TJPS

Tikrit Journal of Pure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

Topological Features of *ic***- Open Sets**

Beyda S. Abdullah¹, Sami Abdullah Abed², Amir A. Mohammed¹ ¹Department of Mathematics, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq ²Department of Statistics, College of Administration and Economics, University of Diyala, Diyala, Iraq

ARTICLE INFO.

Article history:

-Received: 9 / 9 / 2022 -Accepted: 16 / 10 / 2022

-Available online: 25 / 12 / 2022

Keywords: *ic*-open sets; *ic*-closure; *ic*-interior; *ic*-derived; *ic*-border; *ic*-frontier; *ic*-continuous mappings; *ic*-open mappings; *ic*-irresolute mappings; *ic*-totally continuous mappings; *ic*homeomorphism.

Corresponding Author:

Name: Beyda S. Abdullah

E-mail:

Baedaq419@unmosul.edu.iq

samiaabed@uodiyala.edu.iq

amirabdulillah@uomosul.edu.iq

Tel:

©2022 COLLEGE OF SCIENCE, TIKRIT UNIVERSITY. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/

1. Introduction

Askandar in [2] "using the idea of *i*- open sets, he introduces and examines the topological features of *i*-derivatives, *i*- terms and *i*- set outward appearances. Using *ic*-open sets, we introduce and investigate the same notions in this research. a portion *H* of "is known as *ic*-open set[1] if there exists a closed set $F \neq \phi$, $X \in \tau^c$ such that: $F \cap H \subseteq Int(H)$, where Int(H) denotes the interior points of *H* and τ^c denotes the family of closed sets. An *ic*-closed set is the complement of an *ic*-open set.. We denote the family of *ic*-open set in (X,τ) by τ^{ic} . Let (X, τ^{ic}) be a topological space. This property allows us to prove similar properties *i*- open set. Also, we define *ic*-continuous mappings, *ic*- homeomorphism and

ABSTRACT

Using the idea of *ic*-open sets, we introduce and investigate the topological qualities of an *ic*-closure, *ic*-interior, *ic*-limit points, *ic*-derived, *ic*-border, *ic*-frontier, and *ic*-exterior of a set. Introduce the concepts of "*ic*-continuous mappings," "*ic*-open mappings," "*ic*-irresolute mappings," "*ic*-totally continuous mappings," and "*ic*-homeomorphism," and then look into some of the properties of these mappings.

investigate some properties of these mappings. The topological spaces (X, τ) and (Y, σ) are denoted here by X and Y, respectively, topological spaces, open sets (as opposed to closed sets) by (os), (cs), TS. Throughout this paper, topological spaces are referred to as (X, τ) and (Y, σ) . Cl(H) and Int(H) denote the closure and interior of a space's subset H, respectively. The following definitions come to mind; they are helpful in the follow-up.

Definition 1.1. A mapping $f: X \to Y$ is named

1. Continuous denoted by (conm) [4] if $f^{-1}(U)$ is (

os) in X for each (os) U in Y.

2. totally -continuous is denoted by $(t \ conm)$ if [4] $f^{-1}(U)$ is (cl-os) in X for each (os) U in Y.

3. *ic*- continuous is denoted by (*ic*- *conm*)if [1]

 $f^{-1}(U)$ is (*ic*-os) in X for each (os) U in Y.

Theorem 1.2. [1]

- 1. Each (os) in TS is (ic-os).
- 2. Each (conm) is (ic- conm).
- 2. Applications of *ic* Open Sets.

Definition 2.1. Assume *X* be a TS and let $H \subseteq X$. The *ic*- interior of *H* is defined as the union of all *(ic- os)* in *X* content in *H*, and is denoted by $Int_{ic}(H)$. It is

clear that $Int_{ic}(H)$ is (ic-os) for any subset H of X.

Proposition 2.2. Assume (X, τ) be a TS and if $H \subseteq K \subseteq X$. Then

- 1. $Int_{ic}(H) \subseteq Int_{ic}(K);$
- 2. $Int_{ic}(H) \subseteq H;$
- 3. *H* is *ic* open iff $H = Int_{ic}(H)$.

Definition 2.3. Assume *X* be a TS and let $H \subseteq X$. The *ic*-closer of *H* is defined as The intersection of all (*ic*-*cs*) in *X* containing *H*, and is denoted by $CL_{ic}(H)$. It

is clear that $CL_{ic}(H)$ is (*ic-cs*) for any subset H of X.

