On Intuitionistic fuzzy d-ideal of d-algebra

حول مثالي d الضبابي البديهي في جبر

Assist. Lec. Ali K. Hasan

Directorate General of Education in Karbala province /Ministry of Education, Iraq E-mail: almosaoy.ali@gmail.com

ABSTRACT:

we introduce the notion of intuitionistic fuzzy d-ideals of d-algebra and we investigate several interesting properties, and study some relation on intuitionistic fuzzy d-algebra . For the family of all intuitionistic fuzzy d-ideal of d-algebra we introduce the notion of equivalence and investigate some related properties .

Keywords: d-algebra, d-ideal, fuzzy d-ideal, intuitionistic fuzzy set, fuzzy set.

الخلاصة:

قدمنا في هذا البحث مفهوم مثالي d الضبابي البديهي مع تحقيق العديد من الخصائص المهمة ودرسنا بعض العلاقات على جبر d البديهي . وقدمنا مفهوم التكافؤ على عائلة من مثاليات d الضبابية البديهية وتحقيق بعض الخصائص ذات الصلة .

1. Introduction

BCK-algebra and BCI-algebra are two classes of abstract algebras introduced by Y. Imai and K. Iseki [4,11]. It is known that BCK-algebras is a proper subclass of BCI-algebras. A d-algebra is another useful generalization of BCK-algebra was introduced by J. Negger and H. S. Kim [2]. J. Negger, Y. B. Jun and H. S. Kim [3] discussed ideal theory in d-algebra. Zadeh introduced the concept of fuzzy set in 1965 [6]. In 1986 Atanassov introduced the concept of "intuitionistic fuzzy set [5] as a generalization of fuzzy set. In [9] Y. B. Jun, J. Neggers and H. S. Kim apply the ideal theory in fuzzy d-ideals of d-algebras. Y. B. Jun, H. S. Kim and D.S. Yoo in [10] introduced the notion of intuitionistic fuzzy d-algebra. In this paper we introduce the notion of intuitionistic fuzzy d-algebra we investigate several interesting properties, and study some relation on intuitionistic fuzzy d-algebra. For the family of all intuitionistic fuzzy d-ideal of d-algebra we introduce the notion of equivalence and investigate some properties.

2. Background

Definition (2.1): [2] A non-empty set X with a binary operation * and a constant 0 is called a dalgebra if it's satisfying the following:

```
i. x * x = 0
```

ii. 0 * x = 0

iii. x * y = 0 and y * x = 0 imply that x = y

 $\forall x, y \in X$. We will refer to x * y by xy, And $x \le y$ if and only if xy = 0.

Definition (2.2): [3] Let X be a d-algebra and $\phi \neq A \subseteq X$. Then A is called a d-subalgebra of X if $xy \in A$ whenever $x, y \in A$. And if $\phi \neq A \subseteq X$. Then A is called a BCK-ideal of X if it satisfies: (D_0) $0 \in A$

 (D_1) $xy \in A$ and $y \in A$ implies $x \in A$.

Definition (2.3):[3] In A d-algebra (X; *, 0) the $\phi \neq A \subseteq X$. A is called a d-ideal of X if it satisfies: $(D_1) xy \in A$ and $y \in A$ then $x \in A$.

 (D_2) $x \in A$ and $y \in X$ then $xy \in A$, i. e. $AX \subseteq A$.

Definition (2.4): [6] A fuzzy set μ in a non-empty set X is a function from X into the closed interval [0,1] of the real numbers. And If μ be a fuzzy set in X, for all $t \in [0,1]$. The set $\mu_t = \{x \in X, \mu(x) \ge t\}$ is called a *level subset of* μ .

Definition (2.5): [7] A fuzzy set μ in d-algebra X is called a fuzzy d-subalgebra of X if it satisfies $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$, $\forall x, y \in X$. And it's called a fuzzy BCK-ideal of X if it satisfies the following inequalities:

- 1) $\mu(0) \ge \mu(x)$, $\forall x \in X$
- 2) $\mu(x) \ge \min\{\mu(xy), \mu(y)\}, \forall x, y \in X$

Definition (2.6) : [9] Let μ be a fuzzy set in d-algebra X. Then, μ is called a fuzzy d-ideal of X if it satisfies :

$$(Fd_1) \ \mu(x) \ge \min\{\mu(xy), \mu(y)\}\ .$$

 $(Fd_2) \ \mu(xy) \ge \mu(x). \ \forall \ x, y \in X\ .$

Definition (2.7) [10]: For any $r \in [0,1]$ and a fuzzy set v in a non empty set of X, the set $U(v,r) = \{x : v(x) \ge r\}$ is called an upper r-level cut of v, and the set $L(v(x),r) = \{x : v(x) \le r\}$ is called a lower r-level cut of v.

Definition (2.8) [5]: An intuitionistic fuzzy set (IFS for short) A in a set X is an object having the form $A = \{ \langle x, \alpha_A(x), \beta_A(x) \rangle : x \in X \}$, such that $\alpha_A: X \to [0,1]$ and $\beta_A: X \to [0,1]$ denoted the degree of membership (namely $\alpha_A(x)$) and the degree of non membership (namely $\beta_A(x)$) for any elements $x \in X$ to the set A, and $0 \le \alpha_A(x) + \beta_A(x) \le 1$, $\forall x \in X$.

For the sake of simplicity, we shall use the notation $A = \{ \langle x, \alpha_A, \beta_A \rangle \}$ instead of $A = \{ \langle x, \alpha_A(x), \beta_A(x) \rangle : x \in X \}$.

