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Abstarct 

The Modified Newton method (MNM) is applied to obtain the approximate 

solution to the system of nonlinear Volterra type integral equation with the 

trigonometric kernel function. Modified Newton method (MNM) is used to linearized 

the system then solved by the Nystrom type Gauss-Legendre quadrature formula 

(QF). A new majorant function is stated which leads to the increment of convergence 

interval. The existence and uniqueness of approximate solution are proved. Sufficient 

condition for the approximate solution is established and their validity is illustrated 

with example. 
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 الخلاصة

. لقذ ذن ذطثيق طزيقح ًيوذي الوطورج لايجاد الحل الرقزيثي للوعادلاخ الركاهليح غيز الخطيح هع ًواج دالح هثلثيح

اسرخذهد طزيقح ًيوذي الوطورج لاهكاًيح ذقزية الٌظام غيز الخطي تٌظام خطي وتعذها اسرخذهد صيغح 

)في هذا الثحث طثقٌا دالح جذيذج لركوى . ليجيٌذر الرزتيعيح لايجاد حل الٌظام- كاوس majorant حيث ادخ الى  ( 

سيادج فرزج ذقارب الحل وقذ ذن اثثاخ وجود ووحذاًيح الحل الرقزيثي هع الراكيذ على الشزوط الضزوريح لرقزب 

. الحل الرقزتي  
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1. Introduction 

Consider the nonlinear operator  

                                                        ( ) 0  ,     

 (1) 

where   is a differentiable operator from an open set   in a Banach space   to a 

Banach space  . The MNM assures the semi local convergence of the solution of Eq. 

(1). This method has many theoretical and practical applications and one of these 

applications is on the system of nonlinear integral equations. For instance, Argyros 

and Hilout [1] used Lipschitz and centre Lipschitz conditions with recurrent functions 

to provide a semilocal convergence analysis for Newton‟s method in order to 

approximate a local unique solution of an equation in a Banach space. Ezquerro et al. 

[2] discussed a semilocal convergence of Kantorovich method in Banach space, and 

solved the two Hammerstein integral equations of the second kind by the MNM. 

Ezquerro et al. [3] used the majorant principle, which is based on the concept of 

majorizing sequence given by Kantorovich to find the approximate solution of a 

particular nonlinear integral equation. Eshkuvatov et al. [4] developed the Newton- 

Kantorovich method to solve the system of nonlinear integral equations and proved 

the existence and uniqueness of the solution. Hameed et al. [5] proposed a new 

majorant function for the Newton- Kantorovich method to solve the system of 

nonlinear Volterra integral equations with the unknown function in logarithmic form. 

Saeri-nadjafi and Heidari [8] presented a combination of the MNM and quadrature  

method to solve the nonlinear integral equation of th Urysohn form in a systematic 

procedure. Shena and Li [9] established Kantorovich- type convergence criterion for 

inexact Newton methods which includes the well-known Kantorovich‟s theorem as a 

special case. 

Consider the system of nonlinear Volterra integral equation of the form  
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        (2) 

where  0 ,t t T , 00 t t T    and  sin ( )t is nonlinear continuous differentiable  

function on  0 ,t T  and the known functions  0 ,
( ), ( )

t T
t t C    and 

   0 0
1 2 , ,
( , ), ( , )

t T t T
t t C   


 . The unknown functions 

0[ , ]( ) t Tt C   and 
0

1

[ , ]( ) t Tt C   are 

to be determined.  

The structure of this paper is as follows: In Section 2, we described the MNM. In 

Section 3, the system of algebraic linear Volterra integral equation using Nystrom 

Gauss-Legendre QF is described. Section 4 discusses the rate of convergence of the 

approximate solution of the system (2). An example is provided  in Section 5 to show 

the accuracy and efficiency of the method.  Finally, Section 6 concludes the main 

ideas of the approximate method.  