Proposition 2.4. Assume (X, τ) be a TS and if $H \subseteq K \subseteq X$. Then

- 1. $CL_{ic}(H) \subseteq CL_{ic}(K);$
- 2. $H \subseteq CL_{ic}(H);$
- 3. *H* is *ic*-closed if and only if $H = CL_{ic}(H)$.

Example 2.5. If $X = \{1, 3, 5\}$ and $\tau = \{\emptyset, X, \{3\}, \{1, 3\}\}$ Then $\tau^{ic} = \{\emptyset, X, \{1\}, \{3\}, \{1, 3\}\}$ Let $H = \{3\}$, $K = \{1, 3\}$ and $\{3\} \subseteq \{1, 3\} \subseteq X$. Then 1. $Int_{ic}(H) = \{3\} \subseteq Int_{ic}(K) = \{1, 3\};$ 2. $Int_{ic}(H) = \{3\} \subseteq H = \{3\};$

3.*H* ={3} is ic- open if and only if $H=\{3\}=Int_{ic}$ (*H*)={3}.

 $C(\tau^{ic}) = \{\emptyset, X, \{3, 5\}, \{1, 5\}, \{5\}\}$ Let $H = \{3\}$, $K = \{1, 3\}$ and $\{3\} \subseteq \{1, 3\} \subseteq X$. Then 1. $CL_{ic}(H) = \{3, 5\} \subseteq CL_{ic}(K) = X;$

2. $H = \{3\} \subseteq CL_{ic}(H) = \{3, 5\};$

3.*H* ={5} is ic- closed if and only if H={5}= CL_{ic} (*H*)={5}.

Definition 2.6. Let *H* be a subset of a TS *X*. A point $n \in X$ is named *ic* – limit point of *H* if it satisfies the following assertion:

 $(\forall G \in \tau^{ic}) (n \in G \Longrightarrow G \cap (H \setminus \{n\}) \neq \phi)$

The set of all *ic*-limit points of *H* is named *ic*-derived set of *H* and is denoted by $D_{ic}(H)$ Note that for a subset *H* of *X*, a point $n \in X$ is not *ic*-limit point of *H* iff there exists (*ic* - os) *G* in *X* s.t. $n \in G \& G$ $\bigcap (H \setminus \{n\}) = \phi$ or equivalently, $n \in G$ and $G \bigcap H = \phi$ or $G \bigcap H = \{n\}$ or equivalently, $n \in G$ and $G \bigcap H \subseteq \{n\}$ **Theorem 2.7.** let *H* be a subset X, and $n \in X$. Then the following are equivalent:

- (1) $(\forall G \in \tau^{ic}) (n \in G \Longrightarrow G \cap H \neq \phi).$
- (2) $n \in CL_{ic}(H)$

Proof. (1) \Rightarrow (2) if $n \notin CL_{ic}(H)$, then there exists (*ic*-

cs) *F* s.t. $H \subseteq F$ and $n \notin F$. Hence $X \setminus F$ is (*ic-os*) containing *n* and $H \bigcap (X \setminus F) \subseteq H \bigcap (X \setminus H) = \phi$. This is contradiction, and hence (2) is valid.

(2) \Rightarrow (1) straightforward.

Theorem 2.8. If (X, τ) be a TS and let $A \subseteq B \subseteq X$. Then

- 1. $CL_{ic}(A) = A \cup D_{ic}(A)$.
- 2. A is ic-closed iff $D_{ic}(A) \subseteq A$
- 3. $D_{ic}(A) \subseteq D_{ic}(B)$
- $4. \quad D_{ic}(A) \subseteq D(A)$
- 5. $CL_{ic}(A) \subseteq CL(A)$.

Proof. Let $n \notin CL_{ic}(A)$. Then there is (ic-cs) F in X s.t. $A \subseteq F$ and $n \notin F$. Hence G=X-F is (ic-os) s.t. $n \in G$ and $G \cap A = \emptyset$. Therefore $n \notin A$ and $n \notin D_{ic}(A)$, then $n \notin A \cup D_{ic}(A)$.

