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 Tuberculosis (TB) is a globally deadly infectious disease responsible for 10 million new 

cases and 1.5 million deaths annually. Shorter TB treatment regimens show promise in 

reducing this problem, but there is an improved treatment success rate in South Africa, 

while retreatment cases remain a concern. An important feature of time-to-event modelling 

is its ability to consider transition probabilities of heterogeneous subgroups with different 

risk profiles. Survival analysis is generally performed to accurately estimate the transition 

probabilities associated with the risk profiles. This study explored the application of a 

flexible parametric survival model for analysing censored time-to-event data among TB 

patients.  

 The data were obtained from East London Central Clinic-TB unit, Eastern Cape, South 

Africa. In total, 174 patients were included in the analysis. The goodness of fit of the models 

was explored using Akaike information criterion (AIC). We estimated the hazard ratios 

(HR) and baseline cumulative hazards of our model, which are necessary to calculate 

individual transition probabilities, and compared the model with the Cox model and 

additive hazard model to determine the survival predictions of TB patients. 

The flexible parametric survival model produced hazard ratio and baseline cumulative 

hazard estimates that were similar to those obtained using the Cox proportional hazards 

model. The analysis revealed that sex (HR=0.49, 95% CI: 0.38, 0.62), antiretroviral therapy 

(ART), (HR=0.53, 95% CI: 0.34, 0.78), and diabetes (HR=0.58, 95% CI: 0.41, 0.78) were 

all statistically significant factors associated with improved treatment survival in 

tuberculosis patients. 

Flexible parametric survival models are a powerful tool for modelling time-to-event data 

and individual transition probabilities. It is of great importance to fit models by modelling 

the baseline, which makes it easier to make different types of predictions and allows for 

non-proportional hazards since it is an interaction. 
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1. Introduction  

Tuberculosis (TB) is primarily caused by Mycobacterium tuberculosis, typically affecting the lungs [1]. Annually, 

10 million people contract TB and 1.5 million people die from the disease, making it one of the deadliest 

infectious diseases globally. It is the primary cause of death for those with HIV and significantly contributes to 

antimicrobial resistance [1]. Poor outcomes from TB treatment are driven by the high rate of death and significant 

loss of follow-up [2], [3]. This issue of loss to follow-up is a major challenge experienced by the South Africa 

National TB Programme [4]. One of the key advantages of shorter treatment regimens for tuberculosis-resistant 

treatment is a reduction in the loss to follow-up rate [5].  

The treatment success rate in South Africa for new smear-positive and smear-negative/ extrapulmonary TB 

patients has improved by 79% and 76%, respectively [6]. This was achieved as a result of higher cure rates and 

a decrease in the treatment default rate. However, the treatment success rate for retreatment cases remains low at 

66.3% [6]. Of particular concern is the fact that up to 25% of sputum smear-positive TB cases are lost to follow-

up before treatment initiation, which may contribute to ongoing transmission of the disease and an increased risk 

of death [7]. Furthermore, the mortality rate remains high even after completion of TB treatment, likely due to 

HIV disease [8]. To address this issue, there is a need to expand access to antiretroviral therapy (ART) for all 

HIV-infected TB patients to reduce HIV-related mortality among individuals with TB. 

Understanding the effect of TB treatment on the time-to-death of TB patients by covariates such as gender, HIV 

status, age, and many more, may provide valuable insights for health programs in South Africa and globally. To 

achieve this target, flexible parametric hazards (PH) models and Additive hazard (AH) models were used in 

survival analysis to study the time-to-event data, which provide a flexible and versatile framework to capture 

complex hazard functions and assess the impact of covariates on survival probabilities in a more flexible way.  

The concept of the flexible PH models is to use restricted cubic splines to approximate the baseline hazard 

function in the context of the Cox proportional hazards model [9] and the AH model using kernel smoothing 

techniques [10].  

