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Abstarct

The Modified Newton method (MNM) is applied to obtain the approximate
solution to the system of nonlinear Volterra type integral equation with the
trigonometric kernel function. Modified Newton method (MNM) is used to linearized
the system then solved by the Nystrom type Gauss-Legendre quadrature formula
(QF). A new majorant function is stated which leads to the increment of convergence
interval. The existence and uniqueness of approximate solution are proved. Sufficient
condition for the approximate solution is established and their validity is illustrated

with example.
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1. Introduction
Consider the nonlinear operator
Y(x) =0,

(1)
where Y is a differentiable operator from an open set Q in a Banach space A to a
Banach space B. The MNM assures the semi local convergence of the solution of Eqg.
(1). This method has many theoretical and practical applications and one of these
applications is on the system of nonlinear integral equations. For instance, Argyros
and Hilout [1] used Lipschitz and centre Lipschitz conditions with recurrent functions
to provide a semilocal convergence analysis for Newton’s method in order to
approximate a local unique solution of an equation in a Banach space. Ezquerro et al.
[2] discussed a semilocal convergence of Kantorovich method in Banach space, and
solved the two Hammerstein integral equations of the second kind by the MNM.
Ezquerro et al. [3] used the majorant principle, which is based on the concept of
majorizing sequence given by Kantorovich to find the approximate solution of a
particular nonlinear integral equation. Eshkuvatov et al. [4] developed the Newton-
Kantorovich method to solve the system of nonlinear integral equations and proved
the existence and uniqueness of the solution. Hameed et al. [5] proposed a new
majorant function for the Newton- Kantorovich method to solve the system of
nonlinear Volterra integral equations with the unknown function in logarithmic form.
Saeri-nadjafi and Heidari [8] presented a combination of the MNM and quadrature
method to solve the nonlinear integral equation of th Urysohn form in a systematic
procedure. Shena and Li [9] established Kantorovich- type convergence criterion for
inexact Newton methods which includes the well-known Kantorovich’s theorem as a
special case.

Consider the system of nonlinear Volterra integral equation of the form
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£~ [ @ o)sin(£1) =a(t),
H(t)

EM) - | @, 7)sin(&() = A,

u(t)

(2)

where teft,, T], 0<ty<t<T and sin(&(t)) is nonlinear continuous differentiable

function on [t,T] and the known functions a(t),ﬂ(t)eC[tOVT] and

o (t,7),a,(t,7) € C[tO,T]x[tO,T]' The unknown functions &(t) e C ;; and u(t) e Cy o, are

to be determined.

The structure of this paper is as follows: In Section 2, we described the MNM. In
Section 3, the system of algebraic linear Volterra integral equation using Nystrom
Gauss-Legendre QF is described. Section 4 discusses the rate of convergence of the
approximate solution of the system (2). An example is provided in Section 5 to show
the accuracy and efficiency of the method. Finally, Section 6 concludes the main
ideas of the approximate method.

2. Modified Newton method for integral operator

To find the unknown functions &(t) and w(t) in Eq.(1) we use the notations

Y,(x) =40~ [ ey(t7)sin(£()-ea(t) =0,
u(t)

t

Y, (2)=¢0)- [ o, 0)sin(£()- A1) =0,

H(t)

©)
where y =(&(t), u(t)) , teft, T] and 0<ty<t<T, then the system (3) can be
written in operator equation
Y(Z):(Yl(l)'Yz(Z))ZO'
)

Write the initial approximation as
Y’(ZO)(Z_ZO)_'_Y(ZO) =0, % = (§o(t):ﬂo(t)) '

()
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where y, refers to the initial condition and &(t), z,(t) can be any continuous

functions provided that 4, (t) <tand & (t) #0 for t [t), T]. The Frechet derivative

of Y (x)at the point y, is defined as [7]

ol an e
aé: 01 Ho a’u 01 Ho
Y'(Zo),'(: aY (f ) aY (": )
5_5@0‘#0) a<afo,ﬂo) H
(6)
Egs. (5) and (6) yield
oY oY
— AS(t))+—+ Au(t)) ==Y, (&), 1)),
aé: (fo:ﬂo)( ) a‘u (501#0)( ) ( )
oY oY
—= AS(t))+—+ Au(t)) ==Y, (S 1), 14 (1)),
aét (§0vl‘0)( ) aﬂ (fml‘ﬂ)( ) ( )
(7

where AE() =& (1) -& ) . Au)=24(t)—14(t) and (& (1), (1)) is the initial
guess. To solve Eq. (7) with respect to A& and Ax we need to compute all the partial
derivatives

aY‘1 :|im£(Yl(§0+p§,,u0)_Yl(§O’lu0))

t

= Ipigg%{pé(t)— | @) (sin(&(0) + pE(2))-sin(&,(2)))d=
Ho (1)