2. Modified Newton method for integral operator 

To find the unknown functions ( )t  and ( )t  in Eq.(1) we use the notations  

                      

   

   

1 1

( )

2 2

( )

( ) ( , )sin ( ) ( ) 0,

( ) ( , )sin ( ) ( ) 0,

t

t

t

t

t t t t

t t t t





     

     


     



    







   

        (3) 

where  ( ), ( )t t   ,  0 ,t t T  and 00 t t T   , then the system (3) can be 

written in operator equation  

                                 1 2, 0       .            

        (4) 

Write the initial approximation as  

                         0 0 0 0        ,  0 0 0( ), ( )t t   ,    

        (5) 
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where 0 refers to the initial condition and 0 0( ), ( )t t   can be any continuous 

functions provided that 0( )t t  and 0( ) 0t   for  0 ,t t T . The Frechet derivative 

of   at the point 0 is defined as [7] 

                        
   

   

0 0 0 0

0 0 0 0

1 1

, ,

0

2 2

, ,

   

   


 

 

 

    
            
     

    „ 

        (6) 

Eqs. (5) and (6) yield  

 

 
 

   

 

 
 

   

0 0 0 0

0 0 0 0

1 1
1 0 0

, ,

2 2
2 0 0

, ,

( ) ( ) ( ), ( ) ,

( ) ( ) ( ), ( ) ,

t t t t

t t t t

   

   

   
 

   
 

 
     

  


      
 


          

(7) 

where 1 0( ) ( ) ( )t t t     , 1 0( ) ( ) ( )t t t      and  0 0( ), ( )t t   is the initial 

guess. To solve Eq. (7) with respect to   and   we need to compute all the partial 

derivatives  

 

    

    

 

0 0

0

0

1
1 0 0 1 0 0

0
,

1 0 0
0
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1 0
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1
lim , ,

1
lim ( ) ( , ) sin ( ) ( ) sin ( )

( ) ( , )cos ( ) ( ) ,

t

t

t

t

t t d

t t d
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0
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( ) ( )

1 0
0

( )

1 0 0 0

1
lim , ,

1
lim ( , )sin ( )

( , ( ))sin ( ( )) ( ),

t t

t

t d

t t t t


 

 




    
 

    


    








   



 
  

  



                     

(9) 
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and with the same procedure we get  

 

 
00 0

2
2 0

( ),

( ) ( , )sin ( ) ( ) ,
t

t

t t d
 

       



 

     

        (10) 

 

 
0 0

2
2 0 0 0

,

( , ( ))sin ( ( )) ( ).t t t t
 

    



 


   

        (11) 

By substituting Eqs (8) –(11) into Eq (7) we arrive at  

0

0

0

1 0 1 0 0 0

( )

1 0 0

( )

2 0 2 0 0 0

( )

2 0 0

( ) ( , )cos( ( )) ( ) ( , ( ))sin( ( ( ))) ( )

( , )sin( ( )) ( ) ( ),

( ) ( , )cos( ( )) ( ) ( , ( ))sin( ( ( ))) ( )

( , )sin( ( )) (

t

t

t

t

t

t

t t t d t t t t

t d t t

t t t d t t t t

t d







           

      

           

     

    

  

    

  







0 ( )

) ( ).
t

t

t t
























      (12) 

Since Eq.(12) is a linear Volterra integral equations, it can easily be solved in term of 

( )t and ( )t  as  
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      (13) 

where  
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 ,       

      (16) 

2 0 0( ) ( , ( ))sin( ( ))t t t t    .     

      (17) 

By continuing this process, a sequence of approximate solution  ( ), ( )m mt t   can be 

evaluated from the equation 

   0 1 0, 1,2,m m m   
        

which is equivalent to the system  

 

 

 

0

0

1

0 1

( )

2 0

( )

2 1 1

( )

( ) ( , )cos ( ) ( ) ( ),

1
( ) ( ) ( , )cos ( ) ( )

( )

( , )sin ( ) ( ) ( ) ,

m

t

m m m

t

t

m m m

t

t

m m

t

t t t d t

t t t t d
t

t d t t







       

       


      




 


    




 
     

 


 
    

 









 

      (18) 

where  

1 1( ) ( ) ( ), ( ) ( ) ( ), 2,3,m m m m m mt t t t t t m              

      (19) 

and  

 
1

1 1 1

( )

( ) ( ) ( )
( ) ( , )sin ( ) ( )

1 ( ) ( )
m

t
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t

t t t
t t t d t

t t t


  
     

 


     
  . 