These models are a more adaptable approach to modelling survival data, which accommodates both non-linear 

and time-dependent effects. The integration of time-dependent covariates is used to examine the changes in risk 

factors over time. Furthermore, these models offer greater flexibility in capturing a wide range of survival 

patterns, from monotonically increasing or decreasing hazards to more intricate shapes, by altering the number 

and placement of spline knots [11]. Parametric models offer distinct advantages, including better suitability for 

prediction, extrapolation, quantification of risks, modelling time-dependent effects, enhancing understanding, 

and handling complex large datasets. However, the estimates from flexible parametric survival models are often 

similar to those obtained from the Cox model. 

In Cox regression, the baseline hazard function is not estimated, which can limit its ability to capture the true 

underlying hazard function. In contrast, flexible parametric models offer an alternative approach by explicitly 

modelling the baseline hazard using splines, enabling more accurate representations of complex hazard patterns 

and facilitating better predictions, especially in scenarios with non-proportional hazards. The models provide a 

parametric estimate of the baseline hazard without usual shape restrictions, making it highly flexible [9]. It can 

be applied to both standard and relative survival models and is capable of fitting relative survival cure models 

[12]. It can also be estimated on the log-hazard scale [13]. 

For this work, we investigated the use of flexible parametric methods to analyse censored time-to-event data in 

patients with tuberculosis in a small population of South Africa. We described and compared flexible parametric 

hazards (PH) models and Additive hazard (AH) models using a real-life case study of individual-level censored 

data from the Tuberculosis Hospital and linked mortality data for the general population and people with HIV 

status and stratified by ART status. 

2. Methods  

The Cox Proportional Hazards (Cox PH) model 

In survival data analysis, the Cox model is a widely used statistical method to assess the relationship between 

covariates and the hazard rate over time while making no assumptions about the shape of the hazard function. 

The model is written as: 

                                               ℎ(𝑡|𝑋) = ℎ0(𝑡)𝑒𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝                                                             (1) 
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In(ℎ(𝑡|𝑋)) = In(ℎ0(𝑡)) + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝 

where ℎ(𝑡|𝑋) is the hazard rate at time 𝑡 for a given set of covariates 𝑋, ℎ0(𝑡) is the baseline hazard rate, and 

𝛽1 + 𝛽2 + ⋯ + 𝛽𝑝 is the coefficients of the covariates 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑝 on the hazard rate. The integrated form 

of the model is: 

                      𝐻(𝑡|𝑋) = (∫ ℎ0(𝜇)𝑑𝜇

1

0

) 𝑒𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝 = 𝐻0(𝑡)𝑒𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝                        (2) 

where 𝐻(𝑡|𝑋) is the cumulative hazard function.  

The model does not assume a specific distribution for survival times but estimates the relative risk of covariates 

about the shape of the baseline hazard function. But, the underlying shape of the hazard function is often ignored 

[14].  

Additive hazards 

The additive hazards models have a general form of 𝐻(𝑡|𝑥: 𝜃) = 𝜂(𝑡, 𝑥; 𝜃) . Recently, the default model 

specification for survival without specifying the smoothness has cumulative hazard function as: 

𝐻(𝑡|𝑥; 𝜂) = Β(𝑡)𝜂Β + 𝑡(𝑥′𝜂𝑥) 

where Β(𝑡) is a natural spline design matrix with parameter 𝜂Β, and 𝜂𝑥 is the parameter for 𝑥. The hazard function 

is given as 

ℎ(𝑡|𝑥; 𝜂) = Β′(𝑡)𝜂Β + (𝑥′𝜂𝑥) 

Let 𝜆(𝑡) be the hazard rate at time 𝑡 for a specific event of interest, the additive hazards model can be expressed 

as: 

Log(𝜆(𝑡)) = 𝛽′𝑋 + 𝛼(𝑡) 

where 𝜆(𝑡) is the hazard rate for the event, 𝑋 is the vector of covariates, 𝛽′ is the vector of regression coefficients, 

and 𝛼(𝑡) is the function of time 𝑡 that captures the smooth or time-varying effects. The additive hazards model 

assumes that the log-hazard rates for the event are linearly related to the covariates (𝛽′𝑋) and include time-

varying components (𝛼(𝑡)). The implementation of Additive hazard models offers flexibility by allowing the 

modelling of the baseline hazard using splines and accommodating both constant hazards and smooth time-

varying effects.  

