32, 42, 52, 62, … }, there are infinitely many natural pairs that can be obtained fromEq. 

(1)resulting in the following hyperbola equation  

 𝑥2 − 𝑑𝑦2 = 𝑐2                                                                 (2) 

where𝑑  is a positive square free integer and  𝑐 ∈ 𝑁.  Note that, there are only one natural pair 

(𝑚, 𝑛) = (1,1) for𝑢 = 12 .  

We denote by (𝑠𝑟 , 𝑡𝑟), 𝑟 = 1,2,3, … to the infinitely many natural solutions of Eq. (2). These 

solutions have been found through this paper by using the relation in Eq. (13). This relation has 

been depended on the following equation 

 𝑥2 − 𝑑𝑦2 = 1                                                                 (3) 

Which is known as Pell's equation and it was named after John Pell. In the seventeenth century Pell 

[2] searched for integer solution of this type. He was not the first to work on this problem, Fermat 

[2,3] found the smallest solution for  𝑑  up to 150,John Wallis[2] solved Eq. (3) for𝑑  = 151 or 

313.Lagrange[2,3]developedthe general theory of Pell's equation, based on continued fractions and 

algebraic manipulations with numbers of the form𝑥 + √𝑑𝑦in (1766–1769). 

For Eq.(3), we denote by (𝑥𝑟 , 𝑦𝑟), 𝑟 = 1,2,3, …  to all naturalsolutions.The first non-trivial 

fundamental solution(𝑥1, 𝑦1)for Eq. (3) can be found using the cyclic method [3], or using the 

slightly less efficient but more regular English method defined in [3,4]. The rest of 

solutions(𝑥𝑟 , 𝑦𝑟), 𝑟 = 2,3,4, … are easily computed from(𝑥1, 𝑦1). There are another methods to find 

this fundamental solution, in this paper we use acontinued fraction method for a real number√𝑑 see 

remark (2.6), (For further details on Pell equation see [3,4,5,7]). In theorem (2.9), (𝑥1, 𝑦1) has been 

used to give the form of finding allthe rest natural solutions(𝑥𝑟 , 𝑦𝑟), 𝑟 = 2,3,4, …forEq.(3). 

 We givea new relation in Eq. (13) between one of the natural solutions of Eq. (2) and the form in 

theorem (2.9) for Eq. (3). By this relationall natural solutions to Eq. (2) and all pairs(𝑚, 𝑛) ∈ 𝑁 

such that 𝑢 a square number inEq. (1), will becalculated.  

https://en.wikipedia.org/wiki/John_Wallis
https://en.wikipedia.org/wiki/Joseph_Louis_Lagrange
https://en.wikipedia.org/wiki/Continued_fractions
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2. Preliminaries: 

In this section, the basic definitions, theorems and remarks which will be used in this workhave 

been introduced. 

Definition 2.1[3]:The Diophantine equation is a polynomial equation, usually in two or more 

unknowns, such that only the integersolutions are sought or studied (an integer solution is a 

solution such that all the unknowns take integer values). 

Definition 2.2[1]:The square-free, or quadrate free integer, is an integer which is divisible by no 

other perfect square than 1. For example, 10 is square-free but 18 is not, as 18 is divisible by 9 =32.  

Definition 2.3[6]: The quadratic Diophantine equation of the form  𝑥2 − 𝑑𝑦2 = ±1is called a 

Pell's equation where d is a positive square free integer. In this paperthe Pell equation of the form 

𝑥2 − 𝑑𝑦2 = 1 was discussed.  

Example 2.4: 

i. 𝑥2 − 8𝑦2 = 1  

ii. 𝑥2 − 13𝑦2 = 1 

iii. 𝑥2 − 13 = −1 

The solutions for equations (i), (ii) are given by(𝑥, 𝑦) = (3,1), (𝑥, 𝑦) = (649,180) 

respectively,while equation (iii) does not have any solution; it is not solvable [6].  

Definition 2.5[6]: The expression of the form 

a0 +
1

a1 +
1

a2 +
1

a3 +
1

. +
1

. +
1

. + ⋯

 

wherea𝑖′s are integers, is called the continued fraction expressionto any real number denoted by the 

notation [𝑎0;  𝑎1, 𝑎2, 𝑎3, 𝑎4, … , 2a0, a1, a2, a3, a4, … , 2a0, a1, a2, a3, a4, …̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ] .This expression will be 

used to find the fundamental solution (𝑥1, 𝑦1)for√𝑑 in Eq. (3). 