Definition (2.9) [1]: Let f be a mapping from a set X to a set Y, if $B = \{ \langle y, \alpha_B(y), \beta_B(y) \rangle : y \in Y \}$ is an IFS in Y, then the pre-image of B under f denoted by $f^{-1}(B)$ is the IFS in X defined by : $f^{-1}(B) = \{ \langle x, f^{-1}(\alpha_B(x)), f^{-1}(\beta_B(x)) \rangle : x \in X \}$

such that $f^{-1}(\alpha_B(x)) = \alpha_B(f(x))$ and also $f^{-1}(\beta_B(x)) = \beta_B(f(x))$

And if $A = \{\langle x, \alpha_A(x), \beta_A(x) \rangle : x \in X\}$ is an *IFS* in X, then the image of A under f denoted by $f(A) = \{\langle y, f_{sup}(\alpha_A(y)), f_{inf}(\beta_A(y)) \rangle : y \in Y\}$, where

$$f_{sup}(\alpha_{A}(y)) = \begin{cases} sup_{x \in f^{-1}(y)} \alpha_{A}(x) & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}, \text{ and}$$

$$f_{inf}(\beta_{A}(y)) = \begin{cases} inf_{x \in f^{-1}(y)} \beta_{A}(x) & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{otherwais} \end{cases} \text{ for each } y \in Y.$$

Definition (2.10) [8]: Let X be a non empty set. IF, A is an IFS from X, then

(i)
$$\Box A = \{ \langle x, \alpha_A(x) : x \in X \rangle \} = \{ \langle x, \alpha_A(x), 1 - \alpha_A(x) : x \in X \rangle \} = \{ \langle x, \alpha_A(x), \overline{\alpha_A}(x) \rangle \}$$

(ii) $\Diamond A = \{ \langle x, 1 - \beta_A(x) \rangle : x \in X \} = \{ \langle x, 1 - \beta_A(x), \beta_A(x) : x \in X \} = \{ \langle x, \overline{\beta_A}(x), \beta_A(x) \rangle \}$

Definition (2.11) [10] : Let X be a d-algebra.

An *IFS* $A = \langle x, \alpha_A, \beta_A \rangle$ in X is called an intuitionistic fuzzy d-algebra if satisfies $\alpha_A(xy) \ge \min\{\alpha_A(x), \alpha_A(y) \text{ and } \beta_A(xy) \le \max\{\beta_A(x), \beta_A(y)\}$, for all $x, y \in X$.

Proposition(2.12)]10]:Every *IFS* d-algebra $A = \langle x, \alpha_A, \beta_A \rangle$ of X satisfies the inequalities $\alpha_A(0) \geq \alpha_A(x)$ and $\beta_A(0) \leq \beta_A(x)$ for all $x \in X$.

Definition (2.13) [10]: An *IFS A* = $< \alpha_A, \beta_A >$ in *X is called* an intuitionistic fuzzy BCK-ideal of *X* if it satisfies the following inequalities :

- (i) $\alpha_A(0) \ge \alpha_A(x)$, $\beta_A(0) \le \beta_A(x)$
- (ii) $\alpha_A(x) \ge \min\{\alpha_A(xy), \alpha_A(y)\}\$
- (iii) $\beta_A(x) \le \max\{\beta_A(xy), \beta_A(y)\}\$, for a $x, y \in X$

3. Intuitionistic fuzzy d-ideal

In what follows let *X* denoted a d-algebra

Definition(3.1): An intuitionistic fuzzy d-ideal of X "shortly IFd-ideal" is the IFS $A=<\alpha_A,\beta_A>$ in X with the following inequalities:

 $(IFd_1) \alpha_A(x) \ge \min\{\alpha_A(xy), \alpha_A(y)\}\$

 $(IFd_2) \beta_A(x) \le \max\{\beta_A(xy), \beta_A(y)\}\$

 $(IFd_3) \ \alpha_A(xy) \ge \alpha_A(x)$

 $(IFd_4) \beta_A(xy) \le \beta_A(x)$ for all $x, y \in X$

Example (3.2): Let $X = \{0, p, q\}$ with the following table

*	0	р	q
0	0	0	0
р	q	0	q
q	р	р	0

Note that if
$$\alpha_A(x) = \begin{cases} 0.9 & if x = 0 \\ 0.01 & if x = 1,2 \end{cases}$$
, $\beta_A(x) = \begin{cases} 0.1 & if x = 0 \\ 0.5 & if x = 1,2 \end{cases}$,

then $A = <\alpha_A, \beta_A >$ is an IFd-ideal of X.

Proposition(3.3): If IFS $A = <\alpha_A, \beta_A >$ is an IFd – ideal of X, then $\alpha_A(0) \ge \alpha_A(x)$, $\beta_A(0) \le \beta_A(x)$ for all $x \in X$.

proof: since $\alpha_A(xx) \ge \alpha_A(x)$ so $\alpha_A(0) \ge \alpha_A(x)$ and since $\beta_A(xx) \le \beta_A(x)$ so $\beta_A(0) \le \beta_A(x)$, for all $x \in X$.