 

3. Flexible Parametric Survival Models 

Let the survival function 𝑆(𝑡|𝑥) = P(𝑇 > 𝑡|𝑥) for a random variable 𝑇 at time 𝑡 with covariate 𝒙 = 𝑥𝑖 written 

as: 

                                         𝑆(𝑡|𝑥) = exp (−exp (𝑠(log(𝑡); 𝛾) + ∑ 𝛽𝑖

𝑖

𝑥𝑖))                            (3) 
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where 𝛾 is the parameter, 𝛽𝑖𝑥𝑖  is the coefficient of covariate indexed 𝑖, and 𝑠(𝜇; 𝛾) is the parametric smooth 

function. Within this framework, a smooth function is used to model the baseline log cumulative hazard function 

and a linear predictor to model the covariates. However, the hazard function and cumulative hazard function are 

modelled as: 

                      𝐻(𝑡|𝑥) = −log(𝑆(𝑡|𝑥)) = exp (𝑠(log(𝑡); 𝛾) + ∑ 𝛽𝑖

𝑖

𝑥𝑖)                          (4) 

          ℎ(𝑡|𝑥) =
𝑑

𝑑𝑡
𝐻(𝑡|𝑥) = exp (𝑠(log(𝑡); 𝛾) + ∑ 𝛽𝑖

𝑖

𝑥𝑖) ×
𝑑(𝑠(log(𝑡); 𝛾))

𝑑𝑡
                    (5) 

Now, considering two sets of covariates, 𝑥 = 𝑥1𝑖  and 𝑥 = 𝑥2𝑖 , the hazard ratio can be expressed as: 

ℎ(𝑡|𝑥2)

ℎ(𝑡|𝑥1)
=

exp(𝑠(log(𝑡); 𝛾) + ∑ 𝛽𝑖𝑖 𝑥2𝑖) ×
𝑑(𝑠(log(𝑡); 𝛾))

𝑑𝑡

exp(𝑠(log(𝑡); 𝛾) + ∑ 𝛽𝑖𝑖 𝑥1𝑖) ×
𝑑(𝑠(log(𝑡); 𝛾))

𝑑𝑡

 

                                     = exp (∑ 𝛽𝑖

𝑖

(𝑥2𝑖 − 𝑥1𝑖))                                  (6) 

If 𝑥2𝑖 = 𝑥1𝑖 + 1 and 𝑥2𝑖′ = 𝑥1𝑖 ′ for 𝑖′ ≠ 𝑖, then the hazard ratio is equal to exp(∑ 𝛽𝑖𝑖 ) for all 𝑡 and other covariate 

values. The model can be incorporated with time-dependent effects of covariates 𝑥 on the log-hazard scale given 

as: 

                       In(ℎ(𝑡|𝑥)) = 𝑠(log(𝑡); 𝛾) + 𝑥𝛽 + ∑ 𝑠(log(𝑡); 𝛾𝑝)𝑋𝑝

𝑃

𝑝=1

                             (7) 

where 𝑠(log(𝑡); 𝛾0) is the restricted cubic spline function, 𝑠(log(𝑡); 𝛾𝑝) denotes the spline function for the pth 

time-dependent effect, and 𝑃 is the number of time-dependent effects. 

The restricted cubic splines within the models are employed to model the log cumulative hazard or the log 

cumulative odds [9], [11]. These splines are piecewise cubic functions connected at specific positions referred to 

as knots. To ensure smoothness, the first and second derivatives of the overall function are enforced to be 

continuous at the knots, and the function is linearly constrained before the first knot and after the last knot. The 

complexity of these spline functions is dictated by user-defined degrees of freedom, which equate to the number 

of knots minus one. Knot positions can either be defined by the user or set to be evenly spaced percentiles of the 

observed event-time distribution [13].  