Solving Eq.(18) for ( )m t  and ( )m t  we obtain a sequence of approximate 

solution  ( ), ( )m mt t   
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3. Gauss-Legendre Quadrature Method 

For the approximate solution of the linear system (18) we introduce a grid points 

0
1 0: , 2,3, ,i i

T t
t t t h i n

n

 
     

 
  where n  refer to the number of partitions in 

 0 ,t T . Then from the system (18) we obtain  
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and  
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. 

It is well known that one of the powerful technique to approximate the integrals in the 

system (20) is Gauss-Legendre QF. We know that the Legendre polynomials ( )nP t  

are orthogonal on  1,1  with weight 1  . Therefore Gauss-Legendre QF [6, pp. 

318] 

1

11

( ) ( ) ( )
n

i i i

i

f x dx f s R f


       

      (21) 

where  

 
2

2 1

2
, 2, ( ) 0, 1,2, ,

1 ( )

n

i i n i

i
i n i

P s i n

s P s

 


   
 
 

  , 

is is a root of Legendre polynomial ( )nP t  with the error term  

2 1 4
2

3

2 ( !)
( ) ( ), 1 1

(2 1)[(2 )!]

n
n

n

n
R f f

n n
 



   


. 

The Gauss- Legendre QF formula for arbitrary interval  ,a b  has the form  
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  ,     

      (22) 

where the nods 
2 2

i i

b a b a
t s

    
    
   

. Now, let us introduce a subgrid  2  at 

each subinterval  0 ( ),i iy t t  and  1( ),m i iy t t  of the interval  0 ,t T , such that  

1. for the interval  0 ( ),i iy t t  we chose the grid points as  

0 0
(0)

( ) ( )
, 1,2, , ; 1,2, ,

2 2

j i i i i
i j

t y t t y t
s j l i n

 
     . 

      (23) 

2. for the interval  1( ),m i iy t t  grid points are chosen as  

 

1 1
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( ) ( )
, 1,2, , ; 1,2, , ; 1,2,

2 2

j i m i i m i
i m j

t y t t y t
s j l i n m  



 
         (24) 

 

where l  is the number of points in each subinterval  0 ( ),i iy t t  and  1( ),m i iy t t  and js  

are the zeros of Legendre polynomial ( )nP x  over the interval  1,1  and (0)

j

i it  , 

( 1)

j

i m it   . Extending Gauss-Legendre QF in Eq. (22) to the integral on each interval 

 0 ( ),i iy t t  and  1( ),m i iy t t  in the system (20), we get  
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where  
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The first equation of the system (25) is a linear algebraic system of n l  equations 

and n l  unknowns. If the matrix of this system is non singular then it has a unique 

solution in terms of ( )m ix  , 1,2, ,i n  , 1,2, ,l   . The values of ( )m iy   can 

be easily determined by computing the second equation of (25). From Eq. (19) it 

follows that  

1 1( ) ( ) ( ), ( ) ( ) ( ), 2,3,m i m i m i m i m i m i m                        

      (26) 

Since the values of the functions ( )m i

   and ( )m i

   are known at l  Legendre grid 

points in each subintervals  0 ( ),i iy t t  and  1( ),m i iy t t  for each m , the values of 

unknown functions ( )it  and ( )it  can be found by using Newton forward 

interpolation formula [2, pp. 110], i.e 

1 1 2 1

1 2 1 1 1

( ) ( ) ( ) ( , )( ) ( , , )( )( )

