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Abstract: 

In this paper, we give a popularization form Phillips-Sazas-Type operators symbolize by 

. We prove the convergence for this operators  Also show that a Voronovskaja-

type asymptotic formula for our operators. And obtain an error estimate in terms of modulus of 

continuity of the function being approximated. 
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 حول تعمیم مؤثرات زازا من النمط فلبز
 حسن علي ناصر

haalna28@yahoo.com 

 العراق، جامعة ذي قار ، كلیة التربیة للعلوم الصرفة ، قسم الریاضیات ، ذي قار 
 

 

 :الخلاصة 

أولا سنثبت التقارب .  ونرمز لھ بالرمز Phillips-Sazasنقدم تعمیم للمؤثر من النمط مجموع تكامل ،  في ھذا البحث

نحصل على الخطأ المخمن في حدود ، وأخیرا. Voronovskajaكذلك سنوضح صیغة من النمط . لھذا المؤثر عندما 

 .مقیاس الاستمراریة للدوال المقربة
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1. Introduction: 

O.  Szãsz (1950) in [5], a generalized Bernstein's polynomials as : 

 

Kasana  et. al. [1],  A modification of the classical  Szãsz   operators  in Summation-Integral type 

operators to approximate a space of integrable functions on  is given by: 

 

Another a new modification of Summation-Integral Szãsz type operators in Phillips type operators is 

defined in [2] as: 

 

Also, Rempulska and Walczak [4], proposed a modification of the Szãsz operators and studied some 

direct results in ordinary approximation as: 

 

for   

where  

A more recent (2011) [3] advanced better a modification of the [4], as: 

 

 

The purpose of this paper is study a new sequence of linear positive operators  for 

 given as follows: 

 

The space  is normed by  

Throughout this paper, we assume that C denotes a positive constant not  necessarily the    same   at   

different    occurrences,  and       denote    the   integer  part   of   . 
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2. Auxiliary Results: 

Before we study the operator (1) we offer some results  in  the  form of  lemmas which  we  shall  

require  to  prove  the  main  results  of  the  paper. 

Lemma 1:[1] For the equation  and  we have: 

 

 

 and 

 

Lemma 2: [1] There exist polynomials  independent of   and  for sufficiently large , 

such that:  

 

3. The Convergence Theorem of   

The next theorem shows that the operators . 

Theorem 1: For   the following conditions are  hold 

(i)     

(ii)  

(iii)  

 

Therefore,  

Proof:  Using Lemma 1 and direct computation, we have : 
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Using the same technique we get the value of is followed immediately as: 

 

 

 

 

 

 

 

 

Therefore,  . 

 

 

4. The m-th Order Moment for  

In this part, we define the  m-th order moment for the operators  which is denoted  by 

. Then we prove a recurrence relation for this moment. 

Definition 1: For  the m-th order  moment  for  the  operators  is defined  

as: 
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Lemma 3: The moment for the operators  has the following formula 

 

Proof: By using Theorem 1, we have : 

 

 

Now, 

 

 

Theorem 2: Suppose that  for some  and  exists at a point , 

then 

 

Further, if   exists and is continuous on then  holds 

uniformly on  

Proof: By Taylor's expansion of , we get 

 

 

By using  Theorem 1, if   we have   Hence, 
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We have:  
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 for any   

Since, 

 

Hence, 

 

Next, again using Cauchy-Schwarz inequality for integration and then for summation, we have: 

 

Using of Taylor's expansion, Cauchy-Schwarz inequality for integration and then for summation and  

Lemma 3 , we have:  

 

Therefore, 

 

Now, since  is arbitrary, it follows that . Also    and hence 

 Combining the estimates   and , (3) is immediate.                                ■ 

          The next  theorem  is  a Voronovskaja-type  asymptotic  formula  for  the operators 

 

Theorem 3: Let  for some If  exists at a point  then  

 

 

(4). Further, if   exists and is continuous on the interval then 

(4) holds uniformly on  

Proof: By using Taylor's expansion of  , we have: 
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Then, 

 

From  Theorem 2, we get: 

 

We have: 

 

 

 

. 

 

 

Since, 

 

 

 

 

 

we obtain: 
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          Finally, we give an estimate of the  degree of approximation by the operators  

Theorem 4: Let   for  some     and  If  exists 

and   continuous   on   then   for   sufficiently large  

 

 

where  are constants independent of    and is the modulus of continuity of   on 

, and   denotes   the  sup-norm  on   

Proof: By our hypothesis 

 

where  lies between  and  is the characteristic function of the interval  

For  and  we get: 

 

For   and   we define 

 

Now, 

 

 

By using Theorem 1, we get: 
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Choosing  and applying we are led to: 

 

for any  

 

Since  we  choose   in  such  a way that  

 for all  

Thus, 

 

For ,   we find  a constant   such that   

Finally using Schwarz inequality for integration and then for summation , we  

get: 

 

Combining the estimates of  the required result is immediate. 
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