However, 𝑠(log(𝑡); 𝛾0) with knots 𝑘1 + 𝑘2 + ⋯ + 𝑘𝜅 is expressed as: 

𝑠(log(𝑡); 𝛾0) = 𝛾00 + ∑ 𝛾0𝑙
𝜋𝑙(𝑎)

𝜅−1

𝑙=1

 

where 𝜋𝑙(𝑎) is the basis function for the lth time defined as: 

𝜋𝑙(𝑎) = {
𝑎                                                                                                            for 𝑙 = 1
(𝑎 − 𝑘1)+

3 − 𝜆1(𝑎 − 𝑘1)+
3 − (1 − 𝜆1)(𝑎 − 𝑘𝜅)+

3 ,    for 𝑙 = 2, … , 𝐾 = 1
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where 𝑘1 and 𝑘𝜅 are the knots boundaries and 𝜆1 =
(𝑘𝜅 − 𝑘𝑙)

(𝑘𝜅 − 𝑘1)⁄ . 

Using restricted cubic splines in flexible parametric survival models would help to capture both simple and 

complex hazard functions in situations where standard parametric models may have challenges [15].  

Study setting and design 

This was a hospital-based retrospective individual-level censored data in TB patients reported for the treatment 

in East London Central Clinic-TB unit, Eastern Cape, South Africa. This clinic is a specialized facility funded 

by the provincial government, dedicated to the diagnosis, treatment, and prevention of TB, especially in patients 

with HIV co-infections. The clinic offers a range of services, including antiretroviral treatments (ARTs), TB 

services, and diagnostic tools with standard TB treatment protocols. Patient medical histories, from their initial 

consultation to discharge, are recorded in the TB treatment registry, which is the official record-keeping system 

for TB treatment under the Department of Health in South Africa. 

Data collection 

In this study, data were gathered from medical records of hospitalized TB patients with HIV coinfection. 

Information was extracted from TB record files and patients' medical files using a standardized TB card format 

recommended by South Africa's Department of Health. The information includes gender, age, location, TB 

category, HIV status, diabetes, weight, and antiretroviral therapy (ART). 

Statistical analyses 

We initiate our analysis by applying basic proportional hazard models to the TB dataset to identify the 

contributing covariate factors. Initially, we employed a Cox regression model was used to analyze each single 

covariate to determine whether the covariate is associated with improved survival of the TB patient. A flexible 

parametric survival model was fitted with an additional argument (df =4) to specify four different degrees of 

freedom for the baseline smoother. We compare the survival estimate of the flexible parametric survival model 

with predictions from non-parametric Kaplan-Meier and Additive hazard model curves. All analyses were done 

in R using rstpm2 and flexsurv packages. 

Ethics 

Ethical clearance for the study was obtained from the Ethics Committee, University of Fort Hare, and 

Department of Health, Eastern Cape chapter, South Africa. 

Results  

More than half of the patients were male (63.2%). The mean age of TB patients on treatment was 39.4 ± 17.3 

years (range: 14-80 years). Of all the TB patients, 79 (45.4%) were HIV-positive TB patients, 78.2% had 

pulmonary TB, 77.6% had drug-resistance TB, 21.8% were placed on antiretroviral therapy and almost two-

thirds (60.9%) of the patients were treated without diabetes (Table 1).  

Table 1: The Demographic Characteristics of the TB patients 

Variables  levels Number (%) 

Sex  Female 64 (36.8%) 

 Male 110 (63.2%) 

Age  Mean ± SD 39.4 ± 17.3 

Weight  Mean ± SD 86.5 ± 17.4 

HIV status Positive  79 (45.4%) 

 Negative  95 (54.6%) 

Disease class ExtraPTB 38 (21.8%) 

 PTB 136 (78.2%) 

TB type DR-TB 135 (77.6%) 
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 MDR-TB 39 (22.4%) 

ART Yes 38 (21.8%) 

 No 136 (78.2%) 

Diabetes  No 106 (60.9%) 

 Yes 68 (39.1%) 

Alcohol  Yes 97 (55.7%) 

 No 77 (44.3%) 

Smoking  No 111 (63.8%) 

 Yes 63 (36.2%) 

Substance use  No 134 (77.0%) 

 Yes 40 (%) 

 

As we did not assume proportional hazards for TB treatment risk and aimed to evaluate the risk ratio 

instead of the attributable risk, we opted for a flexible parametric survival model. Unfortunately, the 

results from the additive hazards regression models did not provide satisfactory outcomes. We 

considered three different models for fitting the data, and based on the Akaike Information Criterion 

(AIC=1421.628) and the log-likelihood estimate (-2 log L=1389.628), we determined that the flexible 

proportional hazards (PH) model was the most suitable model. The results are summarized in Table 2, 

with the flexible PH model being the preferred choice. 

