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1. Introduction

Askandar in [2] "using the idea of i- open sets, he
introduces and examines the topological features of i-
derivatives, i- terms and i- set outward appearances.
Using ic-open sets, we introduce and investigate the
same notions in this research. a portion H of "is
known as ic-open set[1] if there exists a closed set F

#¢,X € t°such that: F [JHZ Int(H), where

Int(H) denotes the interior points of H and z° denotes
the family of closed sets. An ic-closed set is the
complement of an ic-open set.. We denote the family

of ic-open set in (X,z) by 7°. Let(X 7°)bea
topological space. This property allows us to prove
similar properties i- open set. Also, we define ic-
continuous mappings, ic-open mappings, ic-totally
continuous mappings, ic- homeomorphism and
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ABSTRACT

Using the idea of ic-open sets, we introduce and

investigate the topological qualities of an ic-closure, ic-
interior, ic-limit points, ic-derived, ic-border, ic-frontier, and
ic-exterior of a set. Introduce the concepts of "ic-continuous
mappings,
"ic-totally continuous mappings," and "ic-homeomorphism,"
and then look into some of the properties of these mappings.

ic-irresolute  mappings,"

ic-open mappings,

investigate some properties of these mappings. The
topological spaces (X, t) and (Y, o) are denoted here
by X and Y, respectively, topological spaces, open
sets (as opposed to closed sets) by (os), (cs), TS.
Throughout this paper, topological spaces are referred
to as (X,7) and (Y, o). CI(H) and Int(H) denote the
closure and interior of a space's subset H,
respectively. The following definitions come to mind;
they are helpful in the follow-up.

Definition 1.1. A mapping f: X — Y is named

1. Continuous denoted by (conm) [4] if fﬁl(U )is (

0S)in X foreach(0S) U inY .

2. totally -continuous is denoted by (t conm)if [4]
f71(U) is (cl-os) in X for each (os) U in Y.

3. ic- continuous is denoted by (ic- conm)if [1 ]
f71(U) is (ic-os) in X for each (os) U in Y.
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Theorem 1.2. [1]

1. Each (os) in TS is (ic-0s).

2. Each (conm) is (ic- conm).

2. Applications of ic- Open Sets.

Definition 2.1. Assume X bea TSand let H € X. The
ic- interior of H is defined as the union of all (ic- 0s)

in X content in H, and is denoted by Int;, (H). Itis

clear that Int;_ (H) is (ic-os) for any subset H of X.

Proposition 2.2. Assume (X,7) be a TS and if H
C K< X.Then

1. Int, (H)c Int, (K);

2. Int;.(H) € H;

3. Hisic- openiff H=Int; (H).

Definition 2.3. Assume X bea TSand let H € X. The
ic-closer of H is defined as The intersection of all (ic-
cs) in X containing H, and is denoted by CL,. (H). It

is clear that CL,, (H) is (ic-cs) for any subset H of X.

Proposition 2.4. Assume (X,7) be a TS and if
HCS K € X. Then

1. CL (H)c CL,(K);

2. HcCL_ (H);
3. Hisic- closed if and only if H=CL_ (H).
Example 2.5. If X =1{1,35} and T=

{0,X,{3},{1,3}} Then

%= (0,X,{1},(3},{1,3})

Let H={3}, K={1,3}and {3} < {1,3} € X. Then
1. Int;, (H)= {3} < Int;  (K)={1, 3};

2. Inti(H) ={3} < H={3}

3.H ={3} is ic- open if and only if H={3}= Int,,
(H)={3}.

C(r°)= {0, X,{3,5},{1,5},{5}}

Let H={3}, K={1,3}and {3} € {1,3} < X. Then
1. CL; H)={3 58} CL (K)=X;

2. H=(3}c CL, (H) = (3,5}
3.H ={5} is ic- closed if and only if H={5}= CL,,

(H)={5}.

