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Abstract

In this paper, we study the notions of sub-implicative ideal of a BH-algebra and we state and prove some
theorems which determine the relationships among this ideal with the intersection, union, image of
function, inverse function for sub-implicative ideals of BH-algebra and also we give some properties of
this ideal and relate it with other types of concepts of a BH-algebra.
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1. Introduction:

In 1998, Jun et al, the notion of BH-algebras and more Characteristics on BH-algebras was
formulated Y. B. Jun, E. H. Roh, H. S.Kim [6]. H. H. Abbass and H. D. Dahham submit the concept
of a completely closed ideal and on the other hand, defined a new concept, namely b-completely
closed ideal of a BH-algebra [2]. In 2014, H. H. Abbass and S. A. Neamah introduced the notions of
an implicative ideal of a BH-algebra and On the other hand, a new concept, namely a b-implicative
ideal of a BH-algebra [3].

2.Preliminaries :

This section is devoted to some basic ordinary concepts of BH-algebra, ideal, sub-implicative
ideal and homomorphism in BH-algebra, we give some basic concepts about the image of function,
the inverse image, positive implicative and translation ideal of a BH-algebra with some
propositions and theorems.

Definition(2.1): [6]
A BH-algebra is a nonempty set X with a binary operation * satisfying the following conditions:
I. a*a=0,forall aeX.
ii. a*b=0andb*a=0 implya=b, forall a be X.
iii. a*0=a, forall aeX.

Definition (2.2): [6]
Let I be a nonempty subset of a BH-algebra X. Then | is named an ideal of X if it satisfies:
i. Oel.
ii. a*belandb el imply ael.

Definition (2.3): [3]

A nonempty subset | of a BH-algebra X is named sub-implicative ideal of X if:
i. Oel.
i. ((@*(@*b))*(b*a))*c e landc € I imply b*(b*a)e |, Va,b,ce X
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Proposition (2.4): [3]
If X be a BH-algebra and | be a sub-implicative ideal of X. Then I is an ideal of X.

Remark (2.5): [7]

Let X and Y be BH-algebras. A mapping h: X—Y is claims a homomorphism if h(a*b) =
h(a)*h(b), v a, b eX. A homomorphism h is called a monomorphism (resp., epimorphism) if it is
injective. For any homomorphism h : X —Y, the set {aeX: h(a)=0} is called the kernel of h,
denoted by ker(h), and the set {h(a):aeX} is called the image of h, Symbolized by Im(h). Notice
that h(0)=0", v homomorphism h. "

Remark (2.6): [2]

Let (X,*, 0) be a BH-algebra and let N be a normal subalgebra of X. Define a relation ~yon X by
a ~y b if and only if a*b €N and b*a €N, where a, b € X .Then ~y is an equivalence relation on
X. Denote this by [a]n, i.e., [a]n={b€ X]a ~yb}and X/N={[a]n]|a € X}. And define [a]n D [b]n
=[a*b]n, then ((X/N),®,[0]n ) is a BH-algebra.

Theorem (2.7): [3]
Let N be a normal subalgebra of BH-algebra X. If I is an ideal of X, then I/N is an ideal of X/N.

Definition (2.8): [5]
An ideal A of a BH-algebra X is said to be a translation ideal of X if x*yeA and y*x€A, then
(x*2)*(y*z) €A and (z*x)*(z*y)EAV X, Y, Z EX.

Remark (2.9): [6]

Let A be a translation ideal of X and let (X,*, 0) be a BH-algebra. Define a relation ~50n X by a
~a b if and only if a*b €A and b*a €A, where a, b € X .Then ~A is an equivalence relation on X.
[a]a={beX |a ~a b} and X/A={ [a]a| @ €X}, Define [a]a®@[b]a=[a*b]a, then ((X/A),®,[0]a) is BH-
algebra.

Theorem (2.10): [6]
Let A be a translation ideal of a BH-algebra (X, *, 0). If we define [a]a®[b]a =[a*b] for all a and
b € X, then (X/A, &, [0]a) is a BH-algebra.

Definition (2.11): [4]

Let X be a BH-algebra. For a fixed beX, we define a map R,: X—X such that Rp(X) =x*b, V
xeX and call Ry a right map on X. Symbolize the set of all right maps on X by R(X). A left map
Ly is defined by a similar way, we define a map Ly: X—X such that Lp(X) = b*x, V¥ xeX and call Ly
a left map on X.