Table 2: Selection criteria for best model fit 

Model  AIC -2 log L 

Cox-PH model 1913.6087 1891.6087 

Additive hazards 1419.842 1391.842 

Flexible PH model 1421.628 1389.628 

 

The analysis results revealed that certain variables, including sex, ART, and diabetes, were identified as 

treatment risk factors affecting the survival of TB patients, while the other clinic characteristics were 

not statistically significant (Table 3). Notably, the result of the Cox proportional hazards model was 

similar to the flexible parametric survival model in detecting the TB treatment risk factors, whereas the 

results from the additive hazards model were notably different. From the model output. the hazard ratios 

in the flexible model for estimating the TB treatment risk factors were lower and had more narrow 

confidence intervals compared to the Cox regression model. Specifically, the analysis showed that sex 

was significantly associated with improved treatment survival for TB patients (HR=0.49, 95% CI: 0.38, 

0.62). Furthermore, ART was found to be statistically significantly associated with improved treatment 

survival for TB patients (HR=0.53, 95% CI: 0.34, 0.78), and diabetes exhibited a similar statistically 

significant association with improved treatment survival for TB patients (HR=0.58, 95% CI: 0.41, 0.78). 

Table 3: Hazard estimates of TB treatment factors based on Cox model and Flexible model  

 Cox PH  Flexible PH  

Variables  HR (95% C.I) Pr(>|z|) HR (95% C.I) Pr(>|z|) 

Sex  

    Female 

    Male 

 

1 

0.510 (0.326, 0.798) 

 

 

0.003 

 

1 

0.490 (0.382, 0.617)   

 

 

0.002 

Age  0.995 (0.983, 1.006) 0.354 0.994 (0.989, 0.998) 0.278 

Weight  0.994 (0.981, 1.007) 0.373 0.993 (0.991, 0.995) 0.299 

HIV-status 

    -tive 

    +tive 

 

1 

1.041 (0.694, 1.562) 

 

 

0.846 

 

1 

1.058 (0.804, 1.359) 

 

 

0.784 

Class  

    EPTB 

    PTB 

 

1 

0.772 (0.464, 1.285) 

 

 

0.320 

 

1 

0.789 (0.635, 0.966)  

 

 

0.360 
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TB type 

    MDR-TB 

    DR-TB 

 

1 

1.321 (0.789, 2.212) 

 

 

0.230 

 

1 

1.346 (0.919, 1.886) 

 

 

0.256 

ART 

    No 

    Yes 

 

1 

0.538 (0.313, 0.922) 

 

 

0.024 

 

1 

0.526 (0.336, 0.777) 

 

 

0.019 

Diabetes  

    No 

    Yes 

 

1 

0.607 (0.391, 0.941) 

 

 

0.026 

 

1 

0.579 (0.414, 0.784) 

 

 

0.015 

Alcohol  

    No 

    Yes 

 

1 

0.884 (0.576, 1.358) 

 

 

0.574 

 

1 

0.892 (0.697, 1.121) 

 

 

0.601 

Smoking  

    No 

    Yes 

 

1 

0.715 (0.464, 1.102) 

 

 

0.128 

 

1 

0.708 (0.493, 0.978) 

 

 

0.117 

Substance  

    No 

    Yes 

 

1 

0.835 (0.527, 1.322) 

 

 

0.441 

 

1 

0.861 (0.571, 1.235) 

 

 

0.521 

 

Flexible parametric survival models are capable of estimating a wide range of parameters. However, the 

prediction estimates from the flexible model were compared with predictions from the Additive model 

and non-parametric Kaplan-Meier curves (Figure 1). The plot shows that the Flexible parametric 

survival model has a better-predicted survival probability at each time point compared to other models. 