Lemma (3.4): Let an *IFS* $A = \langle \alpha_A, \beta_A \rangle$ in X be an IFd - ideal of X, If $ab \leq c$, then $\alpha_A(a) \geq \min\{\alpha_A(b), \alpha_A(c)\}$, $\beta_A(a) \leq \max\{\beta_A(b), \beta_A(c)\}$.

proof: Let $a, b, c \in X$ such that $ab \le c$. Then (ab)c = 0

 $\alpha_A(a) \ge \min\{\alpha_A(ab), \alpha_A(b)\} \ge \min\{\min\{\alpha_A((ab)c), \alpha_A(c)\}, \alpha_A(b)\}$

 $\geq \min\{\min\{\alpha_A(0), \alpha_A(c)\}, \alpha_A(b)\} \geq \min\{\alpha_A(c), \alpha_A(b)\}.$

 $\beta_A(a) \le \max\{\beta_A(ab), \beta_A(b)\} \le \max\{\max\{\beta_A((ab)c), \beta_A(c)\}, \beta_A(b)\}$ $\le \max\{\max\{\beta_A(0), \beta_A(c)\}, \beta_A(b)\} = \max\{\beta_A(c)\}, \beta_A(b)\}.$

Lemma (3.5): Let $A = <\alpha_A, \beta_A >$ be an IFd-ideal of X If $x \le y$ in X, then $\alpha_A(x) \ge \alpha_A(y)$, $\beta_A(x) \le \beta_A(y)$.

proof: Let $x, y \in X$ such that $x \le y$. Then xy = 0, and

 $\alpha_A(x) \ge \min\{\alpha_A(xy), \alpha_A(y)\} = \min\{\alpha_A(0), \alpha_A(y)\} = \alpha_A(y)$

 $\beta_A(x) \le \max\{\beta_A(xy), \beta_A(y)\} = \max\{\beta_A(0), \beta_A(y)\} = \beta_A(y)$.

This complete the proof.

Theorem (3.6): If $A = <\alpha_A, \beta_A >$ is an IFd-ideal of X then for any $x, c_1, c_2, ..., c_n \in X$, such that $(...(xc_1)c_2)...)c_n = 0$ implies

 $\alpha_A(x) \geq \min\{\alpha_A(c_1), \alpha_A(c_2), \dots, \alpha_A(c_n)\}, \text{ and } \beta_A(x) \leq \max\{\beta_A(c_1), \beta_A(c_2), \dots, \beta_A(c_n)\}$

proof: By using inducation on n and lemma 3.4 and 3.5.

Theorem (3.7): Every IFd - ideal is an intuitionistic fuzzy d-algebra

proof: Let
$$A = <\alpha_A, \beta_A >$$
 be an $IFd-ideal$, so $\alpha_A(xy) \ge \alpha_A(x)$, and $\beta_A(xy) \le \beta_A(x)$, then $\alpha_A(xy) \ge \alpha_A(x) \ge \min\{\alpha_A(xy), \alpha_A(y)\} \ge \min\{\alpha_A(x), \alpha_A(y)\}$

 $\beta_A(xy) \le \beta_A(x) \le \max\{\beta_A(xy), \beta_A(y)\} \le \max\{\beta_A(x), \beta_A(y)\}.$

The converse of this theorem is not true in general and the next example showing that

Example (3.8): Let $X = \{0, r, s, t\}$ with the following table :

*	0	r	S	t
0	0	0	0	0
r	r	0	0	r
S	S	r	0	S
t	t	t	t	0

$$\alpha_A(x) = \begin{cases} 0.7 & if x = 0, r, t \\ 0.3 & if x = s \end{cases}, \ \beta_A(x) = \begin{cases} 0.2 & if x = 0, r, t \\ 0.5 & if x = s \end{cases}$$

 $\begin{array}{l} \textit{Let } A = <\alpha_A, \beta_A> \text{ be an } \textit{IFS} \text{ in } \textit{X} \text{ , } \textit{define} \\ \alpha_A(x) = \begin{cases} 0.7 & \textit{if } x=0,r,t \\ 0.3 & \textit{if } x=s \end{cases}, \ \beta_A(x) = \begin{cases} 0.2 & \textit{if } x=0,r,t \\ 0.5 & \textit{if } x=s \end{cases}, \\ \textit{It's clear that } A = <\alpha_A, \beta_A> \text{ is an intuitionistic fuzzy d-algebra , } \textit{but } \beta_A(s) = 0.5 > 0.2 = 1.5 \end{aligned}$ $\max\{\beta_A(sr), \beta_A(r)\}\$, so $A = <\alpha_A, \beta_A > is not IFd - ideal.$

Theorem (3.9): Every IFd - ideal in X is an intuitionistic fuzzy BCK-ideal **proof:** It's clear.

The converse of This theorem is not true in general and the next example showing that

Example (3.10): Let $X = \{0, m, n, p, q\}$ with the following cayley table

*	0	m	n	p	q
0	0	0	0	0	0
m	m	0	0	m	0
n	n	n	0	0	n
p	p	p	p	0	p
q	q	p	p	p	0

$$Let \ A = <\alpha_A, \beta_A> \ be \ an \ IFS \ in \ X \ , \ define \\ \alpha_A(x) = \begin{cases} 0.5 & if \ x\neq p \\ 0.03 & if \ x=p \end{cases} \ , \ \ \beta_A(x) = \begin{cases} 0.05 & if \ x\neq p \\ 0.3 & if \ x=p \end{cases} \ ,$$

Then $A=<\alpha_A,\beta_A>$ in X is an intuitionistic fuzzy BCK-ideal of X but it is not an IFd-ideal, since $\alpha_A(q*p) = \alpha_A(p) = 0.03 \le \alpha_A(q) = 0.5$, and $\beta_A(q*p) = \beta_A(p) = 0.3 \ge \beta_A(q) = 0.05$.