Definition 2.6. Let H be a subset of a TS X. A point
ne X is named ic — limit point of H if it satisfies the
following assertion:

(VGet®)(neG =G [ (H{n}) #¢)

The set of all ic-limit points of H is named ic-derived
set of H and is denoted by D, (H) Note that for a

subset H of X , apointne X is not ic- limit point of
H iff there exists (ic- 0s)GinX st neG & G

NHD = ¢

or equivalently,

neGand G(IH=¢ or G[1H={n}
or equivalently,

neG and G [\Hc{n}
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Theorem 2.7. let H be a subset X, and ne X. Then
the following are equivalent:

(1) (VGetr®)(neG = G [1H#4).

2) neCL_.(H)

Proof. (1)=>(2) if ng CL, (H), then there exists (ic-
cs) F st. HCF and ngF. Hence X\F is (ic-0s)
containing n and H (| (X\F) < H () (X\H)=¢. This
is contradiction, and hence (2) is valid.

(2) = (1) straightforward. m

Theorem 2.8. If (X,7)beaTSandlet A< B C X.
Then

1. CL;.(A) = AU D;.(A).

2. Ais ic-closed iff D;;(A) € A

3. Dic(A) c Dic(B)

4. D;.(A) S D(A)

5. CL;.(A) S CL(A).

Proof. Let n & CL;.(A). Then there is (ic-cs) F in X
st. ACF and n ¢ F. Hence G=X-F is (ic-0s) s.t.
neG and GNA=@. Therefore ng A and n¢
D;.(A), thenng AU D;.(A).

Thus AU D;.(A) < CL;.(4). On the other hand,
n¢ A U D;.(A) implies that there exists (ic-0s) G in X
st. n€G and G N A = @. Hence F=X-G is (ic- cs)
in X st ACF and n¢ F. Hence & D;.(A) . Thus
CLi.(A) € AU D;.(A). Therefore; CL;.(A) =AU
Dic(A). m

For (2), (3), (4) and (5) the proof is easy.
Example 2.9. Let X ={1,2,3}
{@,X,{1},{1,2}} Then

1. Tt =X {1},{2}{1,2}

2. IfH={1, 3}, then D(H)={3} and D;.(H) = @

3. IfK={1, 2}, then D(K)={2, 3} and D;.(K) = {3}
Theorem 2.10. let 7, and 7, be topologic on X s.t.

and

t° 7y . For any subset H of X, each ic-limit
point of H with respect to 7, is ic- limit point of H

with respectto 7, .
Proof. Assume n be ic -limit point of H with respect
to7,. Then G() (H\{n}) #¢ for each Ge 7, sit.

€G. But 7° C 75 , so in particular, G (H\{n}) #

n

¢ for each Ge 7,° st. neG . Hence n is ic-limit
point of H with respectto 7, .m

Theorem 2.11. If H is a subset of a discrete
topological space X, then D (H)= ¢

Proof. Assume n be any element of X. Recall that
each subset of X is (0s) and so (ic-0s). In particular
the singleton set G: ={n} is (ic-0s). ButneG & G

(N H={n} (" H<{n}. Hence n is not ic-limit point of
H,andso D, (H)= ¢ . m

Theorem 2.12. Let H and K be subsets of X. IfHe
7"°and 7" is a topology on X, then

H N CL, (K) = CL.(H NK).
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Proof. Assumene H ) CL, (K). ThenneH and
ne CL, (K=K U D, (K). If neK, thenneH[1K
< CL,HNK). If ngK, then ne D, (K) and so
G K #¢ for all (ic — os) G containing n . Since H
€7, G(H is also (ic-o0s) containing n. Hence G
NMHNK=GNH)K#¢H, and consequently n
e D, (K (H)c CL, (HMNK).Therefore  H()
CL, (< CL, (HNK).

Definition 2.13. For any subset H of X, the set b,

(H) = H\Int, (H) is called the ic- border of H

Proposition 2.14. For a subset A of a space X , the
following statements hold:

bic (A) = Db(A) where b(A) denotes the border of

A=Int, (A) U b, (4);

Int, (A) N b, (A)=¢;

A'is an ic- open set if and only if bic A)=¢;

b.. (Int;, (A)=¢;

Int;, (biC A)=¢;

Proof.