The following remark has beenexplained shortly thecontinued fraction method [2] for finding the 

non-trivial fundamental natural solution(𝑥1, 𝑦1) toEq. (3). 

Remark 2.6: For √𝑑inEq. (3) assume that𝛼0 = √𝑑 , 𝑎0 = ⌊𝛼0⌋ . In general, 

𝛼𝑘 = 𝑎𝑘 +
1

𝛼𝑘+1
,  𝑎𝑘 = ⌊𝛼𝑘⌋  For 𝑘 = 0,1,2,3, … 

We obtain√𝑑 = [𝑎0;  𝑎1, 𝑎2, 𝑎3, 𝑎4, … , 2a0, a1, a2, a3, a4, … , 2a0, a1, a2, a3, a4, …̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ] 

 

https://en.wikipedia.org/wiki/Polynomial_equation
https://en.wikipedia.org/wiki/Equation
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Divisor
https://en.wikipedia.org/wiki/Square_number
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For finding(𝑥1, 𝑦1), only the numbers [𝑎0;  𝑎1, 𝑎2, 𝑎3, 𝑎4, … ] will be used such that 

√𝑑 = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
1

. +
1

. +
1

. +1

=
𝑥1

𝑦1
 

Example 2.7: The continued fraction expression for 

√7 = 2 +
1

1 +
1

1 +
1
1

=
8

3
=

𝑥1

𝑦1
 

where, √7 = [𝑎0;  𝑎1, 𝑎2, … , 2a0, a1, a2, … , 2a0, a1, a2, …̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] = [2; 1,1,1,4,2,1,1,1,4, … ] 

Remark 2.8:A continued fraction is purely periodic with period 𝑚 if the initial block of partial 

quotients  𝑎0, 𝑎1, … , 𝑎𝑚−1 repeats infinitely and no block for length less than 𝑚 is repeated, and it 

is periodic with period 𝑚 if it consists of an initial block of length n followed by a repeating block 

of length 𝑚.Purely periodic continued fraction→ [a0; a1, … , am−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]. Periodic continued fraction →

[a0; a1, … , at−1, at; at+1, … , at+m−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] 

the length of the period was denoted by 𝑡 . 

Theorem 2.9[6]: If (𝑎, 𝑏)is a solution to  𝑥2 − 𝑑𝑦2  =  1 where  𝑎 >  1and 𝑏 ≥  1, then(𝑥, 𝑦)is 

also a solution such that   

𝑥 + 𝑦√𝑑 = (𝑎 + 𝑏√𝑑)
𝑗
 

for 𝑗 =  1, 2, 3, 4,…,.Similarly, If (𝑐, 𝑘)is a solution to  𝑥2 − 𝑑𝑦2  = − 1 where  𝑐 >  1and 𝑘 ≥

 1, then (𝑥, 𝑦)is also a solution such that   

𝑥 + 𝑦√𝑑 = (𝑐 + 𝑘√𝑑)
𝑗
 

for𝑗 =  1, 3, 5,7, … .      

Theorem 2.10[6]: The equation   𝑥2 −  dy2 =  1  is always solvable and the fundamentalsolution is 

(𝐴𝑘 , 𝐵𝑘 ) where 𝑘 =  𝑡 or 2𝑡  and 𝐴𝑘/𝐵𝐾 is a convergent to√𝑑 . The equation 𝑥2 −  dy2 =  1  is 

solvable if and only if the period length of the continued expansion of √𝑑 is odd. The fundamental 

solution is (𝐴𝑘 , 𝐵𝑘 )  where 𝑘 =  𝑡or𝑡 + 1 .  

3. The main result  

In this section, theorem (3.11) has been proved that 𝑢 in Eq. (1) is a square natural number for 

somepairs(𝑚, 𝑛) ∈ 𝑁, so 𝑢 ∈ {12, 22, 32, 42, 52, 62, … }. We give a new relation in Eq. (13)to find 

all natural solutions forEq.(2)then all natural pairs (𝑚, 𝑛) in theorem (3.11)toEq.(1). 
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Theorem 3.11 [1]:  A number 𝑢 =
𝑚2+𝑛2

1+𝑚𝑛
  is a square of some natural numbers? 