The shape of the flexible model indicates a higher and improved survival rate among TB patients, 

followed by the additive model and KM model suggests a lower survival rate among TB patients. The 

overall pattern of the curves is steadily decreasing indicating consistent association with improved 

treatment survival for TB patients, which contributes to the survival estimates up to the last observed 

time. 

In addition to the mortality rates, we obtained smooth predicted survival curves to facilitate comparisons 

among different covariate groups within various sub-groups and time intervals. Figure 1 illustrates the 

predicted survival probabilities on the time scale for gender and the use of antiretroviral therapy (ART), 

which were found to significantly contribute to improved survival outcomes among TB patients. The 

left panel shows the smooth predicted survival curves for the three models over the time since the 

initiation of TB treatment, categorized by patient gender. The right Panel shows the corresponding 

smooth predicted survival curves for patients on ART. 

 



Iraqi Journal of Statistical Sciences, Vol. 21, No. 2, 2024, pp (165-180) 
 

172 

 

  
Figure 1: Predicted survival rate for covariate sex and ART among patients on TB treatment 

 

Figure 2 displays the predicted survival probabilities on the time scale for diabetes and HIV status, both of which 

were identified as significant contributors to enhanced survival rates among TB patients. The left Panel exhibits 

the smooth predicted survival curves for the three models over the time since the TB treatment initiation for 

diabetic patients. Meanwhile, the right Panel displays the equivalent curves for patients with HIV status. It can 

be seen from both figures that the survival proportions are higher for TB patients in the flexible model compared 

to other models. 
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Figure 2: Predicted survival rate for covariate diabetes and HIV status among patients on TB treatment 

 

The spline coefficients are not interpretable on their own but they are used to predict the shape of the hazard 

surface at different covariate values. Figure 3 displays four panels for viewing the estimated mortality rates among 

TB patients from the flexible parametric model. The upper left panel shows the estimated mortality rates of female 

patients on TB treatment and male patients on TB treatment. The upper right panel shows the estimated mortality 

rates of patients without ART on TB treatment and patients with ART on TB treatment. The lower left panel 

shows the estimated mortality rates of patients without diabetes on TB treatment and diabetic patients on TB 

treatment. The lower right panel shows the estimated mortality rates of HIV-negative patients on TB treatment 

and HIV-positive patients on TB treatment. 
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Figure 3: Predicted estimate of Hazard ratios with 95% C.I for sex, ART, diabetes, and HIV status groups among 
TB patients 

 

The covariate sex panel shows that the mortality rates for both females and males are decreasing with male 

patients having significantly lower mortality rates (improved survival rates) compared to female TB patients. 

There was a complete overlap between the sex group's estimated mortality rates and survival proportions. Patients 

treated with ART therapy also have lower mortality rates than patients without ART therapy. There was a small 

overlap between the ART group's estimated mortality rates. Diabetic patients were observed to have a lower 

mortality rate compared to patients without diabetes. The high mortality among patients without diabetes can be 

due to a more severe disease for this group of patients. The overlap between the diabetes group's estimated 

mortality rates is very small. There was little or significant overlap between the HIV group's estimated mortality 

rates and survival proportions (Figure 4). Moreover, the peak of the surface, marked with green and red bands, 

reflects group hazard ratios of 95% CI. As time progresses on the time scale, the mortality rate surface widens, 

showing predicted clinical treatment observations [16]. 
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Figure 4: Overlap Predicted estimate of Hazard ratios with 95% C.I for sex, ART, diabetes, and HIV status groups 
among TB patients 

 

We assessed the time-varying covariate effects on TB treatment by estimating survival differences and hazard 

differences to compare hazard and mortality rate ratios along with their 95% confidence intervals over time for 

each group (Figure 5). We initially defined the survival differences based on the covariate pattern and 

subsequently transformed them into an 'exposed' covariate pattern using the exposed function. From Figure 5, we 

observed that the relative risk effect (hazard differences) of sex, ART, and diabetes slightly increases and the 

mortality effect (survival differences) decreases rapidly with time after 100 days of TB treatment initiation. 