Thus $A \cup D_{ic}(A) \subseteq CL_{ic}(A)$. On the other hand, $n \notin A \cup D_{ic}(A)$ implies that there exists (*ic-os*) *G* in *X* s.t. $n \in G$ and $G \cap A = \emptyset$. Hence F=X-G is (*ic-cs*) in *X* s.t. $A \subseteq F$ and $n \notin F$. Hence $\notin D_{ic}(A)$. Thus $CL_{ic}(A) \subseteq A \cup D_{ic}(A)$. Therefore; $CL_{ic}(A) = A \cup D_{ic}(A)$.

For (2), (3), (4) and (5) the proof is easy.

Example 2.9. Let $X = \{1, 2, 3\}$ and $\tau = \{\emptyset, X, \{1\}, \{1, 2\}\}$ Then

- 1. $\tau \subseteq \tau^{ic} = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}\}$
- 2. If $H = \{1, 3\}$, then $D(H) = \{3\}$ and $D_{ic}(H) = \emptyset$
- 3. If $K = \{1, 2\}$, then $D(K) = \{2, 3\}$ and $D_{ic}(K) = \{3\}$

Theorem 2.10. let τ_1 and τ_2 be topologic on X s.t. $\tau_1^{ic} \subseteq \tau_2^{ic}$. For any subset H of X, each *ic*-limit point of H with respect to τ_2 is *ic*-limit point of H

with respect to τ_1 .

Proof. Assume *n* be *ic* -limit point of *H* with respect to τ_2 . Then $G \cap (H \setminus \{n\}) \neq \phi$ for each $G \in \tau_2^{ic}$ s.t. $n \in G$. But $\tau_1^{ic} \subseteq \tau_2^{ic}$, so in particular, $G \cap (H \setminus \{n\}) \neq \phi$ for each $G \in \tau_1^{ic}$ s.t. $n \in G$. Hence n is *ic*-limit point of *H* with respect to τ_1 .

Theorem 2.11. If *H* is a subset of a discrete topological space X, then $D_{ir}(H) = \phi$

Proof. Assume *n* be any element of *X*. Recall that each subset of *X* is (os) and so (*ic-os*). In particular the singleton set $G: =\{n\}$ is (*ic-os*). But $n \in G$ & $G \cap H = \{n\} \cap H \subseteq \{n\}$. Hence *n* is not *ic*-limit point of *H*, and so $D_{ic}(H) = \phi$.

Theorem 2.12. Let *H* and *K* be subsets of X. If $H \in \tau^{ic}$ and τ^{ic} is a topology on X, then $H \bigcap CL_{ic}(K) \subseteq CL_{ic}(H \bigcap K).$ **Proof.** Assume $n \in H \cap CL_{ic}(K)$. Then $n \in H$ and $n \in CL_{ic}(K) = K \bigcup D_{ic}(K)$. If $n \in K$, then $n \in H \cap K$ $\subseteq CL_{ic}(H \cap K)$. If $n \notin K$, then $n \in D_{ic}(K)$ and so $G \cap K \neq \phi$ for all (ic - os) G containing n. Since $H \in \tau^{ic}$, $G \cap H$ is also $(ic \cdot os)$ containing n. Hence $G \cap (H \cap K) = (G \cap H) \cap K \neq \phi$, and consequently $n \in D_{ic}(K \cap H) \subseteq CL_{ic}(H \cap K)$. Therefore $H \cap CL_{ic}(K) \subseteq CL_{ic}(H \cap K)$.

Definition 2.13. For any subset *H* of *X*, the set b_{ic}

 $(H) = H \setminus Int_{ic}(H)$ is called the *ic*-border of H

Proposition 2.14. For a subset A of a space X, the following statements hold:

1. $b_{ic}(A) \subset b(A)$ where b(A) denotes the border of A;

- 2. $A = Int_{ic}(A) \bigcup b_{ic}(A);$
- 3. $Int_{ic}(A) \cap b_{ic}(A) = \phi;$
- 4. A is an *ic* open set if and only if $b_{ic}(A) = \phi$;
- 5. $b_{ic} (Int_{ic}(A)) = \phi;$
- 6. $Int_{ic}(b_{ic}(A)) = \phi;$
- 7. $b_{ic}(b_{ic}(A)) = b_{ic}(A);$

Proof.

(1) Since $Int(A) \subset Int_{ic}(A)$, we have $b_{ic}(A) = A \setminus Int_{ic}(A) \subseteq A \setminus Int(A) = b(A)$.

(2) & (3). Straightforward.