( , , , , )( )( ) ( ),

l l l l l l l l l

m l m i m i i i m i i i i i

l l l l l

m i i i i i i i

t P t t t t

t t t

            

       

   

  

      

             

(27) 

1 1 2 1

1 2 1 1 1

( ) ( ) ( ) ( , )( ) ( , , )( )( )

( , , , , )( )( ) ( ),

l l l l l l l l l

m l m i m i i i m i i i i i

l l l l l

m i i i i i i i
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t t t

            

       

   

  

      

      

        (28) 

with  the error  
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m l
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t P t
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where  

 

 

1 1

1

1 1

2

max ( ) ( ), , ( )

max ( ) ( ), , ( )

l l

m i i

l l

m i i

N t t

N t t

   

   





  

  




, 0( , )t T  . 

 

4. Convergence analysis 

Depending on the general theorems of modified Newton method [7, pp. 532] for 

the convergence, we establish the following theorems with regard to the successive 

approximations which are characterized by system (18).  



Journal of College of Education for pure sciences(JCEPS) 
Web Site: http://eps.utq.edu.iq/              Email: eps_tqr@yahoo.com 

Volume 7, Number 2, May 2017 

11 
 

Consider the following classed of functions: 

 
0[ , ]t TC the set of all continuous functions ( )R t defined on the interval  0 ,t T , 

 
0 0[ , ] [ , ]t T t TC   the set of all continuous functions ( , )S t  defined on the region 

0 0[ , ] [ , ]t T t T , 

   
0[ , ]: ( ), ( ) : ( ), ( ) t TC t t t t C         

  
0 0

1

[ , ] [ , ]( ) : ( )t T t TC t C t t   


. 

In addition, define the following norms 

0[ , ]
max ( )
t t T

t 


 ,  
[ , ] [ , ]0 0

max ,
t T t TC C C

      ,  
[ , ] [ , ]0 0

max ,
t T t TC C C

   , 
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t Tt T

C CC
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4
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0

5
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t t T

t H 


  . 

Let  

 1 1 3 1 1 1 3 2 3 2 2 2 3max ( ), , , ( ), ,H T H H H H H H T H H H H H         .        

(29) 

Let us introduce the real valued function  

    
2

0 0( )t t t t t         ,   

      (30) 

where   and   are real coefficients. 

Theorem 1 : Let the nonlinear operator ( ) 0P    in Eq. (4) is defined in open set 

   0 0, :C t T R        and has continuous second derivative in closed set 

   0 0 0, :C t T r        such that 0 0T t r t R    . Assume the following 

conditions are satisfied  

1-    
1

0 0 0 0,


 
 


       

,  
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2-  0

2


 
  


, when 0 0t t r     , 

then ( )t  in Eq. (30) is a majorant function for the nonlinear operator  P  . 

 

Proof:  Rewrite Eqs. (4) and (30) in the form  

0( ), ( ) ( ),t t t t c t    
     

      (31) 

   0( ), ,S S      
    

      (32) 

where 
0

0

1 1

( )
c

t  
  

 
. We need to show that Eqs (31) and (32) satisfy the 

majorizing conditions [8, Theorem 1, pp. 525]. In deed  

   0 0 0 0 0 0( )S t t


  
 

      


,  

      (33) 

and since 0 0t t    , with utilizing the remark in [8, pp. 504] we have  
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S S S S d d
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      (34) 

Therefore ( )t  is a majorant function of ( ) .□ 

 

Theorem 2:  Let the function 
0[ , ]( ), ( ) t Tt g t C  , 

0

1

0 [ , ]( ) t Tt C   and the kernels 

0 0

1

1 2 [ , ] [ , ]( , ), ( , ) t T t Tt t C      and  0 0 0( ), ( )t t   , the if  

1- The system (5) has a unique solution in the interval 0[ , ]t T ; i.e., there exits  0  and 
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0 2 1 1 2 2

1 1 !

j
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 , 

2- 



 

 


