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1. Introduction

During recent years many approaches for solving
multi-objective scheduling have been analyzed [7].
T'kindt and Billaut offered a comprehensive
assessment of the over a hundred multi-objective
scheduling problems, They concentrated on single-
machine scheduling, parallel-machine scheduling,
flow shop scheduling, and fuzzy scheduling issues
[13]. The hierarchical problems and the simultaneous
problems are two alternative structures of bi-criteria
scheduling issues. Simultaneous difficulties lead to
the discovery of a collection of non-dominated
solutions (the Pareto set), which gives the decision
maker more information about which solution to
choose [11]. Several researchers paid attention on
finding Pareto set for bi-criteria problems.
Hoogeveen and Velde [5] simultaneously decreased
maximum completion time and cost. Lazarev et al.
the Pareto set was discovered for jobs with similar
processing times according to the criteria Lmax and
Cmax [9]. Nguyen and Bao used a genetic algorithm
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ABSTRACT

This paper considers a bi-criteria planning problems on a

single machine, with the goal of minimizing total square time
duration and maximizing earliness. To solve this problem we
have to find the Pareto set. We introduced a strong relation
between lower bound, upper bound of the problem and the
number of efficient solutions via a theorem which shows also
that the lower bound is near to optimal solution if the number
of efficient solutions is small.

to tackle the mixed store scheduling issue [12]. For
the scheduling problems which involving quadratic
measure of performance, there are relatively little
works done in this form. Townsend posed an issue
using a quadratic optimization method for completion
times. [14]. Bagga and Kalra modified in some sense
the Townsend's algorithm [2]. Gupta and Sen
improved branching procedure of quadratic penalty
function of completion times [3]. Abdul-Razag and
Kawi combined their efforts to solve a function of
square completion time and high tardiness [1].

The total square completion time and greatest earliest
completion time were the two criteria we focused on
in this paper Y7, c]-2 and Emax. This problem was
solved by Hoogeveen and Van de Velde
simultaneously and they found all the efficient
solutions of the problem [4]. We introduced a
theorem which found a strong relation between
optimal solution, lower bound and number of
efficient solutions. This theorem is also can be
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applied for all the problems that have the same
structure.

2. Fundamental Ideas and Definitions

We describe the following in this section:

N: set of jobs {1, ..., n},

Pj: processing time for job j,

dj: due date for job j,

cj: completion time for job j,

Ej: earliness of job j, Ej = dj- cj,

MST: (minimal slack periods) Minimum slack times
are sequenced in a non-descending order sj, where sj
=dj - pj,

SPT: jobs with the quickest processing time are
ordered in non-descending order by pj.

LB: A value of the objective function that is less than
or equal to the optimal value is known as the (lower
bound),

UB: (upper bound) an objective function value that is
more than or equal to the optimal value,

opt: optimal value.

Definition (1): [1]. A schedule S is said to be efficient
( Pareto optimal) if there does not exist another
schedule S

satisfying fi(S) < fi(S) , i= 1, 2, ..., k with at least
one of the above holding as a strict inequality.
Otherwise S is said to be dominated by S”.

We will analyze a bi-criteria Problem with scheduling
a single machine, with complete square completion
times as the performance metric X7, c]-2 and
maximum cost fmax. i.e., the issue is in simultaneous
form. The cost function f may be regular or irregular
function. The issue is as described in the following:
Assume n jobs (j=1, ..., n) must be scheduled on a
single machine which can only handle one task at a
time. A positive process time is required for each job
pj and has a due date dj. The maximum cost function
in this paper is maximum earliness Emax.

3. Problem Approaches for Multi-Criteria
Scheduling

In scheduling problems multi-criteria relates to the
issue in which there are more than one performance
criteria. The hierarchical and simultaneous problems
are two sorts of issues. One of the criteria is regarded
a fundamental criterion in the hierarchical scenario,
while the other is called a secondary criterion,
whereas in the simultaneous case both criteria have
the same importance, and in this case the solution
leads to generate all the efficient solutions. Lee and
Vairaktarakis ~ [10]  reviewed  computational
complexity results of hierarchical minimization
problems. Hoogeveen [11] introduced a survey on
multi-criteria  scheduling  problems  containing
simultaneous approximation. Hoogeveen and Van de
Velde [5] solved a simultaneous minimization
problem in a polynomial time. It's important to
mention that the specific instance of the simultaneous
scenario 1// F(f, g) is hierarchical scheduling
problem 1// Lex (f, g) Where f is the fundamental
criterion and the secondary criterion is g, and the
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simultaneous case is likewise NP-hard if the
hierarchical issue is NP-hard.

4. Pareto Set and Optimal Solution

The Pareto set for the simultaneous situation was
discovered by Hoogeveen and Van de Velde [6] 1/ F
(X%=1¢j, Emax ), By employing a genetic algorithm,
Kurz and Canterbury [8] discovered the Pareto set for
the similar problem.