Definition (2.12): [1,4]

A BH-algebra (X,*, 0) is said to be a positive implicative if it satisfies V a, b and ceX,
(@*c)*(b*c) = (a*b)*c.
Theorem (2.13): [4]

If X is a positive implicative BH-algebra, then (L(X), @, Lo) is a positive implicative BH-
algebra.

Remark (2.14):
Let X be a BH-algebra and let | be a subset of X. we will denote to the set{ L,€ L(X);a€ |}

by L(I).
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Remark (2.15): [4]
Suppose that X be a positive implicative BH-algebra, defined @ an operation in L(X) is
(La®Lp)(X) = La(X)* Lp(X) and (La®Lp)(X) = La=n(X), V La Lp € L(X) and V xeX.

Definition (2.16): [2]
A BH-algebra X is called an associative BH-algebra if:
xX*y)*z=x*(y*z2), VXYV zeX

Theorem (2.17): [2]
Let X be an associative BH-algebra. Then the following properties are hold:

I. 0*a=x ; VaeX

ii. a*b=b*a ; VabeX

iii. a*(a*b)=b ; vV a, beX
iv. (c*a)*(a*b)=a*b ; Va,b,ceX
v. a*h=0 =a=b ; Va beX
vi. (@*@*b))*b=0 ; Va, beX

vii. (@*b)*c=(a*c)*b ; Vab,ceX
viii. (@*c)*(b*d)=(a*b)*(c*d) ; Va,b,c,deX

3. The Relationship the Sub-implicative Ideal with Other Notions:
We should mentioned that BH-algebra is not necessary associative.

Theorem (3.1):
Let | be an ideal of a BH-algebra X. If a*(a*b) = b, then I is a sub-implicative ideal of X.

Proof:

Suppose that | be an ideal of X. Then
i. 0 € I. [By definition (2.2)(i)]
ii. Leta, b, c eX such that ((a*(a*b))*(b*a))*cel and cel
= (a*(a*b))*(b*a)el. [Since I is an ideal of X. By definition (2.2)(ii)]
= b*(b*a) € I. [By the condition a*(a*b)=b]

Then I is a sub-implicative ideal of X.m

Theorem (3.2):
Let { I;, ieI'} be a family of sub-implicative ideals of a BH-algebra X. Then ﬂ' i IS a sub-

iel

implicative ideal of X.
Proof:
To prove ﬂ liisa sub-implicative ideal of X.

iel’
I. Oel;, Viel. [Since each I; are sub-implicative ideal of X,VieI'. By definition (2.3)(i))]
= 0e ﬂ I i

iel
ii. Let X, y, z eX such that (x*(x*y))*(y*x))*z ﬂ' i and z e ﬂ' i
iel iel’
= (xX*(x*y))*(y*x))*z elijand z € |;, Vi T
= y*(y*x)e I; Vi €l
[Since each I is sub-implicative ideal of X, V i €I". By definition (2.3)(ii))]
= yryme (11
iell

Therefore, the intersection of a family of sub-implicative ideals is a sub-implicative ideal of X. m
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Theorem (3.3):

Let {l;, ie'} be a chain sub-implicative ideals of a BH-algebra X. Then U'i is a sub-

iel’

implicative ideal of X.
Proof :

We must show that U | 1is a sub-implicative ideal of X.

iel
i. 0el;,Viel . [Since each I; are sub-implicative ideal of X, VieI'.By definition (2.3)(i)]
= 0e U | i
iel’

ii. Let X, y, z eX such that (x*0c*y))*(y*x))*z e (J1; and z e (I

iell iel’
There exist I;, Ix € { i }icr, such that ((x*(x*y))*(y*x))*z € ljand z € I
= either ljc Ik or lxc | [ Since {li}icrisachain]

=((x*(x*y))*(y*x))*z eljand zel; or (x*(y*x))*z el and zely
= either y*(y*x) e I or y*(y*x) € k.
[ Since I;and I are sub-implicative ideals of X. By definition (2.3)(ii)]
= y*(y*)e | J1i.
iel’
Therefore, U | i is a sub-implicative ideal of X. m
iel’

Proposition(3.4):
Let g : (X,*,0)—(Y,*', 0") be a BH-epimorphism. If I is a sub-implicative ideal of X, then g(I) is a
sub-implicative ideal of Y.