Proof:  Let us use indirect way to prove this statement. Supposethat there are some pairs(𝑚, 𝑛) of 

natural numbers such that (
𝑚2+𝑛2

1+𝑚𝑛
) is a natural numberbut not a square. If  𝑚 = 𝑛,  then we have  

𝑚2 + 𝑛2

1 + 𝑚𝑛
=

2𝑚2

1 + 𝑚2
< 2 

But the only natural number less than 2 equals 1, and 1 is a square. foreach pair (𝑚, 𝑛) such 

that𝑚 ≠ 𝑛  we take 𝑠 = max{𝑚, 𝑛}. 

Let 𝑋represents the set of all numbers 𝑠 ∈ 𝑁 obtained using this way. This set is nonempty because 

there are some pairs (𝑚, 𝑛)  as we supposed. By Minimum Principle Theorem, we have 𝑠0 =

max{𝑚0, 𝑛0}represents the smallest element belongs to 𝑋. Therefore, 

𝑚0
2 + 𝑛0

2

1 + 𝑚0𝑛0
= 𝑢0                                                                  (4) 

is a natural number which is not square. It can be proved that  𝑚0 < 𝑛0or  𝑚0 > 𝑛0, here we 

take 𝑚0 < 𝑛0. The equality in Eq. (4) shows that 𝑛0 is a root of the quadratic equation  

𝑛0
2 − 𝑢0𝑚0𝑛0 + 𝑚0

2 − 𝑢0 = 0, this is the same   𝑥2 − 𝑢0𝑚0𝑥 + 𝑚0
2 − 𝑢0 = 0. 

Let us denote by 𝑛1 to the second root of this equation. Then using Viete's formula,  𝑛1 + 𝑛0 =

𝑢0𝑚0, from which𝑛1 is an integerand  𝑛0𝑛1 = 𝑚0
2 − 𝑢0.As result, we have  

𝑛1 =
𝑚0

2 − 𝑢0

𝑛0
<

𝑛0
2 − 𝑢0

𝑛0
< 𝑛0. 

It follows thatmax{𝑚0, 𝑛1} < max{𝑚0, 𝑛0} = 𝑠0. Moreover, 

𝑚0
2 + 𝑛1

2

 1 + 𝑚0𝑛1
= 𝑢0                                                                   (5) 

and𝑛1 ∉ 𝑍  which  give 𝑛1 ∈ 𝑁and this is contradiction. Because if 𝑛1 < 0 then the denominator of 

the fraction inEq. (5) would be negative and this would give the negativeness of𝑢0 and, if 𝑛1 = 0  

then we would have 0 = 𝑛0𝑛1 = 𝑚0
2 − 𝑢0, and 𝑢0 would be a square.This contradiction shows that  

                                                     𝑢 =
𝑚2 + 𝑛2

1 + 𝑚𝑛
                                                                              (6) 

is a square number.   

Note thatEq. (6) is the same asEq. (1). In this paper the following cases for Eq. (6)have been 

discussedwhen 𝑢 = 12, 22, 32and similarly, can be done for 𝑢 = 42, 52, 62, … .  

Case1: If 𝑢 = 12, thenEq. (6)is 

12 =
𝑚2 + 𝑛2

1 + 𝑚𝑛
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1 + 𝑚𝑛 = 𝑚2 + 𝑛2 ⇒   𝑚2 − 𝑚𝑛 + 𝑛2 = 1  

 By multiplying both sides by4, gives4𝑚2 − 4𝑚𝑛 + 4𝑛2 = 4 

Add and subtract 𝑛2,yields4𝑚2 − 4𝑚𝑛 + 4𝑛2 − 𝑛2 + 𝑛2 = 4 

4𝑚2 − 4𝑚𝑛 + 𝑛2 + 3𝑛2 = 4 

(2𝑚 − 𝑛)2 + 3𝑛2 = 4                                                                (7) 

It follows that Eq. (7)is a Diophantine equationand(𝑚, 𝑛) ∈ 𝑁. 