(4) Assume $Int_{ic}(A) \subseteq A$, it follows from proposition

2.2 (3). That A is $(ic\text{-os}) \Leftrightarrow A = Int_{ic}(A) \Leftrightarrow b_{ic}$ $(A) = A \setminus Int_{ic}(A) = \phi$.

(5) Assume $Int_{ic}(A)$ is (*ic*-os), it follows from (4) that $b_{ic}(Int_{ic}(A)) = \phi$.

(6) If $n \in Int_{ic}(b_{ic}(A))$, then $n \in b_{ic}(A)$. On the other hand, since $b_{ic}(A) \subset A$, $n \in Int_{ic}(b_{ic}(A)) \subset$

Int_{ic}(A). Hence, $n \in Int_{ic}(A) \bigcap (b_{ic}(A))$, which contradicts (3). Thus $Int_{ic}(b_{ic}(A)) = \phi$.

(7) Using (6), we get $b_{ic} (b_{ic} (A)) = b_{ic} (A) \setminus Int_{ic} (b_{ic} (A)) = b_{ic} (A)$.

Example 2.15. From example 2.5. If $A = \{1, 5\}$ be a subset of *X*. Then $Int_{ic}(A) = \{1\}$, and so $b_{ic}(A) = A \setminus Int_{ic}(A) = \{1, 5\} \setminus \{1\} = \{5\}$, and $b(A) = A \setminus Int(A) = \{1, 5\} \setminus \phi = \{1, 5\}$. Hence, $b(A) \not\subset b_{ic}(A)$, Therefore, the converse of proposition 2.14 (1) may not always be true.

Definition2.16. $Fr_{ic}(H) = CL_{ic}(H) \setminus Int_{ic}(H)$ is called the *ic*- frontier of *H*.

Not that if *H* is (*ic-cs*) of *X*, then $b_{ic}(H) = Fr_{ic}(H)$.

proposition 2.17. These propositions are true for a subset A of a space X:

1. $Fr_{ic}(A) \subset Fr(A)$ where Fr(A) denotes the frontier of A;

- 2. $CL_{ic}(A) = Int_{ic}(A) \bigcup Fr_{ic}(A);$
- 3. $Int_{ic}(A) \bigcap Fr_{ic}(A) = \phi;$
- 4. $b_{ic}(A) \subset Fr_{ic}(A);$
- 5. $Fr_{ic}(A) = b_{ic}(A) \bigcup D_{ic}(A);$
- 6. If A is an *ic* open set then $Fr_{ic}(A) = D_{ic}(A)$;
- 7. $Fr_{ic}(A) = CL_{ic}(A) \bigcap CL_{ic}(X \setminus A);$
- 8. $Fr_{ic}(A) = Fr_{ic}(X \setminus A);$
- 9. $Fr_{ic}(A)$ is *ic*-closed;
- 10. $Fr_{ic}(Fr_{ic}(A)) \subset Fr_{ic}(A);$
- 11. Fr_{ic} ($Int_{ic}(A)$) $\subset Fr_{ic}(A)$;
- 12. $Fr_{ic} (CL_{ic}(A)) \subset Fr_{ic}(A);$
- 13. $Int_{ic}(A)=A \setminus Fr_{ic}(A)$.

Proof.

(1) Since $CL_{ic}(A) \subseteq Cl(A)$ and $Int(A) \subseteq Int_{ic}(A)$, it follows that $Fr_{ic}(A) = CL_{ic}(A) \setminus Int_{ic}(A) \subseteq Cl(A) \setminus Int_{ic}(A) \subseteq Cl(A) \setminus Int(A) \subseteq Fr(A)$.

- (2) $Int_{ic}(A) \cup Fr_{ic}(A) = Int_{ic}(A) \cup (CL_{ic}(A)) \setminus Int_{ic}(A) = CL_{ic}(A).$
- (3) $Int_{ic}(A) \cap Fr_{ic}(A) = Int_{ic}(A) \cap (CL_{ic}(A)) \setminus Int_{ic}(A) = \phi.$
- (4) Since $A \subseteq CL_{ic}(A)$, we have $b_{ic}(A) = A \setminus Int_{ic}(A)$ $\subseteq CL_{ic}(A) \setminus Int_{ic}(A) = Fr_{ic}(A)$
- (5) Since $Int_{ic}(A) \cup Fr_{ic}(A) = Int_{ic}(A) \cup b_{ic}(A)$
- $\bigcup D_{ic}(A), Fr_{ic}(A) = b_{ic}(A) \bigcup D_{ic}(A).$
- (6) Assume that A is (*ic-os*). Then $Fr_{ic}(A) = b_{ic}(A)$

$$\bigcup (D_{ic}(A) \setminus Int_{ic}(A)) = \phi \bigcup (D_{ic}(A) \setminus A) =$$