We will give a theorem that finds a relation between
the Pareto set, The optimal solution, as well as the
lowest bounds for total square completion time and
greatest earliness. It is important to mention that this
theorem can be applied to all the problems in this
structure, this means the bi-criteria problems in
simultaneous case with f,,,, Here in this paper
fmax = Emax-

Let the lower bound
Enax (MST) and the upper
bound UB = ¥, ¢? (SPT) + Epqx(SPT).

Theorem 4.1:

There exists an integer M and non-negative such that
LB + M = optimal value and M € [N; -1, N, +
1] where N; = number of effective solutions and
Ny = Epax (SPT)-Epax (MST).

Proof:

Since LB is less the optimal value, so there exists an
integer M and non-negative so that LB+ M =
optimal value The first section of the theorem is
proved by this. It is still to demonstrate M € [ N1-1,
N2+1] or to demonstrate N1-1 <M < N2+1. We
have M = optimum rate - LB < UB - LB

Y167 (SPT) + Epax (SPT) -XJ_, ¢/ (SPT) —
Einax(MST)

= Epmax(SPT) - Epax(MST)
Hence M < N, + 1.

To prove N;—1 <M we will use mathematical
inductionon N, . If N, =1, That seems to be,
there is just one effective solution, SPT. then M =
21 f (SPT) + Epax(SPT)  -E}L1 7 (SPT) —
Emax(MST) =0, because E,,4,(SPT)_E a0 (MST)
=0.

This is a special case where the SPT sequence is the
same as MST sequence and M € [0, 1]. Thus

N, —1 <M < N, + 1], As a result, the theorem is
correct for N; = 1.

If N; =2, that is, SPT and o are the only two
effective options, say. Since N; =2, soN; — 1= 1.
The two options are as follows:

a- |If SPT is optimal then XY, c? (SPT) +
Epmax(SPT) = X131 ¢7 (SPT) — Eppayx (MST), implied
that

Epax(SPT)_Epax(MST) = 1=N; — 1.

b- If o is optimal then XY, ¢/ (6) + Epnqx(0)
—X¥1 ¢/ (SPT) = Epgr(MST) = 1,

because Y3, cf (o) — X} ¢/ (SPT) = 1.  Thus
N, —1 <M< N,+1 and hence the theorem is
true for N; = 2.

LB =Y, ¢ (SPT) +

=N, < N, +1.
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If N, =3,thatis, SPT, o and o; are the three most
efficient solutions, say.
Since N; =3, soN; —1 = 2.. The three cases are
as follows:
a- If SPT is optimal then X, c? (SPT) +
Epmax(SPT) = ¥N_1 ¢? (SPT) — Epay (MST), implies
that
Epax(SPT) — Eppay (MST) = 2= N, — 1.
b- If o is optimal then M = ¥, ¢? (6) + Epqx (o)
=Yy ¢ (SPT) = Eypyax (MST), implies that

?I=1 Cj2 (G) - ijzl Cj2 (SPT) + Emax (G)
—Epax(MST) 21 +1=2=N, — 1.
c- If ol is optimal thenM = XY, c? (c;)+
Emax(c1) Y167 (SPT) — Epgr(MST),  implies
that
Yt (6)-X)cf (SPT) 2 2. So, N;—1 <
M < N, +1 as a result, the theorem is correct for
N, = 3.
Assume the theorem is correct for N, = k, that is, for
the k efficient solutions, the theorem holds true SPT,
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G, Oy, ..., Og_p . Let N; =k+1¢ this implies,
there are k+ 1 solutions which are effective. If
either of the first k efficient approaches is the
optimal, as well as the theorem is correct, then for
N; =k weobtainN;, —1 <M

and hence Ny —1 <M< N, +1. If o, final
effective solution is optimal then

M= Z?:l Cj2 (6k-1) + Emax(0k-1)

=21 ¢ (SPT) — Ejyqx (MST), implies that

Z?’=1 Cjz (6k-1) + Epnax(0-1) ‘Z?I=1 Cj2 (SPT) —
Epax(MST) = k. Thus M €[ N1-1, N2+1] the
theorem is correct for N; = k + 1.

4.1 llustrated Example

Consider the following example with three jobs

j1112]3
di|1|6]12

1
At first we find all the possible sequences for 3 jobs
which are 3! = 6. The results are as follows:

N N ici i
Sequences | Note Z]._l Cjz Emax Z]-_l c]? By Efficient solutions
(1,2,3) MST-rule | 77 4 81 Efficient
(1,3,2) 117 5 122
(2,1,3) SPT-rule | 74 6 80 Efficient and optimal
(2,3,1) 101 6 107
(3,1,2) 138 7 145
(1,2,3) 125 7 132

Here, the optimal solution is the sequence ((2, 1, 3)
with the cost 80. To use the theorem we find

LB = 3L, ¢ (SPT) + Epax(MST) = 74 + 4 =78

UB =YX, ¢ (SPT) + Enax (SPT) = 74 + 6 = 80
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