, 

3-   1   , 
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4-  0 0max ,r t t    , 

where   and   as in Eq. (30). Then the system (2) has a unique solution 
*  in the 

closed ball 0  and the sequence  ( ) ( ), ( )m m mt t t   , 0m  of successive 

approximations  

  

 

 

 

0

0

1

0 1

( )

2 0

( )

2 1 1
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( ) ( , )cos ( ) ( ) ( ),

1
( ) ( ) ( , )cos ( ) ( )
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m
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t

t
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t t t d t

t t t t d
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where 1 1( ) ( ) ( ), ( ) ( ) ( ), 2,3,m m m m m mt t t t t t m              , and m  

converges to the solution 
* . The rate of convergence is given by  

* 2
,m


  

 

 
   

 
 if  the minimum zero of Eq. (30), or * 2

,m


  

 

 
   

 
 

if   the minimum zero of Eq. (30).  

 

Proof: Since the first equation of the system (13) is a linear integral equation of the 

second kind, so it has a unique solution in term of ( )t , provided that  1 ( ) 0t   

and 2 0( , ( )) 0t t    0[ , ]t t T   and ( , )t   which is defined in Eq. (15) is a 

continuous function, then ( )t  can be uniquely  determined from the second 

equation of (13). Hence the existence of 0  is achieved. Now, to prove that 0  is 

bounded we need to find the resolvent kernel 0( , )t   of the first equation in system 

(13). Consider the integral operator U from 0 0[ , ] [ , ]C t T C t T  is given by  

0 ( )

( ), ( ) ( , ) ( ) ,
t

t

Z U Z t t d


            

      (35) 

where 0( , ) ( , )cos( ( ))t t x      and ( , )t   is define in Eq. (15). According to Eq. 

(35), the first equation in system (13) can be represented as  
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  0 ( )U t      .     

      (36) 

The solution of Eq. (36) is written in terms of 0  by the formula  

*

0 0( )B     ,      

      (37) 

where B  is an integral operator and can be written as a series in powers of U  [8, 

Theorem 1, pp. 378] 

2

0 0 0 0( ) ( ) ( ) ( )nB U U U         ,   

      (38) 

and it is famed that the powers of U  are also integral operator. In deed  

0

( )

( )

, ( ) ( , ) ( ) , ( 1,2, )
t

n n

n n

t

Z U Z t t d n


         , 

      (39) 

where 
( )n  is the iterated kernel. Substituting Eq. (39) into (37) we get an expression 

for the solution of Eq. (36) 

0

* ( )

0 0

1 ( )

( ) ( , ) ( )
t

n

j t

x t t t d


    




    .   

      (40) 

Next, we state that the series in Eq. (40) is convergent uniformly for all 0[ , ]t t T . 

Since  

1 2
0

2 1 1 2 2

( , ) ( ) ( , )
( , ) ( , )cos( ( )) ( , )

1 ( ) 1 ( )

.

t t t
t t t

t t

c H c c H

    
       

 
   

 

 

   

      (41)  

Let 2 1 1 2 2M c H c c H  , then by mathematical induction we obtain  

0

( 1)
( ) ( 1) 3

( )

( )
( , ) ( , ) ( , ) ,( 1,2, )

( 1)!

t n n
n n

t

M T H
t t u t du n

n


    


 
  

  , then  

0
0

( 1)
( ) 3

[ , ]
( )

( )
max ( , )

( 1)!

t n n
n n

t t T
t

M T H
U t du

n


 





 

 . Therefore the n
th

  root test of the 

sequence implies  
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1

1

3
0

( 1)!

n
nn

n n

M T H
U

n






 


.     

      (42) 

As a result 
1

lim nn

n
U





   ,  and the first equation of the system (13) has no 

characteristic values. Since the series in Eq. (40) converges uniformly. Eq. (37) can be 

expressed in term of resolvent kernel of the first equation of (13)  

0

*

0 0 0

( )

( ) ( , ) ( )
t

t

t t d


         ,   

      (43) 

where  

0

1

( , ) ( , )j

j

t t  




  .     