Theorem (3.11): If $\{A_i, i \in \Lambda\}$ is an arbitrary family of IFd-ideal of d-algebra, then $\bigcap A_i$ is an $IFd-ideal \text{ of d-algebra, when } \cap A_i = \{< x, \wedge \alpha_{A_i}(x) \text{ ,} \forall \beta_{A_i}(x) \mid x \in X\}$

 $\mathbf{Proof}: \mathrm{Since}\ \alpha_A(x) \geq \min\{\alpha_A(xy), \alpha_A(y)\}\ \mathrm{and}\ \beta_A(x) \leq \max\{\beta_A(xy), \beta_A(y)\}\ \mathrm{for\ all}\ x,y \in X\ .$ Now for all $i \in \Lambda$

$$\bigwedge \alpha_{A_i}(x) \ge \bigwedge \{\min \{\alpha_{A_i}(xy), \alpha_{A_i}(y)\}\} \ge \{\min \{\bigwedge \alpha_{A_i}(xy), \bigwedge \alpha_{A_i}(y)\}\}$$
, and

$$\forall \beta_{A_i}(x) \leq \forall \{\max\{\beta_{A_i}(xy), \beta_{A_i}(y)\}\} \leq \{\max\{\forall \beta_{A_i}(xy), \forall \beta_{A_i}(y)\}\}$$

And since $\alpha_A(xy) \ge \alpha_A(x)$, $\beta_A(xy) \le \beta_A(x)$ for all $i \in \Lambda$. Then we have

Lemma (3.12): An *IFS* $A = <\alpha_A, \beta_A >$ is an IFd-ideal of X if and only if the fuzzy set α_A and $\overline{\beta_A}$ are a fuzzy d-ideal.

proof: Let $A = <\alpha_A, \beta_A>$ be an IFd-ideal of X. It is easy to show α_A is a fuzzy d-ideal of X. For any $x,y\in X$ we have

$$\overline{\beta_A}(x) = 1 - \beta_A(x) \ge 1 - \max\{\beta_A(xy), \beta_A(y)\}$$

$$= \min\{1 - \beta_A(xy), 1 - \beta_A(y)\}$$

$$= \min\{\overline{\beta_A}(xy), \overline{\beta_A}(y)\}$$

And $\overline{\beta_A}(xy) = 1 - \overline{\beta_A}(xy) \ge 1 - \overline{\beta_A}(x) = \overline{\beta_A}(x)$

Hence $\overline{\beta_A}$ is a fuzzy d-ideal of X.

Conversely , let α_A and $\overline{\beta_A}$ are fuzzy d-ideal of X . For any $x,y\in X$ we get

$$\alpha_A(x) \ge \min\{\alpha_A(xy), \alpha_A(y)\}$$

$$1 - \beta_A(x) = \overline{\beta_A}(x) = (x) \ge \min\{\overline{\beta_A}(xy), \overline{\beta_A}(y)\}$$

$$= \min\{1 - \beta_A(xy), 1 - \beta_A(y)\}$$

$$= 1 - \max\{\beta_A(xy), \beta_A(y)\}$$

That is $\beta_A(x) \le \max\{\beta_A(xy), \beta_A(y)\}$.

Now, $\alpha_A(xy) \ge \alpha_A(x)$ and $\overline{\beta_A}(xy) \ge \overline{\beta_A}(x)$ so $1 - \beta_A(xy) \ge 1 - \beta_A(x)$ and then $\overline{\beta_A}(xy) \le \overline{\beta_A}(x)$

Hence $A = <\alpha_A, \beta_A > \text{ is an } IFd - ideal \text{ of } X.$

Theorem (3.13): Let $A = \langle \alpha_A, \beta_A \rangle$ be an *IFS* in X. Then $A = \langle \alpha_A, \beta_A \rangle$ is an IFd - ideal of X if and only if $\Box A = \{\langle \alpha_A, \overline{\alpha_A} \rangle\}$ and $\Diamond A = \{\langle \overline{\beta_A}, \beta_A \rangle\}$ are IFd - ideal of X.

proof: If $A = \langle \alpha_A, \beta_A \rangle$ is an IFd-ideal of X, then $\alpha_A = \overline{\alpha_A}$ and β_A are fuzzy d-ideal of X from Lemma (3.12), Hence $\Box A = \{\langle \alpha_A, \overline{\alpha_A} \rangle\}$ and $\Diamond A = \{\langle \overline{\beta_A}, \beta_A \rangle\}$ are IFd-ideal of X. Conversely, if $\Box A = \{\langle \alpha_A, \overline{\alpha_A} \rangle\}$ and $\Diamond A = \{\langle \overline{\beta_A}, \beta_A \rangle\}$ are IFd-ideal of X, then the fuzzy set α_A and $\overline{\beta_A}$ are a fuzzy d-ideal of X. Hence $A = \langle \alpha_A, \beta_A \rangle$ is an IFd-ideal of X.

Theorem (3.14) An IFS $A = <\alpha_A$, $\beta_A >$ is an IFd - ideal of X if and only if for all $s, t \in [0,1]$ the sets $U(\alpha_A, t)$ and $L(\beta_A(x), s)$ are either empty or d-ideal of X.

proof: Let $A = <\alpha_A, \beta_A > IFd - ideal$ of X and $U(\alpha_A, t), L(\beta_A, s)$ non empty set for any $s, t \in [0,1]$. Let $x, y \in X$ such that $xy \in U(\alpha_A, t)$ and $y \in U(\alpha_A, t)$, so $\alpha_A(xy) \ge t$, and $\alpha_A(y) \ge t$ then $\alpha_A(x) \ge \min\{\alpha_A(xy), \alpha_A(y)\} \ge t$, so that $x \in U(\alpha_A, t)$. And let $x \in U(\alpha_A, t)$ and $y \in X$. Then $\alpha_A(x) \ge t$ and $\alpha_A(xy) \ge t$, so $xy \in U(\alpha_A, t)$. Hence $U(\alpha_A, t)$ is a d-ideal in X.