Meanwhile, the relative risk effect (hazard differences) and mortality effect (survival differences) of HIV status 

among TB patients are the same ( no increase or decrease) after 100 days of TB treatment initiation. 
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Figure 5: The time-varying covariate effects on TB treatment using survival and hazard differences 

Discussion  

The flexible parametric survival model has been widely used in various fields, including applications in relative 

survival and clinical decision-making [9], [11], [17]–[21]. However, its utilization in the context of TB treatment 

has been relatively limited. In this article, we have employed the flexible parametric survival model to estimate 

survival probabilities for patients undergoing TB treatment and juxtapose the results with additive hazard models 

and the Cox proportional hazards model. 

The flexible parametric model is an alternative approach for estimating survival probabilities. Unlike 

conventional methods that rely on a priori transition probabilities, this approach uses individual patient data 

directly to model survival. The integration of individual patient data with additional covariate information could 

be worthwhile and lead to improved accuracy in predicting survival probabilities [22]. In our analysis, the flexible 

parametric survival model provided reliable and smooth estimates of the baseline cumulative hazards [18]. 

According to the analyses of the flexible parametric survival models, the results obtained indicate that sex is 

significantly associated with improved survival rates of patients on TB treatment. The result indicates that male 

is significantly associated with a 51% lower risk of mortality rate [0.490 (95% CI: 0.382, 0.617), p-value=0.002] 

compared to female. This result is consistent with other earlier studies [23]–[25] in which standard survival 

analyses were applied. Hence, it can be concluded that male patients had a higher improved survival rate of TB 

treatment. There may be biological differences between males and females that can impact how they respond to 

TB treatment, such as hormonal differences, which play a role in immune response and may explain this pattern, 

which has also been observed in TB research studied in other areas [26], [27]. 

Our findings indicated that individuals who began the ART regimen experienced a 47.4% improved survival rate 

following the initiation of TB treatment [0.526 (95% CI: 0.336, 0.777), p-value=0.0019]. This result supports the 

recommendations to commence ART at earlier stages for all symptomatic individuals, irrespective of their CD4 
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cell counts. Previous studies have consistently demonstrated that the initiation of ART serves as a significant 

predictor of mortality among TB patients concurrently receiving ART [28]–[33]. 

The findings from our study also revealed that diabetes was significantly associated with improved survival rates 

among TB patients. The result showed that TB patients have a 42% lower risk of mortality rate [0.579 (95% CI: 

0.414, 0.784), p-value = 0.0015]. This is consistent with some studies with lower risk [34]–[36] and dissimilar to 

other studies with higher diabetes risk among TB patients in different countries [37]–[39]. The observation of 

improved survival rate among the patients may be attributed to several factors. TB and diabetes are known to 

have complex biological interactions. TB can lead to a temporary state of insulin resistance, which can affect 

glucose metabolism. This can result in lower blood sugar levels, reducing the likelihood of a diabetes diagnosis 

during TB infection. TB and diabetes share some common symptoms. These overlapping symptoms might make 

it more challenging to diagnose diabetes in TB patients, potentially leading to underdiagnosis. TB can be a severe 

disease, and individuals with TB may not survive long enough to develop diabetes. This selective survival effect 

could contribute to the observed improved survival rate among TB patients. 

Conclusion 

Using the flexible parametric survival model hazard can avoid splitting the survival data into intervals and avoid 

making an assumption of constant hazard rates within the time intervals in estimating the hazard rates and 

probabilities. The study highlights the importance of fitting models by modelling the baseline, which is easier to 

make different types of predictions and allows for non-proportional hazards since it is an interaction. The results 

from applying the three models revealed that sex, ART, and diabetes covariates were found to statistically 

significantly improve the survival rate of TB treatment prognostic. The flexible parametric survival model hazard 

ratios were compared with the additive hazard model and Cox proportional hazard model, and the effect estimates 

obtained from the hazard models were different. The study recommends hospital authorities pay attention to 

female TB patients who are HIV positive, on ART, and diabetic. The rate of mortality during TB treatment was 

high for these groups. TB patients should be advised to adopt healthier lifestyles during treatment, which can 

include better nutrition and increased physical activity. These lifestyle changes can reduce the risk of developing 

diabetes. 
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 لتحليل بيانات الوقت إلى الحدث الخاضعة للرقابة بين مرضى السل نموذج بقاء حدودي مرن 