=&~ | oytr)cos(&(r))E(@)dr,

Ho (1)

(8)

a1, =Iiml(Y1(§oqu+Pﬂ)_Y1(§0H”0))

Ho (D) +pu(t)
—Iim—{ j o, (t,7)sin(&(7) e

Ho (1)

= o (t, 245 (1)) SN (& (14 (1)) (1),
(9)
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and with the same procedure we get

t

oY, = £(t)+ I w,(t,7)sin(& (7)) E(r) dr,
0% |2y 1) )
(10)
% = — 0, (t, 1 (1)) SiN (& (1o () ().
ﬂ (‘fo'//o)
(11)

By substituting Eqgs (8) —(11) into Eq (7) we arrive at

AZ(D) - j (8, 7) c08(5o (7)) AS (1) A + (1, 245 (1)) SIN(S, (245 (1)) A (t)

Ho (1)

= | oy (t.7)sin(u(2)) dr - sy (1) + (V)
4o (1)

AS()+ I @, (t,7) €0S(&, (7)) A (1) d7 — 0, (8, 145 (1)) SIN(S, (145 (1)) Ape(t)

Ho(t)

== [ o (t,7)sin(u,(0)) dr— 11y (1) + B(D).

Ho(t)

(12)
Since EQ.(12) is a linear Volterra integral equations, it can easily be solved in term of
A&(t)and Au(t) as

AEW) - | @(t,7)cos(& (7)) AE()dT = gy (1),
Ho (1)

M) =5 360+ | oxto)cos(5(0)az0ds

t

+ [ oto)sin(& @) dr+&0)-BW) |,

Ho (1)

(13)

where
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@ (1) = .t[ w(t,r)sin(go(t))df_go(t)+¢(t)ﬂ(t)+ a(t)

() 1+g(t) t+g(t)’
(14)
a0,
oty - 20020
(15)
_ (L, 14, (1))
0= )
(16)
V(t) = o (t, 1 () sin(& (1))
)

By continuing this process, a sequence of approximate solution (&, (t), «,(t)) can be
evaluated from the equation
Y’(}(O)AZm +Y(;(m_l):O, m=12,...

which is equivalent to the system

t

AE ()~ | @(t7)cos(& ()AL, (DdT =g, 4 (0),

o (1)
Aty () =% A§m<t>+%j(t)w2(t,r) c0s(&, () AL, (Dde

+ | oto)sin(&,,(@)dr+&, 0 -B1) |

Hm- (t)

(18)
where
Agm (t) = ém (t) - gm—l(t)’ A:um (t) = Hy (t) ~Hna (t)! m= 2’ 3’ —ee
(19)
and

K | ) sOLW) , o)
(Pm_l(t)—ﬂmjl(t)w(t,f)sln(fm-l(t))df Ena(D)+ 1+¢(1) +t+¢(t)'

Solving Eq.(18) for A&, (t) and Az, (t) we obtain a sequence of approximate

solution (&, (t), 1, (1))
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3. Gauss-Legendre Quadrature Method

For the approximate solution of the linear system (18) we introduce a grid points
T-t,

Q ={ti 't =t,+h , i=2,3,...,n} where n refer to the number of partitions in

[t,,T]. Then from the system (18) we obtain

5

MG () - | @(t,7)cos(& ()AL, (t)dr =0, 4 (),

Ho ()

Aum(ti)=i{A§m(ti)+ [ @t 7)cos(&,(0)) AL, (D)dr

V(ti ) 4o ()
19

+ | o, 7)sin(&, () de+ &L (1) - BE) |,

Hna ()

(20)

and

t.
' : pt)AE) at)
Pna(t) = a(t,7)sin(&,,t))dr &, )+ =+ I
' ,um-!.(ti) ( ' ) ' 1+4(t) t+o(t)
It is well known that one of the powerful technique to approximate the integrals in the

system (20) is Gauss-Legendre QF. We know that the Legendre polynomials P, (t)

are orthogonal on [—1,1] with weight w=1. Therefore Gauss-Legendre QF [6, pp.
318]

jf(x)dx:ieif(si)mi(f)