Now, If $x, y \in X$ such that $xy \in L(\beta_A, s)$ and $y \in L(\beta_A, s)$, then $\beta_A(xy) \le s$ and $\beta_A(y) \le s$, we get $\beta_A(x) \le \max\{\beta_A(xy), \beta_A(y)\} \le s$, so that $x \in L(\beta_A, s)$. And let $x \in L(\beta_A, s)$ and $y \in X$. Then $\beta_A(x) \le s$ and $\beta_A(xy) \le \beta_A(x) \le s$, so $xy \in L(\beta_A, s)$. Hence $L(\beta_A, s)$ is a d-ideal in X.

Conversely , suppose that for any $s,t\in[0,1]$, the set $U(\alpha_A,t)$ and $L(\beta_A,s)$ are either empty or dideal of X . For all $x\in X$, let $\alpha_A(x)=t$ and $\beta_A(x)=s$. we get $x\in U(\alpha_A,t)\cap L(\beta_A,s)$ and so $U(\alpha_A,t),L(\beta_A,s)$ are non empty set. Since $U(\alpha_A,t)$ and $L(\beta_A,s)$ are d-ideal , if there exist $a,b\in X$ such that $\alpha_A(a)<\min\{\alpha_A(ab),\alpha_A(b)\}$, then by taken $t_0=\frac{1}{2}(\alpha_A(a)+\min\{\alpha_A(ab),\alpha_A(b)\})$, we have $\alpha_A(a)< t_0<\min\{\alpha_A(ab),\alpha_A(b)\}$. Hence $a\notin U(\alpha_A,t_0)$, $ab\in U(\alpha_A,t_0)$ and $b\in U(\alpha_A,t_0)$. Thus $U(\alpha_A,t_0)$ is not a d-ideal of X, we get a contradiction .

Now, let $\alpha_A(ab) < \alpha_A(a)$. Then taking $t_0 = \frac{1}{2}(\alpha_A(ab) + \alpha_A(a))$, we have $\alpha_A(ab) < t_0 < \alpha_A(a)$. Hence $a \in U(\alpha_A, t_0)$ and $b \in X$, but $ab \notin U(\alpha_A, t_0)$. So $U(\alpha_A, t_0)$ is not dideal we get a contradiction.

Finally, suppose that $a, b \in X$ such that $\beta_A(a) > \max\{\beta_A(ab), \beta_A(b)\}$.

put $s_0 = \frac{1}{2}(\beta_A(a) + \max\{\beta_A(ab), \beta_A(b)\})$. So $\max\{\beta_A(ab), \beta_A(b)\} < s_0 < \beta_A(a)$, there are $ab \in L(\beta_A, s_0)$, $b \in L(\beta_A, s_0)$, but $a \notin L(\beta_A, s_0)$, a contradiction. And let $a, b \in X$ such that $\beta_A(ab) > \beta_A(a)$. Then taking $s_0 = \frac{1}{2}(\beta_A(ab) + \beta_A(a))$. We have

 $\beta_A(a) < s_0 < \beta_A(ab)$, therefore $a \in L(\beta_A, s_0)$, and $b \in X$, but $ab \notin L(\beta_A, s_0)$ which is a contradiction. The proof is completed.

Theorem (3.15): If an *IFS* $A = \langle \alpha_A, \beta_A \rangle$ is an *IFd* -ideal of X, then the sets $X_{\alpha} = \{x \in X : \alpha_A(x) = \alpha_A(0)\}$ and $X_{\beta} = \{x \in X : \beta_A(x) = \beta_A(0)\}$ are d-ideal of X.

proof: Let $x,y \in X$, let $xy \in X_{\alpha}$ and $y \in X_{\alpha}$. Then $\alpha_A(xy) = \alpha_A(0) = \alpha_A(y)$, so $\alpha_A(x) \ge \min\{\alpha_A(xy), \alpha_A(y)\} = \alpha_A(0)$, by proposition (3.3) we get $\alpha_A(x) = \alpha_A(0)$, thus $x \in X_{\alpha}$. Let $x \in X_{\alpha}$ and $y \in X$. Then $\alpha_A(x) = \alpha_A(0)$ and so $\alpha_A(xy) \ge \alpha_A(x) = \alpha_A(0)$, so by using proposition (3.3) we get $\alpha_A(xy) = \alpha_A(0)$. Then $xy \in X_{\alpha}$. Thus X_{α} is a d-ideal.

Now let $xy \in X_{\beta}$ and $y \in X_{\beta}$. Then $\beta_A(xy) = \beta_A(0) = \beta_A(y)$, so $\beta_A(x) \le \max\{\beta_A(xy), \beta_A(y)\} = \beta_A(0)$, by using proposition (3.3) we get $\beta_A(x) = \beta_A(0)$, and we get $x \in X_{\beta}$. Let $x \in X_{\beta}$, and $y \in X$. Then $\beta_A(x) = \beta_A(0)$ and so $\beta_A(xy) \le \beta_A(x) = \beta_A(0)$, so by using proposition (3.3) we get $\beta_A(xy) = \beta_A(0)$. Then $xy \in X_{\beta}$. Thus X_{β} is a d-ideal.

Theorem (3.16): Any d-ideal of X can be realized as both $\alpha - level$ d-ideal and $\beta - level$ d-ideal of some IFd - ideal of X.

proof: Let J be a d-ideal of X and let α_A and β_A be a fuzzy sets in X define by

$$\alpha_A(x) = \begin{cases} t & if x \in J \\ 0 & otherwise \end{cases}, \quad \beta_A(x) = \begin{cases} s & if x \in J \\ 1 & otherwise \end{cases}$$

for any $x \in X$ where t and s are fixed number in (0,1) such that t+s < 1. Let $x,y \in X$, and let $xy \in J$ and $y \in J$, then $x \in J$. Hence $\alpha_A(x) \ge \min\{\alpha_A(xy), \alpha_A(y)\}$ and $\beta_A(x) \le \max\{\beta_A(xy), \beta_A(y)\}$. And if $x \in J$, and $y \in X$ then $xy \in J$, so $\alpha_A(xy) \ge \alpha_A(x)$ and $\alpha_A(xy) \le \beta_A(x)$. Thus $A = <\alpha_A, \beta_A >$ is an $A = <\alpha_A, \beta_A >$ is and the proof is completed .