      (44) 

Since the series in Eq. (44) is convergent we obtain  

 
 

1

3

0 0 2

1 ( 1)!

j

j j

j

T H
B U M

j
 







    


 .       

(45) 

To evaluate the validity of second condition, let us describe operator equation  

( ) 0  ,      

      (46) 

as in Eq. (32) and it‟s successive approximation is  

1 ( ), 0,1,2,n nS n        

      (47) 

For the initial condition 0  we have  

   0 0 0 0S      ,    

      (48) 

then from the first condition of (Theorem 1) we have  

   0 0 0 0 1 0S


     
 

        


. 
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Moreover, we need to show that   1    for all 0  where 1  defined in Eq. 

(29). It is known that the second derivative   0 ,    of the nonlinear operator 

   is expressed by 3-dimensional array    0 1 2D D


 


  
    

  
, where 

0 0

0 0

2 2

1 1

2

1 2 2

1 1

2

D
 

 

  

  

    
 
   

  
    

   
 

, and 
0 0

0 0

2 2

2 2

2

2 2 2

2 2

2

D
 

 

  

  

    
 
   

  
    

   
 

. then the norms of every 

components of 1D  and 2D  has the estimate  

     

     

     

0

2

1
1 0 1 32 1, 1

( )

2

1
1 0 0 0 0 1

1, 1

2

1
1 0 0 0 0 1

1, 1

2

1
1 02 1, 1

max ( , ) sin ( ) ( ),

max ( , ( )) ( ) cos ( ( )) ,

max ( , ( )) ( ) cos ( ( )) ,

max ( , ( ))sin

t

t

t d H T H

t t t t t H

t t t t t H

t t

 


 

 


 

        


      
 

      
 

  


 

 

 

 

 
   



 
 

 

 
 

 

 






     0 0 1 0 0 0 0 0

1 1 3

( ( )) ( , ( ))cos ( ( )) ( ) ( ) ( )

,

t t t t t t t

H H H

          

  

 

     

     

     

0

2

2
2 0 2 32 1, 1

( )

2

2
2 0 0 0 0 2

1, 1

2

2
2 0 0 0 0 1

1, 1

2

2
2 02 1, 1

max ( , ) sin ( ) ( ),

max ( , ( )) ( ) cos ( ( )) ,

max ( , ( )) ( ) cos ( ( )) ,

max ( , ( ))sin

t

t

t d H T H

t t t t t H

t t t t t H

t t

 


 

 


 

        


      
 

      
 

 


 

 

 

 

 
   



 
 

 

 
  

 

 






     0 0 2 0 0 0 0 0

2 2 3

( ( )) ( , ( ))cos ( ( )) ( ) ( ) ( )

.

t t t t t t t

H H H

           

  

 

Therefore, all second derivatives are exist and bounded. i.e. 

  1   .       

      (49) 
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Since ( )t  majorizes the operator ( ) , and utilizing the second condition of 

(Theorem 1) we get  

0

2
( )

 
  


.      

      (50) 

Let us consider the discriminate of the equation ( ) 0t   

 
22 22D          , 

and the two roots of ( ) 0t   are  1 0 0min ,r t t     and  2 0 0max ,r t t    . 

Therefore, when 1 2r r r   implies  

( ) 0t  ,       

      (51) 

then under the assumption of the fourth condition; i.e.  0 0min ,t t     is the 

unique solution of ( ) 0t   in  0 ,t T  and the condition in Eq. (51) [7, Theorem 4, 

pp.530] implies that 
*  is the unique solution of operator equation (4) [8, Theorem 6, 

pp.532] and  

* *

0 0t t    ,      

      (52) 

where 
*t  is a unique solution of ( ) 0t   in  0 ,t r . 