 $D_{ic}(A) \setminus A = b_{ic}(X \setminus A)$, by using (5), proposition 2.2 (3), proposition 2.14(4)

- (7) $Fr_{ic}(A) = CL_{ic}(A) \setminus Int_{ic}(A) = CL_{ic}(A) \cap (CL_{ic}(X \setminus A)).$
- (8) It follows from (7).
- (9) $CL_{ic}(Fr_{ic}(A)) = CL_{ic}(CL_{ic}(A)) \cap (CL_{ic}(X \setminus A)) \subset CL_{ic}(CL_{ic}(A)) \cap CL_{ic}(CL_{ic}(X \setminus A)) = Fr_{ic}(A)$. Hence, $Fr_{ic}(A)$ is *ic*-closed.

Tikrit Journal of Pure Science Vol. 27 (6) 2022

TJPS

 $(10) \ Fr_{ic} (Fr_{ic} (A)) = CL_{ic} (Fr_{ic} (A)) \cap (CL_{ic} (X \land Fr_{ic} (A)) \subset CL_{ic} (Fr_{ic} (A)) = Fr_{ic} (A).$ $(11) \ Since \ Int_{ic} (Int_{ic} (A)) = Int_{ic} (A), we get$ $Fr_{ic} (Int_{ic} (A)) = CL_{ic} (Int_{ic} (A)) \land Int_{ic} (Int_{ic} (A)) \subset L_{ic} (A) \land Int_{ic} (A) = Fr_{ic} (A).$ $(12) \ Fr_{ic} (CL_{ic} (A)) = CL_{ic} (CL_{ic} (A)) \land Int_{ic} (CL_{ic} (A)) \land Int_{ic} (CL_{ic} (A)) = CL_{ic} (A) \land Int_{ic} (Fr_{ic} (A)) \land Int_{ic} (CL_{ic} (A)) \land Int_{ic} (CL_{ic} (A)) \land Int_{ic} (CL_{ic} (A)) \land Int_{ic} (A) \land Int_$

Example 2.18. Assume that TS (X, τ) provided in Example 2.5, If $A = \{1, 3\}$ be a subset of X. Then $Int_{ic}(A) = \{1, 3\}$, and so $b_{ic}(A) = A \setminus Int_{ic}(A) = \{1, 3\} \setminus \{1, 3\} = \phi$. Since $A = \{5\}$ is *ic*-closed, $CL_{ic}(A) = \{5\}$ and thus $Fr_{ic}(A) = CL_{ic}(A) \setminus Int_{ic}(A) = \{5\} \setminus \{1, 3\} = \phi$.

Theorem 2.19. For a subset H of X, H is (ic-cs) iff Fr_{ic} (H) $\subseteq H$

Proof. Assume that H is (ic-cs). Then Fr_{ic} (H)= CL_{ic} (H)\ Int_{ic} (H)= H\ Int_{ic} (H) \subseteq H.

Conversely suppose that Fr_{ic} (*H*) \subset *H*. Then CL_{ic}

 $(H) \setminus Int_{ic}(H) \subseteq H$, and so $CL_{ic}(H) \subseteq H$. Since

 $Int_{ic}(H) \subseteq H$. Noticing that $H \subseteq CL_{ic}(H)$, we have $H = CL_{ic}(H)$. Therefore; H is (ic-cs).

Definition 2.20. For a subset H of X, $Ext_{ic}(H) =$

 Int_{ic} (X \H) is said to be an *ic*-exterior of H.

Example 2.21. Assume (X, τ) be a TS in Example 2.9 For subset $H = \{2\}$ and $K = \{1\}$ of X, we have $Ext_{ic}(H) = \{1\}$ and $Ext_{ic}(K) = \{2\}$.