Since 3𝑛2 < 4, then   𝑛 = 1andEq. (7) is 

(2𝑚 − 𝑛)2 + 3 = 4⇒(2𝑚 − 1)2 = 1⇒    2𝑚 = ∓1 + 1, 

hence𝑚 = 1, (𝑚 = 0 neglected as𝑚 ∈ 𝑁 ). So the natural solution toEq. (6) when 𝑢 = 12 is only 

the pair (𝑚, 𝑛) = (1,1).  

Case2: If 𝑢 = 22 in Eq. (6), then 

22 =
𝑚2 + 𝑛2

1 + 𝑚𝑛
 

4 + 4𝑚𝑛 = 𝑚2 + 𝑛2 ⇒  𝑚2 − 4𝑚𝑛 + 𝑛2 = 4                                      

Add and subtract 4𝑛2,then 

𝑚2 − 4𝑚𝑛 + 4𝑛2 − 4𝑛2 + 𝑛2 = 4⇒(𝑚 − 2𝑛)2 − 3𝑛2 = 4 

This equation has infinitely many solutions (𝑠𝑟 , 𝑡𝑟), 𝑟 = 1,2,3, …that is, 

for𝑟 = 1,2,3, …  we have,   𝑚 − 2𝑛 = 𝑠𝑟 , 𝑎𝑛𝑑   𝑛 = 𝑡𝑟 then 

𝑠𝑟
2 − 3𝑡𝑟

2 = 4                                                                               (8) 

Equation (8) is ahyperbola equation.  

Case3: If 𝑢 = 32 in Eq. (6), thus 

32 =
𝑚2 + 𝑛2

1 + 𝑚𝑛
 

9 + 9𝑚𝑛 = 𝑚2 + 𝑛2   ⇒ 𝑚2 − 9𝑚𝑛 + 𝑛2 = 9 

By multiplying both sides by  4 , then  4𝑚2 − 36𝑚𝑛 + 4𝑛2 = 36 Add and subtract  81𝑛2 , 

gives4𝑚2 − 36𝑚𝑛 + 4𝑛2 + 81𝑛2 − 81𝑛2 = 36 

(2𝑚)2 − 2(2𝑚)(9𝑛) + 81𝑛2 − 77𝑛2=36 

(2𝑚 − 9𝑛)2 − 77𝑛2 = 36 

Then for 𝑟 = 1,2,3, …  we obtain,2𝑚 − 9𝑛 = 𝑠𝑟 , 𝑛 = 𝑡𝑟  such that 

𝑠𝑟
2 − 77𝑡𝑟

2 = 36                                                                       (9) 

Hence Eq. (9) is ahyperbola equation.  
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In order to find all pairs(𝑚, 𝑛) ∈ 𝑁 suchthat 𝑢 = 22, 32in Eq. (6), we have to solve Eq. (8), Eq. (9) 

in Case2, Case3 respectively which are hyperbolic equations having the same form of Eq. (2).Also 

Eq. (6) for 𝑢 = 42, 52, 62, … has the same form of Eq. (2). That is, we need to solveEq. (2).  

3.1Finding of the new relation 

In the following steps, we give a new relation that will be used to find all natural 

solutions(𝑠𝑟 , 𝑡𝑟), 𝑟 = 1,2,3, …forEq. (2). 

Step1: We are looking for a natural solution to(𝑥, 𝑦) = (𝑠1 , 𝑡1)toEq. (2). 

Solving the equation𝑥2 − 𝑑𝑦2 = 𝑐2⇒𝑥2 = 𝑐2 + 𝑑𝑦2   ⇒   𝑥 = ∓√𝑐2 + 𝑑𝑦2. 

The required natural solution is,𝑥 = √𝑐2 + 𝑑𝑦2                                                            (10) 

From Eq. (10) the pair(𝑥, 𝑦) = (𝑠1 , 𝑡1)such that𝛾 = 𝑠1 + √𝑑𝑡1  ,   𝛿 = 𝑠1 − √𝑑𝑡1 

𝛾𝛿 = (𝑠1 + √𝑑𝑡1)(𝑠1 − √𝑑𝑡1) = 𝑠1
2 − 𝑑𝑡1

2 = 𝑐2 

𝛾 + 𝛿 = (𝑠1 + √𝑑𝑡1) + (𝑠1 − √𝑑𝑡1) = 2𝑠1 

By this step we have been found one natural solution (𝑠1 , 𝑡1)  to Eq. (.2) such that  