As for the rate of convergence, let us write the equation ( ) 0t   in a same form as in 

Eq. (31), then its successive approximation is  

1 ( ), 0,1,2,m mt t m        

      (53) 

To establish the difference between 
*t  and successive approximation mt  

* * *

1 1( ) ( ) ( )( )m m m mt t t t t t t 
     ,   

      (54) 

where,  *

1,m mt t t  and  

 0 0

2
( ) 1 ( )t c t t t

 
      


,    

      (55) 
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therefore, in case 0t   is the minimum root of Eq. (30) 

   *

0 0

2 2 2
( )m mt t t t t



     
     

  
  , 

then  

 

 

 

* *

1

* *

1 2

* *

1 0

2
,

2
,

2
,

m m

m m

t t t t

t t t t

t t t t



 



 



 



 

  


  


  




 

consequently,  * 2
m

mt t



 

 
   

 
, it implies  * * 2

m

m mt t


  
 

 
     

 
.  

In the same manner, if   the minimum root of Eq. (30) we have 

 * * 2
.

m

m mt t


  
 

 
     

 
 □ 

 

5. Numerical result 

Consider 

   

   

2 2

( )

2 2 4 2 3

( )

4 2 3

9 9 9
sin ( ) sin cos sin( ) cos( ),

10 10 10

81 9 9 9 9
sin ( ) cos 2 cos sin( )

100 10 10 5 10

cos( ) 2 cos( ) 2 sin( ), (0,1].

t

t

t

t

t t d t t t t t t t t t

t t d t t t t t t t

t t t t t t t





   

    

   
        

   

   
       

   

   



  

      (56) 

The exact solution is                         

      

*

*

( ) ,

9
( ) .

10

t t

t t








 

0 0

8
2, 5, 0.5, ,

2 10

t
n l h t     

 

 

Table 1: the numerical result of Eq. (56) 

m Error of   Error of   
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1 0.01224 6.44130E-004 

2 6.72201E-004 8.45722E-006 

3 3.62961E-005 1.10663E-007 

4 1.96159E-006 1.44809E-009 

5 1.06007E-007 1.89487E-011 

6 5.72880E-009 2.48246E-013 

2

0 0

5
2, 5, 0.5, ,

4 10

t
n l h t     

 

 

 

 

 

 

Table 2: the numerical result of Eq. (56) 

m Error of   Error of   

1 0.03839 0.01727 

2 0.00485 0.00167 

3 5.87048E-004 1.57273E-004 

4 7.14562E-005 1.48333E-005 

5 8.69208E-006 1.39864E-006 

6 1.05741E-006 1.31881E-007 

11 2.81707E-011 9.81992E-013 

 

We observe that by applying the MNM for the system of nonlinear Volterra type 

equations (56), the numerical and exact solutions are almost coincide with a small 

number of m . 

Table 1 shows that only six iterations are needed for ( )m t  and ( )m t  to be very close 

to 
*( )t  and 

*( )t  respectively, while in Table 2 more iterations are needed to 

reasonable approximate solution when the initial guess is chosen to be far from the 

exact solution. Notations used here are: n  is the number of partitions on 0[ , ]t T , l  is 
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the number of subpartitions on  0( ),i it t  and    1( ),m i it t  , 1,2, ,i n  ,where m is 

the number of iterations and 

error of 
 

*

0,1
max ( )m
t

t  


  ,  

error of 
 

*

0,1
max ( )m
t

t  


  ,  

6. Conclusion 

The MNM is applied to solve the system of nonlinear Volterra integral equation with 

trigonometric function. We have sated a new idea by introducing a subgrid of 

collocation points , 1,2, , ; 1,2, ,k

i i n k l    that are included in  0( ),i it t  and 

 1( ),m i it t  . Gauss-Legendre QF is used for each subgrid intervals. A numerical 

example revealed that the accuracy of the MNM can be achieved by a few numbers of 

iterations. From the Examples 1-3, we observe that by applying the NKM for the 

system of nonlinear Volterra type equations, the numerical and exact solutions are 

almost coincide for a small number of iteration m . 
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