Proof :

Let | be a sub-implicative ideal of X. Then
i.g(0) =0 [Since g is an epimorphism. By Remark (2.5)]
= 0'eg(l)

ii. Let X, y, zeY such that ((x*'(x*'y))*'(y*'x))*'z eg(l) and z g(l)
= da,b,cel suchthat g(a)=x, g(b)=yand g(c)=z

= (x*y))*(y*x))*z = ((9(a)*'(9(a)*'g(b)))*'(9(b)*'9(a)))*'9(c)
= g(((@*(@*b))*(b*a))*c)  g(l),

[Since g is an epimorphism. By Remark (2.5)]]

= ((a*(@*b))*(b*a))*c € I andce I, [Since g()={g(x); xe 1}]
= b*(b*a) € I, [Since | is a sub-implicative ideal of X. ]

= g(b*(b*a))  9(1). [Since g()={g(x) ; xe 1}]

= g(b*(b*a)) = g(b)*(9(b)*g(a)) =y*'(y*x) 9(I).

Thus, g(1) is a sub-implicative ideal of Y.m

Proposition(3.5):
Let g: (X,*, 0) — (Y,*, 0") be a BH-homomorphism. If I is a sub-implicative ideal of Y, then g~
(1) is a sub-implicative ideal of X.
Proof:
Let | be a sub-implicative ideal of Y. Then
i.g(0)=0' [Since g is a homomorphism. By Remark (2.5)]
=0 e g().
ii. Let X,y,z eXsuchthat (x*(x*y))*(y*x))*z € g™() and z e g™(I)
= g(((x*(x*y))*(y*x))*z) € | and g(2) €l
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=g(((x*(x*y))*(y*x))*2)=((9(x)*'(@(x)*a(y))*(a(y)*a(x)))*'9(z)el and g(z) €l, [Sincegisa
homomorphism. By Remark (2.5)]

= g(y)*'(g(y)*'9(x))el,[Since I is a sub-implicative ideal of Y. By Definition (2.3)(ii)]

= g(y)*(@(y)*9(x)= gly*(y*x)) €l

= y*(y*x) e g }(1). [Since g is a homomorphism, by Remark (2.5)]

Then g *(1) is a sub-implicative ideal of X. m

Theorem (3.6):
Let N be a normal subalgebra of BH-algebra X. If I is a sub-implicative ideal of X, then I/N is a
sub-implicative of X/N.

Proof:
Suppose that | be a sub-implicative ideal of X.
= lis an ideal of X. [By proposition (2.4)]

= I/Nisan ideal of X/N.  [By theorem (2.7)]
i. [0]n € I/N. [Since O<l. By definition (2.2)(i)]
ii. Let [X]n, [YIn: [2Z]ne X/IN such that
((XIn*(IXIn* IyIn) *(IyIn* [XIn))*[2]n € VN and [z]ne 1N,
= ((XIN*Dx*yIn) *[y*xIn)*[zln € /N and [z]ne IN, [Since [XIn*[YIN=[X*YIn ]
= ([X*(x*Y)In *[y*XIn)*[z]n € /N and  [z]ne 1N,
= [(X*(x*y)*(y*xX)*z]n € /N and [z]ne I/N,
= (xX*(x*y))*(y*x))*z € l and ze I, [Since I/N = {[x]n [XEI}.By Remark (2.6)]
= y*(y*x)el, [Since I is a sub-implicative ideal. By definition (2.3)(ii)]
= [y*(y*x)]n €l/N.
Therefore, I/N is a sub-implicative ideal of X/N.m

Proposition (3.7):

Let A be a translation ideal of a BH-algebra X. If 1 is a sub-implicative ideal of X, then I/A is a
sub-implicative of X/A.
Proof:

Assume that | be a sub-implicative ideal of X. Then
i. [0]e I/A. [By definition(2.3)(i)]
ii. Let [X]a,[Yla, [2Z]a€ X/A such that

(X1a®([X]a @ [YIA))O([Yla @ [X]a)) ©[z]acl/A  and  [Z]ae I/A
= ((IX]a® [x*yla) © [y*x]a) © [z]a € VA and [z]ae /A, [Since [X]a® [y]a=[X*Y]A]
= (X**Y)]a @ [y*Xx]a) @ [z]a € VA and  [z]ae /A,

[Since[x]a®[y]a=[x*Y]a . By Remark (2.9)]

= [X*(x*Y)*(y*X)*z]a € /A and [z]ae /A,
= ((X*(x*y))*(y*x))*z € I and zel, [Since I/A = {[x]a| x€1}.By Remark (2.9)]
= y*(y*x)el, [Since I is a sub-implicative ideal. By Definition (2.3)(ii)]
= [y*(y*x)]a €l/A.
Then, I/A is a sub-implicative ideal of X/N.m