𝛾 = 𝑠1 + √𝑑𝑡1 

Step2: In general, assume that all natural solutions of Eq. (2) are (𝑥, 𝑦) = (𝑠𝑟 , 𝑡𝑟), 𝑟 = 1,2,3, … 

𝛾𝑟 = 𝑠𝑟 + √𝑑𝑡𝑟 , 𝛿𝑟 = 𝑠𝑟 − √𝑑𝑡𝑟 

𝛾𝑟 +  𝛿𝑟 = 𝑠𝑟 + √𝑑𝑡𝑟 + 𝑠𝑟 − √𝑑𝑡𝑟 = 2𝑠𝑟 

𝛾𝑟𝛿𝑟 = (𝑠𝑟 + √𝑑𝑡𝑟)(𝑠𝑟 − √𝑑𝑡𝑟) = 𝑠𝑟
2 − 𝑑𝑡𝑟

2 = 𝑐2 

Step3: Take the following Pell equation: 

 𝑥2 − 𝑑𝑦2 = 1                                                                 (11) 

Step4: Assume that (𝑥1 , 𝑦1) is the fundamental natural solution toEq. (11),whichhas been found by 

continued fraction expression for√𝑑 in remark(2.6) such that 

𝛼 = 𝑥1 + √𝑑𝑦1  ,   𝛽 = 𝑥1 − √𝑑𝑦1 

𝛼 𝛽 = (𝑥1 + √𝑑𝑦1)(𝑥1 − √𝑑𝑦1) = 𝑥1
2 − 𝑑𝑦1

2 = 1   

Hereby, we obtain the fundamental natural solution(𝑥1 , 𝑦1)for Eq. (11) such that 

𝛼 = 𝑥1 + √𝑑𝑦1 

Step5:All natural solutions(𝑥𝑟 , 𝑦𝑟), 𝑟 = 1,2,3,4, …for Eq. (11) will be given, as follows: We have 

in Step4 𝛼 = 𝑥1 + √𝑑𝑦1, using theorem (2.9)for 𝑟 = 1,2,3, … then 

        𝛼𝑟 = (𝑥1 + √𝑑𝑦1)𝑟                                                                  (12)is a natural solution forEq. (11) . 
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Step6: From the use of Step1and Step5, we have 𝛾 = 𝑠1 + √𝑑𝑡1, and  𝛼𝑖 = (𝑥1 +

√𝑑𝑦1)𝑖respectively.All natural solutions(𝑠𝑟 , 𝑡𝑟), 𝑟 = 1,2,3,4, … to Eq. (2) can be obtained from the 

following relation  

𝑠𝑟 + √𝑑𝑡𝑟 = 𝛾𝛼𝑖(13) 

where𝑖 = 0,1,2,3, … . Using these solutions to calculated the square number 𝑢 for   (𝑚, 𝑛) ∈ 𝑁 

inEq. (6). 

We have been applied the relation in Eq. (13)to the previous cases:  

In Case2 we will solveEq. (8) by using Eq. (13)as follows:  

By Step1𝑥2 − 3𝑦2 = 4⇒𝑥 = √𝑐2 + 𝑑𝑦2.Here 𝑐2 = 4, 𝑑 = 3, therefore, let 𝑦 = 2  ⇒   𝑥 =

4,resulting(𝑠1 , 𝑡1) = (4,2) such thatγ = 4 + 2√3. 

By Step3 the Pell equation 𝑥2 − 3𝑦2 = 1                                                                              (14) 

By Step4 we use the continued fraction expression of  √3for Eq. (14) to find(𝑥1 , 𝑦1):Assume that    

𝛼0 = √𝑑 = √3 = 1.7  𝑎𝑛𝑑   𝑎0 = ⌊1.7⌋ = 1 

𝛼0 = 𝑎0 +
1

𝛼1
  ⇒   √3 = 1 +

1

𝛼1
  ⇒   𝛼1 =

1

√3 − 1
 

𝛼1 =
1

√3 − 1
∗

√3 + 1

√3 + 1
=

√3 + 1

2
   ⇒ 𝑎1 = ⌊1.3⌋ = 1 

𝛼1 = 𝑎1 +
1

𝛼2
  ⇒   

√3 + 1

2
= 1 +

1

𝛼2
 

𝛼2 =
2

√3 − 1
∗

√3 + 1

√3 + 1
=

2(√3 + 1)