(21)
where

0 = 2 5, 2.0=2,P(s)=0i=12...,n,

(-st) P)]

S, is a root of Legendre polynomial P,(t) with the error term

B 22n+1(n!)4 o B
R”(f)_(2n+1)[(2n)!]3f ), -1<¢ <1,

The Gauss- Legendre QF formula for arbitrary interval [a,b] has the form

8
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jf(x)dx_—ZQf(t)m(f)

(22)

where the nods t, =[b;2ajsi +(bL2aj. Now, let us introduce a subgrid {€,} at

each subinterval [y, (t).t;] and [y, (t).t] of the interval [t,,T], such that
1. for the interval [y, (ti),ti] we chose the grid points as

z.J' YO(t) ti +y0(ti)
i — 2 J 2

,J=12,...,i=12,..,n
(23)
2. for the interval [ym_l(ti),ti] grid points are chosen as

fy =t _y;—l(ti)sj 4l +y;-1(ti), j=12,...5i=12,..,mm=12,.. (24)

where | is the number of points in each subinterval [y, (t),t;] and [y, (t).t] and s,
are the zeros of Legendre polynomial P,(X) over the interval [-11] and , #t;,
Tij(m—l) #t,. Extending Gauss-Legendre QF in Eq. (22) to the integral on each interval

[Vo(t).t;] and [y, (t).t;] in the system (20), we get
£ (1)~ IO S 0 )00 (& (1) | A ()6, = 04 (27)
m\%i 2 = i 1%i(0) o0\"i(0) m\%i(0)/¥]j m-1\%ij

Aty (£) = (K) 28, @)+ I Y 6,0 )00 ( &7l A ),

+ i y;_l (®) Z @, (7, Tij(m—l) )sin (§m71 (Tij(m—l) )) O+ Sy (7) - ﬂ(TiK):| )

i=12,...,nmx=12,....I:m=12, ...

(25)

where

65 =IO S e el )sin (el )y~ G+ D tf_‘;())}
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The first equation of the system (25) is a linear algebraic system of nxI| equations

and nxI unknowns. If the matrix of this system is non singular then it has a unique
solution in terms of Ax (), 1=12,...,n, k=12,...,1. The values of Ay_(z") can

be easily determined by computing the second equation of (25). From Eq. (19) it
follows that

Aém(z-ix):ém(rix)_gm—l(fix)’ A:um(z-i’():lum(TiK)_lum—l(TiK)’ m:2’3!"'

(26)

Since the values of the functions &, (7)) and g, (z") are known at | Legendre grid

points in each subintervals (y,(t).t;) and (y,,(t).t;) for each m, the values of

unknown functions &(t) and (t) can be found by using Newton forward

interpolation formula [2, pp. 110], i.e
) =R()=4, (Til )+én (Til , z'iH)(t - Til) +&, (TiI , Tilil' Z'iliz)(t - Z'il )(t— z'iH)

+ot (@ L )= (-1 (- 7),

(27)
O =R () = u, (Til )+ L, (Til , z'il_l)(t - z'il )+ L, (TiI ' Til_l' z'il_z)(t - z'il )(t— z'il_l)
SRR VA (R e A ) (S (St s B (S )}
(28)
with the error

Nl
(1+1)1

N2

|&,®)-R®)|<

where

N, = max {

o [ (S S WO ()
141 H Tl Tl ‘}' é/e(to’T)'
N, =max {[u (@]t =2)),.... =)}

4. Convergence analysis
Depending on the general theorems of modified Newton method [7, pp. 532] for
the convergence, we establish the following theorems with regard to the successive

approximations which are characterized by system (18).