Theorem (3.17): Let $\{J_t : t \in I\}$ be a family of d-ideal of X such that $i \mid X = \bigcup_{t \in I} J_t$

ii) s > t if and only if $J_s \subset J_t$ for all $s, t \in I$.

Then an IFS $A = <\alpha_A, \beta_A > \text{in } X$ define by $\alpha_A(x) = \sup\{J_t : t \in I\}$; $\beta_A(x) = \inf\{J_t : t \in I\}$, for all $x \in X$ is an IFd - ideal of X.

proof: It is clear that $U(\alpha_A, t)$ and $L(\beta_A, s)$ are d-ideal of X (by theorem (3.14)), let $t \in [0, \alpha_A(0)]$, and $s \in [\beta_A(0), 1]$. we need to prove That $U(\alpha_A, t)$ is a d-ideal of X we discuse two cases:

 $1) t = \sup\{i \in I : i < t\}$

2) $t \neq \sup\{i \in I : i < t\}$

In the first case we can show that $x \in U(\alpha_A, t) \Leftrightarrow x \in J_i$ for all $i < t \Leftrightarrow x \in \bigcap_{i < t} J_i$. Thus $U(\alpha_A, t) = \bigcap_{i < t} J_i$ is a d-ideal of X.

In the second case, let $U(\alpha_A,t) = \bigcup_{i \geq t} J_i$, if $x \in \bigcup_{i \geq t} J_i$ then $x \in J_i$ for some $i \geq t$. So we get $\alpha_A(x) \geq i \geq t$, so that $x \in U(\alpha_A,t)$. Thus $\bigcup_{i \geq t} J_i \subset U(\alpha_A,t)$. Now let $x \notin \bigcup_{i \geq t} J_i$. So $x \notin J_i$ for all $i \geq t$. But in this case $t \neq \sup\{i \in I : i < t\}$, so there exist

 $\epsilon > 0$ such that $(t - \epsilon, t) \cap I = \emptyset$. Hence $x \notin J_i$ for all $i > t - \epsilon$, Since if $x \in J_i$, then $i \le t - \epsilon$. Thus $\alpha_A(x) \le t - \epsilon \le t$ and so $x \notin U(\alpha_A, t)$. Therefore $U(\alpha_A, t) \subset \bigcup_{i \ge t} J_i$. Thus $U(\alpha_A, t) = \bigcup_{i > t} J_i$ which is a d-ideal of X.

Now we need prove That $L(\beta_A, s)$ is a d-ideal of X, and also we have two cases:

i) $s = \inf\{j \in I : s < j\}$

ii) $s \neq \inf \{ j \in I : s < j \}$

In the first case we have $x \in L(\beta_A, s) \Leftrightarrow x \in J_j$ for any $s < j \Leftrightarrow x \in \bigcap_{s < j} J_j$. So $L(\beta_A, s) = \bigcap_{s < j} J_j$ is a d-ideal of X.

In the case (ii) , there exist $\epsilon > 0$ such that $(s, s + \epsilon,) \cap I = \emptyset$ we need to prove that $L(\beta_A, s) = \bigcup_{s \geq j} J_j$, if $x \in \bigcup_{s \geq j} J_j$, so $x \in J_j$ for some $j \leq s$. then $\beta_A(x) \leq j \leq s$, and we get $x \in L(\beta_A, s)$. Therefore $\bigcup_{s \geq j} J_j \subset L(\beta_A, s)$.

In the Converse side if $x \notin \bigcup_{s \ge j} J_j$. Then $x \notin J_j$ for any $j \le s$, we get $x \notin J_j$ for all $j > s + \epsilon$, which means that if $x \in J_j$, then $j \ge s + \epsilon$. Hence $\beta_A(x) \ge s + \epsilon \ge s$ so $x \notin L(\beta_A, s)$. Thus $L(\beta_A, s) \subset \bigcup_{s \ge j} J_j$. So $L(\beta_A, s) = \bigcup_{s \ge r} I_r$ which is a d-ideal of X. The proof is completed.

Theorem (3.18): If f be a d-homorphism function from d-algebra X into a d-algebra Y and D an IFd-ideal of Y. Then $f^{-1}(D)$ is an IFd-ideal in X.

proof: For any $x, y \in X$, we have

$$\begin{split} \alpha_{f^{-1}(D)}(xy) &= \alpha_D(f(xy)) = \alpha_D(f(x)f(y)) \geq \alpha_D(f(x)) = \alpha_{f^{-1}(D)}(x) \text{ and} \\ \beta_{f^{-1}(D)}(xy) &= \beta_D\big(f(xy)\big) = \beta_D(f(x)f(y)) \leq \beta_D\big(f(x)\big) = \beta_{f^{-1}(D)}(x) \text{ , and we have} \\ \min & \{\alpha_{f^{-1}(D)}(xy), \alpha_{f^{-1}(D)}(y)\} = \min \{\alpha_D(f(xy)), \alpha_D(f(y))\} \\ &= \min \{\alpha_D(f(x)f(y)), \alpha_D(f(y))\} \\ &\leq \alpha_D(f(x)) = \alpha_{f^{-1}(D)}(x) \end{split}$$
 and
$$\max \{\beta_{f^{-1}(d)}(xy), \beta_{f^{-1}(D)}(y)\} = \max \{\beta_D(f(xy)), \beta_D(f(y))\} \\ &= \max \{\beta_D(f(x)f(y)), \beta_D(f(y))\} \end{split}$$

Hence $f^{-1}(D)$ is an IFd-ideal of X.