2
= √3 + 1  ⇒   𝑎2 = ⌊2.7⌋ = 2 

𝛼2 = 𝑎2 +
1

𝛼3
  ⇒   √3 + 1 = 2 +

1

𝛼3
 

𝛼3 =
1

√3 − 1
=

√3 + 1

2
= 𝛼1   ⇒ 𝑎3 = ⌊1.3⌋ = 1 

𝛼3 = 𝑎3 +
1

𝛼4
⇒   

√3 + 1

2
= 1 +

1

𝛼4
 

𝛼4 =
2(√3 + 1)

2
= √3 + 1 = 𝛼2   ⇒ 𝑎4 = ⌊2.7⌋ = 2 

And so on then:1 = 𝑎1 = 𝑎3 = 𝑎5 = 𝑎7 = ⋯ , 2= 𝑎2 = 𝑎4 = 𝑎6 = ⋯  .Hence 

√3 = [1; 1,2,1,2, … ]. The continued fraction expression for 

√3 = 1 +
1

1
=

2

1
=

𝑥1

𝑦1
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That is, (𝑥1, 𝑦1) = (2,1)   ⇒   α = 2 + √3. 

ByStep6using Eq. (13) gives 𝛾𝛼𝑖 = 𝑠𝑟 + √3𝑡𝑟where  𝑖 = 0,1,2,3, …,and  𝑟 = 1,2,3, … 

𝛾𝛼𝑖 = (4 + 2√3)(2 + √3)
𝑖

= 𝑠𝑟 + √3𝑡𝑟 

For 𝑖 = 0, 𝑟 = 1⇒𝛾𝛼0 = (4 + 2√3)(2 + √3)
0
=𝑠1 + √3𝑡1 

4 + 2√3 = 𝑠1 + 𝑡1√3 ⇒   (𝑠1, 𝑡1) = (4,2) 

For 𝑖 = 1,  𝑟 = 2 ⇒𝛾𝛼1 = (4 + 2√3)(2 + √3)
1
=𝑠2 + √3𝑡2 

           = 14 + 8√3 = 𝑠2 + 𝑡2√3 ⇒   (𝑠2, 𝑡2) = (14,8) 

For𝑖 = 2, 𝑟 = 3  ⇒𝛾𝛼2 = (4 + 2√3)(2 + √3)
2

= 𝑠2 + √3𝑡2 

𝛾𝛼2 = (4 + 2√3)(7 + 4√3) = 𝑠3 + √3𝑡3 

= 52 + 30√3 = 𝑠3 + 𝑡3√3 ⇒   (𝑠3, 𝑡3) = (52,30). 

And so on for  𝑖 = 3,4,5,6, …and 𝑟 = 4,5,6, …wewill get the rest of all natural solutions(𝑠𝑟 , 𝑡𝑟),  for 

Eq. (8). By using these solutions, all natural pairs(𝑚, 𝑛) to Eq. (6) such that 𝑢 = 22will be obtained 

as follows: 

From previous supposed we have, 𝑚 − 2𝑛 = 𝑠𝑟 , 𝑛 = 𝑡𝑟 ,  where 𝑟 = 1,2,3, …, that is, 

For 𝑟 = 1, (𝑠1, 𝑡1) = (4,2) ⇒  (𝑚, 𝑛) = (8, 2)  ⇒  𝑢 =
𝑚2+𝑛2

1+𝑚𝑛
=

68

17
= 22  

For 𝑟 = 2, (𝑠2, 𝑡2) = (14,8)  ⇒ (𝑚, 𝑛) = (30, 8)  ⇒  𝑢 =
𝑚2+𝑛2

1+𝑚𝑛
=

964

241
= 22 

For 𝑟 = 3, (𝑠3, 𝑡3) = (52,30) ⇒ (𝑚, 𝑛) = (112,30) ⇒  𝑢 =
𝑚2+𝑛2

1+𝑚𝑛
=

13444

3361
= 22 

And so on for  𝑖 = 3,4,5, … , 𝑟 = 4,5,6, …  giving all the other natural pairs(𝑚, 𝑛)for Eq. (6) such 

that  𝑢 = 22. 