(1) Since Int(A)c Int, (A), we have b, (A)=A\
Int, (A) < A\Int (A)=b(A).

(2) & (3). Straightforward.

(4) Assume Int, (A) A, it follows from proposition

2.2 (3). That A is (ic-os)<>A=Int; (A< b,
(A)=A\Int, (A)=¢.

(5) Assume Int; (A) is (ic-0s), it follows from (4)
that b, (Int (A)= ¢.

(6) If ne Int, (b, (A)), then ne b, (A). On the
other hand, since b,. (A)c A, ne Int, (b, (A)c
Int, (A). Hence, ne Int;, (A)(( b, (A), which
contradicts (3). Thus Int, (b, (A)=¢.

(7) Using (6), we get b, (b, (A)= b, (AN Int;(
bie (A)=D,; (A).

Example 2.15. From example 2.5. If A= {1, 5} be a
subset of X. Then  Int;, (A)={1}, and so b, (A)=A\

Intic (A)={1, 5}\{1}={5}, and b(A)=A\Int(A)={1, 5}\
¢={1, 5}. Hence, b(A)& b, (A), Therefore, the

converse of proposition 2.14 (1) may not always be
true.

N o~ 0 DR
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Definition2.16. Fr, (H)= CL, (H)\ Int,(H)
called the ic- frontier of H.
Not that if H is (ic-cs) of X, then b, (H)= Fr, (H).

proposition 2.17. These propositions are true for a
subset A of a space X :

1. Fr,(A) < Fr(A) where Fr (A) denotes the
frontier of A;

CLic (A)= Int, (A) U Fri. (A);

Int,_(A) N Fr,(A) =¢;

b, (A) = Fr (A);

2
3
4
5. Fr.(A)=b.(») U D, (A);
6
7
8
9

is

. If Alisanic- open setthen Fr, (A)= D, (A);
Fri. ()= CL, (A) N CL (X W);

Fr. (A)= Fr_ (X \A);

Fr.. (A) is ic-closed;

10. Fr, (Fr, (A) < Fr. (A);

11. Fr. (Int, (A) < Fr (A);

12. Fr (CL,. (A) < Fr (A);

13. Int;, (A)=A\Fr;_ (A).

Proof.
(1) Since CL,. (A)<CI(A) and Int(A) < Int, (A), it

follows that Fr, (A)= CL, (A)\ Int, (A) < CI(A)\
Int._ (A) = CI(A)\ Int(A) C Fr (A).
@ Int (AU Fr (A= Int_(A)U( CL, (A)\
Int, (&)= CL,, (A).
@) Int (AN Fr A= Int_A)N( CL, (A)N
Int;, (A) =¢.

(4) since Ac CL, (A), we have b, (A)=A\Int, (A)
< CL,(A\ Int, (A)= Fr,(A)

(5) Since Int, (A)U Fr, (A= Int, (A)U b, (A)
U Dic (A), Fric (A)= bic AU Dic (A).

(6) Assume that A is (ic-0s). Then Fr, (A) =b,. (A)
U( D, (AN Int, (A)= ¢ U(D, (A\A) =

D,. (A\ A=b, (X \ A), by using (5), proposition

2.2 (3), proposition2.14(4)
(7) I:r-ic (A)= CLic (A)\
CLy (X ).

(8) It follows from (7).

(9) CLic ( I:ric (A))= CI—ic (CLic (A)) m ( CLic (X

W) CL; (CL, (A)N CL, (CL, (X\A)=
Fr.. (A). Hence, Fr,_ (A) is ic- closed.