Theorem (3.19): Let f be a d-homorphism function, from d-algebra X into d-algebra Y and let $A = <\alpha_A, \beta_A>$ be an IFS in Y. If $f^{-1}(A)=<\alpha_{f^{-1}(A)}, \beta_{f^{-1}(A)}>$ is an IFd-ideal of X, then $A = <\alpha_A, \beta_A>$ is an IFd-ideal of Y.

 $\geq \beta_D(f(x)) = \beta_{f^{-1}(D)}(x)$

proof: Let $x,y \in Y$. Then f(a) = x and f(b) = y for some $a,b \in X$. It follow that $\alpha_A(x) = \alpha_A(f(a)) = \alpha_{f^{-1}(A)}(a) \ge \min\{\alpha_{f^{-1}(A)}(ab), \alpha_{f^{-1}(A)}(b)\}$

$$= \min\{\alpha_{a}(f(ab)), \alpha_{A}(f(b))\}$$

$$= \min\{\alpha_{a}(f(a)f(b)), \alpha_{A}(f(b))\}$$

$$= \min\{\alpha_{a}(xy), \alpha_{A}(y)\}$$

$$\beta_{A}(x) = \beta_{A}(f(a)) = \beta_{f^{-1}(A)}(a) \le \max\{\beta_{f^{-1}(A)}(ab), \beta_{f^{-1}(A)}(b)\}$$

$$= \max\{\beta_{A}(f(ab)), \beta_{A}(f(b))\}$$

$$= \max\{\beta_{A}(xy), \beta_{A}(y)\}.$$

Now

$$\alpha_A(xy) = \alpha_A(f(a)f(b)) = \alpha_A(f(ab)) = \alpha_{f^{-1}(A)}(ab) \ge \alpha_{f^{-1}(A)}(a) = \alpha_a(f(a)) = \alpha_a(x)$$

 $\beta_A(xy) = \beta_A(f(a)f(b)) = \beta_A(f(ab)) = \beta_{f^{-1}(A)}(ab) \le \beta_{f^{-1}(A)}(a) = \beta_A(f(a)) = \beta_A(x)$
And the proof is completed.

For any family of IFd-ideal of X shortly IF(X). IF $A=<\alpha_A,\beta_A>$ and $B=<\alpha_B,\beta_B>$ are IFS in IF(X), we can define binary relations U^t and L^t on IF(X) and $t\in [0,1]$ as follows: $(A,B)\in U^t \Leftrightarrow U(\alpha_A,t)=U(\alpha_B,t)$ and $(A,B)\in L^t \Leftrightarrow L(\beta_A,t)=L(\beta_B,t)$. It is clear that U^t and L^t are equivalence relation on IF(X).

If $A = <\alpha_A, \beta_A > \in IF(X)$, so $[A]_{U^t}$ (respectively $[A]_{L^t}$) is the equivalence class of A modulo U^t (respectively L^t), and denoted by $IF(X)/U^t$ (respectively $IF(X)/L^t$). so $IF(X)/U^t = \{[A]_{U^t} : A = <\alpha_A, \beta_A > \in IF(X)\}$, (respectively $IF(X)/L^t = \{[A]_{L^t} : A = <\alpha_A, \beta_A > \in IF(X)\}$).

We will denote for a family of all d-ideal of X by I(X) and for $t \in [0,1]$, let f_t and g_t be maps from IF(X) to $I(X) \cup \emptyset$ defined by $f_t(A) = U(\alpha_A, t)$ and $g_t(A) = L(\beta_A, t)$, for all $A = <\alpha_A, \beta_A > \in IF(X)$, then f_t and g_t are clearly well define.

Theorem (3.20): For any $t \in (0,1)$ the maps f_t and g_t are surjective from IF(X) to $I(X) \cup \emptyset$.

proof: Let $t \in (0,1)$. for a fuzzy set 0 define by 0(x) = 0 and 1 defined by 1(x) = 1 for all $x \in X$ It clear that $0_{\sim} = (0,1)$ in IF(X), and $f_t(0_{\sim}) = U(0,t) = \emptyset = L(1,t) = g_t(0_{\sim})$.

Let $D(\neq \emptyset) \in I(X)$. For $D_{\sim} = (X_D, \tilde{X}_D) \in IF(X)$, we have $f_t(D_{\sim}) = U(X_D, t) = D$ and $g_t(D_{\sim}) = L(\tilde{X}_D, t) = D$. The proof is completed.

When there exists a one - to one corresponding whose domain is a set A and whose range is a set B. This set A is said to be equipotent to B, and this relation is an equivalence relation.

Theorem (3.21): For any $t \in (0,1)$ the quotient sets $IF(X)/U^t$ and $IF(X)/L^t$ are equipotent to $I(X) \cup \emptyset$.

proof: For $t \in (0,1)$, Let $f_t^*: IF(X)/U^t \to I(X) \cup \emptyset$ a map defined by $f_t^*([A]_{U^t}) = f_t(A)$ for all $A = <\alpha_A, \beta_A > \in IF(X)$. If $U(\alpha_A, t) = U(\alpha_B, t)$ and $L(\beta_A, t) = L(\beta_B, t)$ for $A = <\alpha_A, \beta_A >$ and $B = <\alpha_B, \beta_B >$ in IF(X), then $(A, B) \in U^t$ and $(A, B) \in L^t$. Hence $[A]_{U^t} = [B]_{U^t}$ and $[A]_{L^t} = [B]_{L^t}$. So f_t^* is injective.