In Case3we solve Eq. (9) by using Eq. (13)then: 

By Step1𝑥2 − 77𝑦2 = 36⇒𝑥 = √𝑐2 + 𝑑𝑦2 .Since  𝑐2 = 36, 𝑑 = 77.                      Let 𝑦 =

3  𝑡ℎ𝑒𝑛  𝑥 = 27 ,we get(𝑠2 , 𝑡2) = (27,3) such thatγ = 27 + 3√77.  

By Step3 the Pell equation 𝑥2 − 77𝑦2 = 1                                                                             (15) 

By Step4we use the continued fraction expression of  √3for Eq. (15) to find(𝑥1 , 𝑦1): Assume that          

𝛼0 = √𝑑 = √77 = 8.77  ⇒ 𝑎0 = ⌊8.77⌋ = 8 

𝛼0 = 𝑎0 +
1

𝛼1
  ⇒   √77 = 1 +

1

𝛼1
  ⇒   𝛼1 =

1

√77 − 8
 

𝛼1 =
1

√77 − 8
∗

√77 + 8

√77 + 8
=

√77 + 8

13
  ⇒  𝑎1 = ⌊1.29⌋ = 1 
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𝛼1 = 𝑎1 +
1

𝛼2
⇒   

√77 + 8

13
= 1 +

1

𝛼2
⇒

1

𝛼2
=

√77 + 8

13
− 1 =

√77 − 5

13
 

𝛼2 =
13

√77 − 5
∗

√77 + 5

√77 + 5
=

√77 + 5

4
= 3.44 ⇒  𝑎2 = ⌊3.44⌋ = 3 

𝛼2 = 𝑎2 +
1

𝛼3
  ⇒   

√77 + 5

4
= 3 +

1

𝛼3
⇒

1

𝛼3
=

√77 + 5

4
− 3 =

√77 − 7

4
 

𝛼3 =
4

√77 − 7
∗

√77 + 7

√77 + 7
=

√77 + 7

7
= 2.25  ⇒   𝑎3 = ⌊2.25⌋ = 2 

𝛼3 = 𝑎3 +
1

𝛼4
⇒

√77 + 7

7
= 2 +

1

𝛼4
⇒

1

𝛼4
=

√77 + 7

7
− 2 =

√77 − 7

7
 

𝛼4 =
7

√77 − 7
∗

√77 + 7

√77 + 7
=

√77 + 7

4
= 3.9 ⇒  𝑎4 = ⌊3.9⌋ = 3 

𝛼4 = 𝑎4 +
1

𝛼5
⇒

√77 + 7

4
= 3 +

1

𝛼5
⇒

1

𝛼5
=

√77 + 7

4
− 3 =

√77 − 5

4
 

𝛼5 =
4

√77 − 5
∗

√77 + 5

√77 + 5
=

√77 + 5

13
= 1.05  ⇒   𝑎5 = ⌊1.05⌋ = 1 

𝛼5 = 𝑎5 +
1

𝛼6
 ⇒

√77 + 5

13
= 1 +

1

𝛼6
⇒

1

𝛼6
=

√77 + 7

13
− 1 =

√77 − 7

13
 

𝛼6 =
13

√77 − 7
∗

√77 + 7

√77 + 7
= √77 + 8 = 16.77  ⇒   𝑎6 = ⌊16.77⌋ = 16 

𝛼6 = 𝑎6 +
1

𝛼7
 ⇒  √77 + 8 = 16 +

1

𝛼7
 ⇒  

1

𝛼7
= √77 − 8 

𝛼7 =
1

√77 − 8
∗

√77 + 8

√77 + 8
=

√77 + 8 

13
   ⇒  𝑎7 = ⌊1.29⌋ = 1 = 𝑎1 

𝛼7 = 𝑎7 +
1

𝛼8
  ⇒

√77 + 8

13
= 1 +

1

𝛼8
⇒

1

𝛼8
=

√77 + 8

13
− 1 =

√77 − 5

13
 

𝛼8 =
13

√77 − 5
∗

√77 + 5

√77 + 5
=

√77 + 5

4
    ⇒   𝑎8 = ⌊3.44⌋ = 3 = 𝑎2 

And so on then     𝑎9 = 𝑎3 = 2 ,  𝑎10 = 𝑎4 = 3, 𝑎11 = 𝑎5 = 1 , …, that is, 

√77 = [8; 1,3,2,3,1,16,1,3,2,3,1,16, … ]. The continued fraction expression for 
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√77 = 8 +
1