Int, (A= CL; (A)N(
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(10) Fr; (Fric (A)= CL ( Fro W)N( CLi (X
\ Fri, (A) < CL,, ( Fr, (A)= Fr;, (A).
(11) Since Int (Int, (A)= Int, (A), we get

Fr. (Int, (A)= CL,.( Int A\ Int,(Int,
(A) < CL;, (AN Int,, (A)= Fr;, (A).
(12) Fri (CLi (A)= CL; (CLi (M) Int (CL;
(A)= CL, A\ Int, (CL, (A)= CL,. (A)\
Int, (A)= Fr, (A).
(13) A\VFr, (A=(A\CL,, (M) Int, (A)= Int, (A).
|

Example 2.18. Assume that TS (X, ) provided in
Example 2.5, If A= {1, 3} be a subset of X. Then

Int, (A)={ 1, 3}, and so b, (A)=A\Int; (A)={1,
31\{1, 3}=¢. Since A ={5} is ic-closed, CL . (A)={5}
and thus  Fr, (A)= CL, (A\ Int, (A)={5}\{1, 3}=
0.

Theorem 2.19. For a subset H of X, H is (ic-cs) iff
Fre (H) cH

Proof. Assume that H is (ic-cs). Then Fr, (H)=
CL,, (H)\ Int, (H)= H\Int,, (H) < H.

Conversely suppose that Fr,, (H) —H. Then CL,
(H)\ Int,_(H) < H,andso CL;. (H) <H. Since
Int,. (H) <H. Noticing that H< CL,, (H), we have
H=CL,, (H). Therefore; H is (ic-cs). m

Definition 2.20. For a subset H of X, EXt, (H)=

Int,. (X \H) is said to be an ic-exterior of H.

Example 2.21. Assume (X,7) be a TS in Example
2.9 For subset H = {2} and K={1} of X , we have

Ext, (H)={1}and Ext; (K)={2}.
Proposition 2.22. These propositions are true for a
subset A of a space X:

1. Ext, (A)is ic- open;

2. Ext, (A= Int, (X \W)=x\ CL, (A);
3. IfAcB, then Ext; (A)> EXt, (B);

4. Ext, (AUB)c Ext,(A) N Ext,(B);
5. Ext,(ANB)> Ext; (A) U Ext; (B);
6. Ext (X)=¢;

7. Ext (g)=X;

8. Ext, (A)= Ext, (X \EXt, (A);

9. x=Int,(A)U Ext (AU Fri (A).
Proof. (1) and (2) straightforward.
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(3) Assume that A < B. Then EXt, (B)= Int;, (X
\B)c Int;, (X \4)= EXt,_(A)

4) Ext (AUB)= Int_(x \(AUB))=Int, ((x
W) N (X \B)c Int, (X \A) N Int, (X \B)=
Ext, (A) N Ext, (B).

) Ext, (ANB)= Int (X \(ANB)= Int, (X
W) U(X\B)> Int, ((x\A) U Int, (X \B)=

Ext, (A) U Ext, (B).

(6) and (7) Straightforward.

(8) Ext. (xX\Ext (A)= Ext (x\Int, (x
W)= Int, (X \(x\Int, (X \A)=

Int;, (Int,, (X \A)= Int, (X \A)= Ext;. (A).

(9) Straightforward.

Example 2.23. If X ={1,23}
{0,X,{1},{1,2}} Then

T ={8,X,{1}{2},{1,2}}

1. If H={1}, K={2}. Then EXxt, (HUK)=¢,

Ext, H)={2},  Ext, (K={1}, Ext,H) N
Ext, (K=, so  Ext,(HUK)c Ext,(H) N
Ext, (K)

2. If H={1, 2}, K={2}. Then Ext,(H NK)={1},
Ext, (H)=0, Ext;, (K={1}, Ext, (H) U Ext

and 1=

(K)={1}, so Ext  (HNK)> Ext,(H) U Ext,
(K).
3. ic- Continuous Mappings and ic-

Homeomorphism

This section is devoted to introduce ic-open map, ic-
irresolute  map, ic-totally continuous map, ic-
homeomorphism and discussed the relationships
between the other known existing map.

Definition 3.1. A mapping f : X — Y is named ic-
open denoted by (ic-om), if f(U) is (ic-0s) in Y for
each (os) U in X.

Example 3.2. Let X=Y={3,57} and 1=
{9,X,{3,5}}, 0 = {0,Y,{3},{3,5}} Then
T ={0,Y,{3},{5},{3,5}}. Clearly, the identity

mapping f: X — Y is (ic-om)

Proposition 3.3. Any (0M) is (ic-om) but not
conversely.