10
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Consider the following classed of functions:

C,,, 11 the set of all continuous functions R(t) defined on the interval [t,,T],

Cprp,1p the set of all continuous functions S(t,z) defined on the region
[t,, TIx[t,, T1,
C ={x:x=(&), 1(©):&Q), () € G}

Cpory = {£(t) € Cp 1y 1 (1) <t}

In addition, define the following norms

Jél= max|£) . e =max{lacl, Iade b lele =maxiel el )

tefty, T]

e =mallEl, el | la@al=H el @ol=H L Jaol=H,

'
]

lof,@0l=H: . Ol=maOl=a . |40|=mexp0l=c .
(N I I B e - S
10| un|1+g0)] 2 min @ =H, o [&]=max|g®=H:

|| = mex [a(®)] = H,. 4] = max | 5t)] = Hs.

telty, T telty, T]
Let
= maX{Hl(T - Hs)l Hl’ H1’+ H1H3,v Hz(T - Hs)v Hz’ Hé + HzHé} .

(29)

Let us introduce the real valued function
(M) =(t-t,) +(e+0)(t-t,)+eo,

(30)
where ¢ and o are real coefficients.

Theorem 1 : Let the nonlinear operator P(y) =0 in Eq. (4) is defined in open set
®={;(eC([tO,T]):||;(—;(O||< R} and has continuous second derivative in closed set
0, ={;(eC([tO,T]):||;(—;(O||£ r} such that T =t,+r <t;+R. Assume the following

conditions are satisfied

L ror ()] <22 1o =[ 0 (2)]

11
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2- [T Y ()| < when |y — x| <t-t, <r,

c+o

then ¥(t) in Eq. (30) is a majorant function for the nonlinear operator P(y).

Proof: Rewrite Egs. (4) and (30) in the form
t=d(t), D(t) =t+c,(t),

(31)
2=S(0), S(x)=x-To(x),
(32)
where c, 1 1 . We need to show that Egs (31) and (32) satisfy the
Y'(t,) e+o

majorizing conditions [8, Theorem 1, pp. 525]. In deed

I8 ()l =l <22

= cI)(to)_to '

(33)
and since ||y — x,| <t—t,, with utilizing the remark in [8, pp. 504] we have

$'(2)-5' ()| < f[5"(2oz = [ Irr ()l

X0 X0

" _t 2 _ 2 Y N
sjcow (r)dr_tjogmdr_ g+6(t ty) = D"(t).

S'(x)|=

(34)
Therefore W(t) is a majorant function of Y(y).o

Theorem 2: Let the function a(t), g(t)eC, ;. &(t)€Cy  and the kernels

o, (t,7), o, (t,7) C[lto,T]x[to,T] and (50 (1), 24 (t)) €0y, the if

1- The system (5) has a unique solution in the interval [t,,T]; i.e., there exits I', and

S  (T—H,)"™
< 3 (e (Hy o)) TR
1 (i-1)!

2- |ay] <=,
E+o
3- Y”(Z)Hgﬂl,

12
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4- r <max{e+ty,0+1,},

where ¢ and o as in Eq. (30). Then the system (2) has a unique solution ;(* in the
closed ball ®, and the sequence g, (t)=(&,(t),1,(t)) , m>0 of successive

approximations

t

AS ()~ | @(t7)cos(& ()AL, (DdT =g, 4 (0),

o (1)
Aty () =% A§m<t)+%j(t)w2(t,r) c0s(&, () AL, (Dde

-

Hma (t)

o, (t,7)sin(&, (7)) dz+ &, 4 (1) —,B(t)},

where Agm (t) = ém (t) - gm—l(t)’ A:um (t) = Hn (t) ~Hna (t)’ m=23... , and Xm

converges to the solution ;(*. The rate of convergence is given by

HZ*—ZmHS[ 2¢ jg, if ¢the minimum zero of Eq. (30), or Hl*—ImHS[ 20 ja’
E+o p

if o the minimum zero of Eq. (30).

Proof: Since the first equation of the system (13) is a linear integral equation of the

second kind, so it has a unique solution in term of A&(t), provided that 1+ ¢(t) #0
and a(t, 14 (t)) 20 WVtelt,, T] and @(t,z) which is defined in Eg. (15) is a
continuous function, then Au(t) can be uniquely determined from the second
equation of (13). Hence the existence of I', is achieved. Now, to prove that I', is
bounded we need to find the resolvent kernel T'(t,7) of the first equation in system

(13). Consider the integral operator U from C[t,, T]—>CIt,, T] is given by

t

Z=U@Ap), Z0)= | r(t)AdR)dr,

Ho(t)

(39)
where y(t,7) =@ (t,7)coS(X,(7)) and @(t,7) is define in Eq. (15). According to Eq.