1 +
1

3 +
1

2 +
1

3 +
1
1

= 8 +
1

1 +
1

3 +
1

2 +
1
4

= 8 +
1

1 +
1

3 +
1
9
4

= 8 +
1

1 +
1

31
9

= 8 +
31

40

=
351

40
=

𝑥1

𝑦1
 

Thus(𝑥1, 𝑦1) = (351,40)  ⇒ α = 351 + 40√77 

ByStep6using Eq. (13) gives𝑠𝑟 + √77𝑡𝑟 =  𝛾𝛼𝑖where  𝑖 = 0,1,2,3, …,and  𝑟 = 1,2,3, … 

𝛾𝛼𝑖 = (27 + 3√77)(351 + 40√77)
𝑖

= 𝑠𝑟 + √77𝑡𝑟 

If 𝑖 = 0, 𝑟 = 1  ⇒𝛾𝛼0 = (27 + 3√77)(351 + 40√77)
0

= 𝑠𝑟 + √77𝑡𝑟 

27 + 3√77 = 𝑠1 + 𝑡1√77 ⇒   (𝑠1, 𝑡1) = (27,3) 

If 𝑖 = 1,  𝑟 = 1⇒𝛾𝛼1 = (27 + 3√77)(351 + 40√77)
1

= 𝑠𝑟 + √77𝑡𝑟 

          = 18717 + 2133√77 = 𝑠2 + 𝑡2√77 ⇒ (𝑠2, 𝑡2) = (18717,2133) 

If 𝑖 = 2, 𝑟 = 3⇒𝛾𝛼2 = (27 + 3√77)(351 + 40√77)
2

= 𝑠𝑟 + √77𝑡𝑟 

= 887202 + 101106√77 = 𝑠3 + 𝑡3√3   ⇒   (𝑠3, 𝑡3) = (887202,101106).  

And so on for  𝑖 = 3,4,5,6, …and 𝑟 = 4,5,6, …we will get the rest of all natural solutions(𝑠𝑟 , 𝑡𝑟),  for 

Eq. (9).By using these solutions, all natural pairs (𝑚, 𝑛) to Eq. (6) such that 𝑢 = 32will be obtained 

as follows: 

As we supposed that,  2𝑚 − 9𝑛 = 𝑠𝑟 , 𝑛 = 𝑡𝑟 , where 𝑟 = 1,2,3, …, gives, 

For𝑟 = 1, (𝑠1, 𝑡1) = (27,3) ⇒ (𝑚, 𝑛) = (27,3 ) ⇒  𝑢 =
𝑚2+𝑛2

1+𝑚𝑛
=

738

82
= 9 

For𝑟 = 2, (𝑠2, 𝑡2) = (14,8)  ⇒ (𝑚, 𝑛) = (18975,2133 ) ⇒  𝑢 =
𝑚2+𝑛2

1+𝑚𝑛
=

363917538

40435288
= 9 

For 𝑟 = 3, (𝑠3, 𝑡3) = (52,30)   ⇒  (𝑚, 𝑛) = (13307787,1497363)  ⇒  𝑢 =
𝑚2+𝑛2

1+𝑚𝑛
=

179339290791138

19926587865682
= 9. 

And so on for  𝑖 = 3,4,5, … , 𝑟 = 4,5,6, … giving all the other natural pairs(𝑚, 𝑛)for Eq. (6) such 

that𝑢 = 32. 

Conclusion: We give a new relation (13) between any natural solutions to the hyperopia Eq. (2) and 

the Pell equationEq. (3). By using this relation we have been found all natural solutions to Eq. (2) 

then these solutions have been used to find all natural pairs (𝑚, 𝑛)such that𝑢 is a natural square 

number in Eq. (1).The Diophantine Eq. (1) has been discussedwhen𝑢 = 12, 22, 32 similarly for𝑢 =

42, 52, 62, … 
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