Proof. Assume f : X —Y be (Om) and H be (0S
) in X. Since, f is open, then f (H) is (0S ) in Y. Since,
each (0S) is (ic-os) then, f(H) is (ic-0s) in Y.
Therefore, f is (ic-om). m

If X=v={123} and 7={0 X {2},{12}},
o ={0,Y,{1},{1,2}} Then

T ={0,Y,{1},{2},{1,2}}. Clearly, the
mapping f: X — Y is (ic-om) but not (om).

identity
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Theorem 3.4. If f : X —>Yisopen & g:¥ - Z
is ic-open, then gof: X — Z is ic-open.

Proof. Suppose that f : X —Y be open &
g:Y — Zisic-open. Let G be an (0s) in X. Since, f is
an open, then f(G) is an (0s) in Y. Since, each (0s) is
(ic-0s), then f(G) is (ic- 0s) in Y. Since, g is (ic-0s),
then (gof )(G)=g(f(G)) is (ic-0s) in Z. Therefore;
gof:X — Zisic-open. m

Theorem 35. If f:X —Yis (ic-conm) and
g:Y — Zis (conm) , then gof: X — Z is (ic-conm).
Proof. Assume f : X —Y be (ic-conm) &
g:Y — Z is (contm). Let G be an (o0s) in Z. Since, g
is (conm), then g~1(G) is an (0s) in Y. Since, f is (ic-
conm), then f~1(g7(6)) = (gof)~1(G) is (ic- 0s)
in X. Therefore; gof: X — Z is (ic-conm). m
Definition 3.6. Amapping f : X — Y is named ic-
irresolute is denoted by (ic-irrem), if the inverse
image of every (ic-0s) of Y is (ic-0s) in X
Example 3.7. If X=Y ={2,4,6}
{9,x,{2},{2,4}}, o = {0, Y,{2}} Then
T = {0, X,{2},{4},{2,4}}.

o =1{8Y,{2}}

Clearly, the identity mapping f: X — Y is (ic-irrem)
Proposition 3.8. Each (ic-irrem) is (ic-conm).

Proof: Suppose that f : X — Y be (ic-irrem) & V
any (0S) in Y. Since each (0S) is (ic-0s) and since f
is ic-irresolute, then f~1(V) is (ic-0s) in X. Therefore;
fis (ic-conm). m

Theorem 3.9. Each (conm) is (ic-irrem) but not
conversely.

Proof. Suppose that f : X — Y be (conm) & V any
(ic-0S) in Y. Since fis (conm), then f~1(V) is (0s)
in X. Since each (0s) is (ic-0s), then f~1(V) is ( ic-0s)
in X . Therefore; fis (ic-irrem). m

Let X=Y={246} and t={0,X,{2},{24}},
o ={0,Y,{4}} Then

T = {0, X,{2},{4},{2,4}}.

o =1{8Y,{4}}

Clearly, the identity mapping f: X — Y is (ic-irrem)
but not (conm)

Theorem 3.10. If f :X —>Yis (ic-irrem) &
g:Y — Zis (ic-conm) , then gof: X — Z is (ic-irrem).
Proof. Let T : X — Y is (ic-irrem) and g: Y — Z is
(ic-conm). Let U be an (os) in Z. Then U is (ic-0s)
because each (os) is (ic-0s). Since, g is (ic-conm),
then g~(U) is (ic-0s) in Y. Since, f is (ic-irrem),
then f~1(g r(U))=(gof) (V) is (ic- os) in X.
Therefore; gof: X — Z is (ic-irrem). m

Theorem 3.11. The composition of two (ic-irrem) is
also (ic-irrem).

Proof. Assume f : X ->Y & g:Y—>Z anytwo
(ic-irrem). Suppose that U be any (ic-0s) in Z. Since,
g is (ic-irrem), then g~*(U) is (ic-0s) in Y. Since, f is
(ic-irrem), then f~1(g T (U)=(gof) (V) is (ic-
0s) in X.Therefore; gof:X — Z is (ic — irrem). R

and 1=
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Definition 3.12. Let X and Y be TS , a bijective map
f:X —>Yis named ic-homeomorphism is
denoted by (ic-homm) if f is (ic-conm) and (ic-om).
Theorem 3.13. If f : X — Y is (homm), then f is
(ic-homm) but not conversely.