   3، مادو بيتر 1، موتامباي روفين  1، أوديمي أكينومي  2، ألاكيجا تيميتوبي  1، أوسوجي جيوجيلين *1 عزيز أديبوي 

قسم الإحصاء ، كلية يابا للتكنولوجيا ،  2 قسم الإحصاء ، جامعة فورت هير ، أليس ، كيب الشرقية ، جنوب إفريقيا ،    1
 إيوي ، ولاية أوغون ، نيجيريا.-قسم العلوم الرياضية ، جامعة أولابيسي أونابانجو ، آغو3 يابا ، ولاية لاغوس ، نيجيريا،  

 .مليون حالة وفاة سنويا  1.5ملايين حالة جديدة و    10السل مرض معد مميت على مستوى العالم مسؤول عن  الخلاصة:  
تظهر أنظمة علاج السل الأقصر وعدا في الحد من هذه المشكلة ، ولكن هناك معدل نجاح محسن للعلاج في جنوب 

من السمات المهمة للنمذجة من وقت إلى حدث قدرتها على النظر  .إفريقيا ، بينما لا تزال حالات إعادة العلاج مصدر قلق
يتم إجراء تحليل البقاء على قيد  .في احتمالات الانتقال لمجموعات فرعية غير متجانسة ذات ملفات تعريف مخاطر مختلفة

راسة تطبيق نموذج  استكشفت هذه الد .الحياة بشكل عام لتقدير احتمالات الانتقال المرتبطة بملفات تعريف المخاطر بدقة
تم الحصول على البيانات من عيادة  .بقاء حدودي مرن لتحليل بيانات الوقت إلى الحدث الخاضعة للرقابة بين مرضى السل

تم   .مريضا في التحليل  174في المجموع ، تم تضمين   .وحدة السل ، كيب الشرقية ، جنوب أفريقيا-شرق لندن المركزية
وقد قدرنا نسب الخطر والمخاطر التراكمية  .(إيك)استكشاف الخير من تناسب النماذج باستخدام معيار المعلومات أكايك  

لحساب احتمالات الانتقال الفردية ، وقارننا النموذج بنموذج كوكس ونموذج الخطر الأساسية لنموذجنا ، وهي ضرورية  
أنتج نموذج البقاء البارامتري المرن نسبة الخطر وتقديرات المخاطر التراكمية  .الإضافي لتحديد تنبؤات بقاء مرضى السل

وكشف التحليل أن   .الأساسية التي كانت مماثلة لتلك التي تم الحصول عليها باستخدام نموذج المخاطر النسبية كوكس
، العلاج المضاد للفيروسات القهقرية )الفن( ، )الموارد   (0.62،   0.38 :٪ سي   95،    0.49الموارد البشرية=)الجنس  
(  0.78،    0.41٪ سي:    95،    0.58( ، ومرض السكري )الموارد البشرية=0.78،    0.34٪ سي:    95،    0.53البشرية=

تعد نماذج البقاء البارامترية المرنة أداة قوية   .ة إحصائية مرتبطة بتحسين بقاء العلاج في مرضى السلكلها عوامل ذات دلال
من الأهمية بمكان ملاءمة النماذج من خلال نمذجة خط   .لنمذجة بيانات الوقت إلى الحدث واحتمالات الانتقال الفردية

 .الأساس ، مما يسهل عمل أنواع مختلفة من التنبؤات ويسمح بمخاطر غير متناسبة لأنها تفاعل

 .نموذج بقاء حدودي مرن ، نموذج خطر مضاف ، نموذج كوكس، متغير متغير زمنيا ، مرض السل   :ةمفتاحيالكلمات ال