(35), the first equation in system (13) can be represented as

13
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AZ-U(Ad) =g, (1).
(36)

The solution of Eq. (36) is written in terms of ¢, by the formula

A& = @ +B(g),
(37)
where B is an integral operator and can be written as a series in powers of U [8,
Theorem 1, pp. 378]

B(g) =U () +U () ++--+U" (@) + -,
(38)
and it is famed that the powers of U are also integral operator. In deed

t

z,=U", Z,0)= [ 7""t.0)ALD)dr, (n=12..)

o (t)
(39)
where 7(") is the iterated kernel. Substituting Eq. (39) into (37) we get an expression
for the solution of Eq. (36)
o t
A =g+ | 7V (t) etz

171 46(0)
(40)
Next, we state that the series in Eq. (40) is convergent uniformly for all t €[t,,T].

Since

o (t.7)] , [#)e(t.7))
L+g@®)| | 1+g(t) |

¥(t,7)] =|@(t,7) cos(& (7)) <[&(t, 7)| <
<c,H, +cc,H,.

(41)

Let M =c,H, +c.c,H,, then by mathematical induction we obtain

M n(T — Hs)(nil)
(n=1)!

POt 7)| < j (U ¢, 7)fdu <

Ho (1)

,(n=12,...), then

M" (T — H3)(n71)
(n-1!

t
Smawx
tet,,
Lo ]#o(t)

Un

. Therefore the n root test of the

sequence implies

™ (t,7)fdu <

14
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1
1-=

oflu” SM 50,

n,(n -D! Nn—o
(42)
1 . .
As a result p=——===o00, and the first equation of the system (13) has no
limp/iu"

nN—o0
characteristic values. Since the series in Eq. (40) converges uniformly. Eq. (37) can be
expressed in term of resolvent kernel of the first equation of (13)

t

AE =g )+ [ Tot.Dpp()de,

Ho(t)

(43)
where
Lo(t.7) = 7 (t,7).
j=L
(44)
Since the series in Eq. (44) is convergent we obtain
e (T=Hy)™
Ir=lea) <3 s ey,
= (J-D!
(45)
To evaluate the validity of second condition, let us describe operator equation

1(x)=0,
(46)
as in Eq. (32) and it’s successive approximation is
X =S(1), n=012,...
(47)

For the initial condition y, we have

S(Zo):}(o _FOY(ZO)'

(48)
then from the first condition of (Theorem 1) we have
EO
r,Y =|S — =¥ — =|Ay| < .
P ()| =18 ()26 = = 2l = 2 = =22

15
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Moreover, we need to show that | Y"(x)| <7, for all ¥ €®, where 7, defined in Eqg.

(29). It is known that the second derivative Y"(x,)(x. %) of the nonlinear operator

Y(x) is expressed by 3-dimensional array Y"(,)xz =(D; D2)[€j(§j where

A\ u
azﬂ %Y, | 62Y22 %Y,
o5 o5 OuoS
D, = & “ 1 and D, = # #|. then the norms of every
oY, oY Y, oY,
aﬁa’u‘){o a’uz ‘Zo afﬁ,u X0 a’uz o

components of D, and D, has the estimate

7 = LA J oy (t,7)¢(7) < (7)sin (& (7)) dr| < H, (T —H,),

v, | )

o&ou HZH<1H;(HJ (t))‘f(ﬂo (t))COS(é‘O (4 (t)))f (t) ‘ <H

gﬂéz max_ et o) (14(1))cos(& (1 (1)) £ (1)< H,,

aa;? = e[ @, (t o O)sin (& (s (1)) + e (8 £ () €08 (5 (1 (00) & (46 (1) ] () A)
<H;+HH;,

oY, t o

o0& _Hz@%ﬂ - j(t)wz(t,r)é(r)é (7)sin(&(z))dz| < H, (T —H,),

oY,

S = e (o) (1)) 05(& (D)€ (1) < H

sﬂé‘g _H H<1H H<1 Z(t ﬂo(t))é: (ﬂo(t))COS(é:O(ﬂo(t)))g( )‘ s

85; = e[l (& s @)sin (& (1o (D)) + @ (1 0 ) €08 (& (16(10) & (4(0) ]V (1)

<H} +H,H..

Therefore, all second derivatives are exist and bounded. i.e.