Proof: Since each (conm) is (ic-conm) by Theorem
1.2 (2). Also, since each (om) is (ic-om) by
proposition (3.3) Further, since f is bijective.
Therefore, fis (ic-homm). m
Let X=Y={1,2,3} and
o =1{0,Y,{2},{1,3}} Then
T = {0, X,{13,{3},{2},{1,2},{2,3}, {1,3}}.

o ={0,Y,{1},{3},{2},{1,2},{2,3},{1, 3}}.

Clearly, the identity mapping f: X — Y is (ic-homm)
but not (homm)

Definition 3.14. Amapping f : X —>Y is named
ic-totally continuous is denoted by (ic-tconm), If
each's reverse, (ic-0s) of Y is (cl-0s) in X.

Theorem 3.15. Each (ic-tconm) is totally continuous
but not conversely.

Proof. Suppose that f : X —Y be (ic-tconm) and V
be (0S) in Y, since each (0S)) is (ic-0s), then V is (ic-
0s) in Y. Since f is (ic-tconm), then, f~1(V) is (cl- 0s)
in X. Therefore, f is (tconM). m

Let X=Y={123} and t={0 X {1},{23}},
o =1{0,Y,{2,3}} Then

o ={0,Y,{2},{3},{2,3}}.

Clearly, the identity mapping f: X — Y is (tconm) but
not (ic-tconm)

Theorem 3.16. Each (ic-tconm) is (ic-irrem) but not
conversel.

Proof: Assume that f : X —Y be (ic-tconm) and
V be (ic-0s) in Y. Since f is (ic-tconm), then f~1(V) is
(cl-os) in X, which implies, f~1(V) is (0S), it
follows f~1(V) is (ic-os) in X. Therefore; f is (ic-
irrem). m

Let X =Y =1{1,3,5}
o ={0,Y,{3}} Then
T = {9,X,{1},{3},{1,3}}.

o' ={8,Y,{3}}

Clearly, the identity mapping f: X — Y is (ic-irrem)
but not (ic-tconm)

Theorem 3.17. The two's (ic-tconm) composition is
also (ic-tconm).

Proof: Suppose that f : X =Y , g:Y > Z be
any two (ic-tconm). Assume V be any (ic-0s) in Z.
Since, g is (ic-tconm), then g=1(V) is (Cl —0S) in
Y, which implies f=1(V) is (0S), it follows f~(V)
is (ic-0s). Since, f is (ic-tconm), then, f~1(g=*(V)) =
(gof)~'(v) is (cl—0S) in X. Therefore,
gof:X — Zis (ic-tconm). m

Theorem3.18. If f : X —Y be ( ic-tconm) and
g:Y — Z be (ic-irrem), then go f : X —> Zis
(ic-tconm).

t={0,X,{1},{23}},

and 7 ={9,X,{1},{1,3}},
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Proof: Assume that f : X —Y be (ic-tconm) and Proof: Let f:X —>Ybe (ic-tconm) and
g:Y — Zis (ic-irrem). Let V be (ic-0s) in Z. Since g:Y — Zis (ic-conm), let V be(0S ) in Z. Since, g
g is (ic-irrem) then g=1(V) is (ic-0s) in Y. Since f is is (ic-conm), then, g=*(V) is (ic-0s) in Y. Since, f is
(ic-tconm), then f=(g71(V)) = (gof)~1(V) is (  (ic-tconm), then, f~1(g=t(V)) = (gof)~X(V) is (
cl —0s) in X. Therefore, go f : X — Zis (icc ¢l —0S) in X. Therefore, gof : X —>Zis (
tconm). m tconm). m

Theorem3.19. If f :X —Yis (ic-tconm)and

g:Y — Z is(ic-conm), thengo f : X > Zis (

tconm).
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