Now , Let $D(\neq \emptyset) \in I(X)$. For $D_{\sim} = (X_D, \tilde{X}_D) \in IF(X)$. Then we get $f_t^*([D_{\sim}]_{U^t}) = f_t(D_{\sim}) = U(X_D, t) = D$. Finally, for $0_{\sim} = (0,1)$ is in sets IF(X) we have $f_t^*([0_{\sim}]_{U^t}) = f_t(0_{\sim}) = U(0, t) = \emptyset$. Thus f_t^* is surjective .

In the same way we can prove that g_t^* is surjective map and this. and the proof is competed

We can define R^t as a relation on IF(X) for any $t \in [0,1]$ as follows:

 $(A,B) \in R^t \iff U(\alpha_A,t) \cap L(\beta_A,t) = U(\alpha_B,t) \cap L(\beta_B,t)$ for $A = <\alpha_A,\beta_A>$ and $B = <\alpha_B,\beta_B>$ in IF(X). And R^t is an equivalence relation on IF(X).

Theorem (3.22): Let $t \in (0,1)$. Then $\emptyset_t: IF(X) \to I(X) \cup \emptyset$ is a surjective map defined by $\emptyset_t(A) = f_t(A) \cap g_t(A)$ for any $A = \langle \alpha_A, \beta_A \rangle \in IF(X)$.

proof: Let $0_{\sim} = (0,1) \in IF(X)$, so $\emptyset_t(0_{\sim}) = f_t(0_{\sim}) \cap g_t(0_{\sim}) = U(0,t) \cap L(1,t) = \emptyset$ for any $t \in (0,1)$. Now let $C \in IF(X)$, so we get $C_{\sim} = (X_C, \tilde{X}_C) \in IF(X)$, such that $\emptyset_t(C_{\sim}) = f_t(C_{\sim}) \cap g_t(C_{\sim}) = U(X_C,t) \cap L(\tilde{X}_C,t) = C$.

Theorem (3.23): The quotient sets $IF(X)/R^t$ are equipotent to $I(X) \cup \emptyset$, for any $t \in (0,1)$

proof: Let the map $\emptyset_t^*: IF(X)/R^t \to I(X) \cup \emptyset$ defined by $\emptyset_t^*([A]_{R^t}) = \emptyset_t(A)$

for all $[A]_{R^t} \in IF(X)/R^t$ and for any $t \in (0,1)$. If $\emptyset_t^*([A]_{R^t}) = \emptyset_t^*([B]_{R^t})$ for any $[A]_{R^t} = [B]_{R^t} \in IF(X)/R^t$, so we get $f_t(A) \cap g_t(A) = f_t(B) \cap g_t(B)$, and this give that $U(\alpha_A, t) \cap L(\beta_A, t) = U(\alpha_B, t) \cap L(\beta_B, t)$

Thus $(A, B) \in \mathbb{R}^t$, and we get $[A]_{\mathbb{R}^t} = [B]_{\mathbb{R}^t}$ and $[A]_{L^t} = [B]_{L^t}$. So \emptyset_t^* is injective.

Now if $0_{\sim} = (0,1) \in IF(X)$, we have

 $\emptyset_t^*(0_{\sim}) = \emptyset_t(0) = f_t(0_{\sim}) \cap g_t(0_{\sim}) = U(0,t) \cap L(1,t) = \emptyset$

and if $C \in IF(X)$, there exist $C_{\sim} = (X_C, \tilde{X}_C) \in IF(X)$, such that

$$\emptyset_t^*(C_{\sim}) = [C_{\sim}]_{R^t} = \emptyset_t(C_{\sim}) = f_t(C_{\sim}) \cap g_t(C_{\sim}) = U(X_{C_t}t) \cap L(\tilde{X}_{C_t}t) = C$$

Hence \emptyset_t^* is surjective, and this complete the proof.

REFERENCES

- [1] D. Coker, "An introduction to intuitionistic fuzzy topological spaces", Fuzzy Sets and Systems 88 (1997), 81–89.
- [2] J. Neggers and H. S. Kim, " on d-algebra ", Math. Slovaca . 49(1999) No.1, 19-26.
- [3] J. Neggers; Y. B. Jun; H. S. Kim, "On d-ideals in d-algebras", Mathematica Slovaca. 49 (1999), No. 3, 243--251
- [4] K. Iseki, "An algebra Relation with Propositional Calculus" Proc. Japan Acad, 42 (1966) 26-29.
- [5] K. T. Atanassov, "Intuitionistic fuzzy sets", Fuzzy sets and Systems 35 (1986), 87–96.
- [6] L. A. Zadeh, "Fuzzy set ",Inform. And Control. 8(1965), 338-353.
- [7] M. Akram K. H. Dar "On Fuzzy d-algebras", Journal of Mathematics 37(2005), 61-76
- [8] P. A.Ejegwa, S.O. Akowe, P.M. Otene, J.M. Ikyule, "An Overview On Intuitionistic Fuzzy Sets "International Journal of scientific & technology research, 3(2014), 3, 2277-8616
- [9] Y. B. Jun, J. Neggers, and H. S. Kim, "Fuzzy d-ideals of d-algebras", J. Fuzzy Math. 8(2000), No. 1, 123–130.
- [10] Y. B. Jun, H. S. Kim and D.S. Yoo, "Intuitionistic fuzzy d-algebra", Scientiae Mathematicae Japonicae Online, e-(2006), 1289–1297.
- [11] Y. Iami and K. Iseki, "On Axiom System of Propositional Calculi XIV "Proc. Japan Acad, 42 (1966) 19-20.