Proposition (3.8):
Let X be a positive implicative BH-algebra. If | is a sub-implicative ideal of X, then L(l) is a sub-
implicative ideal of (L(X),®,Lo).
Proof:
Let | be a sub-implicative ideal of X.
I.0 €l [By definition (2.3)(i) ]
= Lo€ L(I)
ii. Let L,, Ly, L. € L(I) such that ((L;®(La ®Ly,))® (L, ®L,))®L. € L(I) and L. L(l).
=((@ax(@*b))*(bxa))*xc€elandcel,
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[Slnce ((La@(l—a G_)Lb))@(l—b ®La))@]—‘c = L((a*(a*b))*(b*a))*c € L(I)]

= b*(b*a) €l, [By definition (2.3)(ii) ]

= Lb*(b*a)E L(|).

Therefore, L(I) is a sub-implicative ideal of (L(X),®,Lo).m

Theorem (3.9):

Let X be a positive implicative BH-algebra and let

Hi,={a e X|]a*t=0,te X}

be a subset of X. If (a*t)*(b*t) = b*t with a*t #b*t, V a, b, t € X, then H; U {0} is a sub-
implicative ideal of X.
Proof:

We must show that H; U{0} is a sub-implicative ideal of X.
i. we have 0 € H, u{0}.
ii. Leta*b € H; and b € H,.
= (a*b)*t=0 and b*t=0
= (a*t)*(b*t) =0 [(a*b)*t=(a*t)*(b*t), since X is positive implicative BH-algebra. By definition
(2.12)]

= (a*t)*0=0 [Since b*t =0]
= a*t=0 [Since X is BH- algebra ; x*0=x]
= a € H;.

= H; U {0} is an ideal of X.
iii. Leta, b, c € Xsuch that ((a*(a*b))*(b*a))*c € H; and c € H;.
= ((@*(@*b))*(b*a)) € H; [Since H, U {0} isan ideal ]
= ((@*(a*b))*(b*a))*t =0
= ((@*)* (@*t)*(b*1))*((b*t)*(a*t))=0
[ (a*b)*t=(a*t)*(b*t), since X be positive implicative BH-algebra.]
Case 1: if a*t= b*t, then
= (@*)*((@*t)* (a*n))* ((@*)* (a*1))=0

= ((@*t)*((@*t)* (a*t))*0=0 [Since X is BH-algebra, x*x=0 ]
= ((a*t)*((a*t)* (a*t))=0. [Since X is BH-algebra, a*0=a ]
= (b*t)*((b*t)* (a*t))=0 [Since a*t= b*t ]

= (b*(b*a))*t=0
= b*(b*a)) € H,.
Therefore, H, U{0} is a sub-implicative ideal of X.
Case 2: if a*t # b*t, then
Suppose that a, b, t € X such that ((@*t)*((a*t)*(b*t)))* ((b*t)*(a*t)) = 0.
= (@*t)*(b*n))*((b*t)*(a*t)) = 0.
[By the condition (a*t)*(b*t)=b*t with a*t #b*t, Va, b,te€ X]
= (b*t)*((b*t)*(a*t)) = 0.
= (b*(b*a))*t=0.
= (b*(b*a)) € H,.
Therefore, H, U{0} is a sub-implicative ideal of X.m
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Theorem (3.10):
Ifg: (X, * 0) — (Y,*, 0') be a homomorphism from an associative BH-algebra X into BH-
algebra Y, then ker(g) is a sub-implicative ideal of X.

Proof:

We must show that ker(g) is a sub-implicative ideal of X .
i. g(0)=0. [Since g be a homomorphism]
= Oeker(g).

ii. Let (x*(x*y))*(y*x))*z € ker(g) and ze ker(Q)

= g((x*(x*y))*(y*x))*z)=0" and g(z)=0' [By Remark (2.5) ]

= g((x*(x*y))*(y*x))*z)*'g(z)=0". [Since g is a homomorphism.]

= g((x*(x*y))*(y*x))*0=0"  [Since g(z)=07]

= g((x*(x*y))*(y*x))=0" [Since Y is a BH-algebra; g(x)*'0'=g(x)]

= g((x*x)*y)*(y*x)=0" [Since X is an associative. By definition (2.17) ]
=0((0*y)*(y*x))=0' [Since X is a BH-algebra ; x*x=0]
=g(y*(y*x))=0" [Since X is an associative; 0*y=y. By theorem (2.17)(i)]]
= y*(y*x) e ker(g).

"Therefore, ker(g) is a sub-implicative ideal of X".

or In other way ,by Proposition 3.5, since kerg = g=1(0) so {0’} is sub-implicative ideal of Y. m
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