Y (x)|<m.
(49)

16
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Since W(t) majorizes the operator Y(y), and utilizing the second condition of

(Theorem 1) we get

" 2
ITeY" () < :
e+o
(50)
Let us consider the discriminate of the equation W(t) =0
D=¢’-2s0+0’=(s-0),
and the two roots of P(t) =0 are r, =min{e+t,,oc+t,} and r, =max{e+t,, o +1t,}.
Therefore, when 1, <r <, implies
Y(t) <0,
(51)

then under the assumption of the fourth condition; i.e. min{s+t;,o+t,} is the

unique solution of ¥ (t)=0 in [tO,T] and the condition in Eq. (51) [7, Theorem 4,

pp.530] implies that ;(* is the unique solution of operator equation (4) [8, Theorem 6,
pp.532] and
|7 =] <t -,
(52)
where t" is a unique solution of W(t)=0 in [t,,r].
As for the rate of convergence, let us write the equation W(t) =0 in a same form as in

Eq. (31), then its successive approximation is
t =0t ), m=0L12...
(53)
To establish the difference between t~ and successive approximation t,
U —t, =0(t") - D, ) =€)t -t,.),
(54)
where, e(tm_l,t*) and

O'(t) =14 6P (t) = — > (t-t,),
E+o
(55)
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therefore, in case ¢ +1, is the minimum root of Eq. (30)

2 2 . 2
O (S (f~t,)=—",

then

2¢ m 2¢ "
consequently, t"—t_ S(g+aj &, itimplies Hl*—ZmHS(t*—tm):(Ha) ¢

In the same manner, if O the minimum root of Eg. (30) we have

. . 2\
7 - ] <(t —tm)z(gfo_j o o

5. Numerical result

Consider

- . (9 9 9 .
- |t dr=t+tsin| —t |——t?cos| —t |—tsin(t) +t* cos(t),
J(;) sin(&(z))dr=t+ sm(10 j 10 cos(10 ) sin(t) -+t cos(t)

jtr sin(&(z))de = t+ﬂt4cos(9 j—th cos(gtj—gtgsin(gt)
E 100 10 10 ) 5 10

—t* cos(t) + 2t* cos(t) + 2t sin(t), t (0,1].

(56)
The exact solution is
&)=t
9
1)=—1t.
1 (t) 10
t 8
n=21=5h=05¢ =—,u, =—t
50 2 Hy 10

Table 1: the numerical result of Eq. (56)

m Error of Error of u
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1 0.01224 6.44130E-004

2 6.72201E-004 8.45722E-006

3 3.62961E-005 1.10663E-007

4 1.96159E-006 1.44809E-009

5 1.06007E-007 1.89487E-011

6 5.72880E-009 2.48246E-013
n=2,1=5h=0.5,& =%,,u0 :%t
Table 2: the numerical result of Eq. (56)

m Error of & Error of u

1 0.03839 0.01727

2 0.00485 0.00167

3 5.87048E-004 1.57273E-004

4 7.14562E-005 1.48333E-005

5 8.69208E-006 1.39864E-006

6 1.05741E-006 1.31881E-007

11 2.81707E-011 9.81992E-013

We observe that by applying the MNM for the system of nonlinear Volterra type
equations (56), the numerical and exact solutions are almost coincide with a small

number of m.

Table 1 shows that only six iterations are needed for & (t) and z (t) to be very close

to £ (t) and 4 (t) respectively, while in Table 2 more iterations are needed to
reasonable approximate solution when the initial guess is chosen to be far from the

exact solution. Notations used here are: n is the number of partitions on [t,T], I is
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the number of subpartitions on (4, (t;),t;) and (g, (t).t;), i=12,...,n ,where mis

the number of iterations and

error of £ = trg(?l(]‘gm t-&

error of u = rrzax]‘/,zm(t) —,u*‘ :

te(0,1
6. Conclusion
The MNM is applied to solve the system of nonlinear Volterra integral equation with
trigonometric function. We have sated a new idea by introducing a subgrid of

collocation points 7, i=12,...,n k=12,...,I that are included in (z(t).t;) and
(,um_l(ti),ti). Gauss-Legendre QF is used for each subgrid intervals. A numerical

example revealed that the accuracy of the MNM can be achieved by a few numbers of
iterations. From the Examples 1-3, we observe that by applying the NKM for the
system of nonlinear Volterra type equations, the numerical and exact solutions are

almost coincide for a small number of iteration m.
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