Proposition 2.22. These propositions are true for a subset *A* of a space *X*:

- 1. $Ext_{ic}(A)$ is *ic*-open;
- 2. $Ext_{ic}(A) = Int_{ic}(X \setminus A) = X \setminus CL_{ic}(A);$
- 3. If $A \subset B$, then $Ext_{ic}(A) \supset Ext_{ic}(B)$;
- 4. $Ext_{ic}(A \cup B) \subset Ext_{ic}(A) \cap Ext_{ic}(B);$
- 5. $Ext_{ic}(A \cap B) \supset Ext_{ic}(A) \cup Ext_{ic}(B);$
- 6. $Ext_{ic}(X) = \phi;$
- 7. $Ext_{ic}(\phi) = X$;
- 8. $Ext_{ic}(A) = Ext_{ic}(X \setminus Ext_{ic}(A));$
- 9. $X = Int_{ic}(A) \cup Ext_{ic}(A) \cup Fr_{ic}(A)$.

Proof. (1) and (2) straightforward.

(3) Assume that $A \subseteq B$. Then $Ext_{ic}(B) = Int_{ic}(X)$ $B \subseteq Int_{ic} (X A) = Ext_{ic} (A)$ (4) $Ext_{ic}(A \cup B) = Int_{ic}(X \setminus (A \cup B)) = Int_{ic}((X \cup B))$ $(A) \cap (X \setminus B)) \subseteq Int_{ic}((X \setminus A)) \cap Int_{ic}((X \setminus B)) =$ $Ext_{ic}(A) \cap Ext_{ic}(B).$ (5) $Ext_{ic}(A \cap B) = Int_{ic}(X \setminus (A \cap B)) = Int_{ic}(X \setminus (A \cap B))$ $(A) \cup (X \setminus B) \supset Int_{ic}((X \setminus A)) \cup Int_{ic}((X \setminus B)) =$ $Ext_{ic}(A) \cup Ext_{ic}(B).$ (6) and (7) Straightforward. (8) $Ext_{ic} (X \setminus Ext_{ic} (A)) = Ext_{ic} (X \setminus Int_{ic} (X))$ $(A) = Int_{ic} (X (X \setminus Int_{ic} (X \setminus A))) =$ $Int_{ic}(Int_{ic}(X \setminus A)) = Int_{ic}(X \setminus A) = Ext_{ic}(A).$ (9) Straightforward. If $X = \{1, 2, 3\}$ Example 2.23. and $\tau =$ $\{\emptyset, X, \{1\}, \{1, 2\}\}$ Then $\tau^{ic} = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}\}$ If $H=\{1\}$, $K=\{2\}$. Then Ext_{ic} $(H \cup K)=\emptyset$, 1. $Ext_{ic}(K) = \{1\}, \quad Ext_{ic}(H) \cap$ $Ext_{ic}(H) = \{2\},\$ $Ext_{ic}(K) = \emptyset$, so $Ext_{ic}(H \cup K) \subset Ext_{ic}(H) \cap$ $Ext_{ic}(K)$ 2. If $H = \{1, 2\}, K = \{2\}$. Then $Ext_{ic}(H \cap K) = \{1\},$ $Ext_{ic}(H) = \emptyset, Ext_{ic}(K) = \{1\}, Ext_{ic}(H) \cup Ext_{ic}$

(K)={1}, so $Ext_{ic}(H \cap K) \supset Ext_{ic}(H) \cup Ext_{ic}(K)$.

3. *ic-* Continuous Mappings and *ic-* Homeomorphism

This section is devoted to introduce *ic*-open map, *ic*irresolute map, *ic*-totally continuous map, *ic*homeomorphism and discussed the relationships between the other known existing map.

Definition 3.1. A mapping $f: X \to Y$ is named *ic*-open denoted by (*ic-om*), if f(U) is (*ic-os*) in Y for each (*os*) U in X.

Example 3.2. Let $X = Y = \{3,5,7\}$ and $\tau = \{\emptyset, X, \{3,5\}\}, \sigma = \{\emptyset, Y, \{3\}, \{3,5\}\}$ Then

 $\tau^{ic} = \{\emptyset, Y, \{3\}, \{5\}, \{3, 5\}\}.$ Clearly, the identity mapping $f: X \to Y$ is (*ic-om*)

Proposition 3.3. Any (*OM*) is (*ic-om*) but not conversely.

Proof. Assume $f: X \to Y$ be (om) and H be (os

) in X. Since, f is open, then f(H) is (os) in Y. Since, each (os) is (ic-os) then, f(H) is (ic-os) in Y. Therefore, f is (ic-om).

If $X = Y = \{1,2,3\}$ and $\tau = \{\emptyset, X, \{2\}, \{1,2\}\}, \sigma = \{\emptyset, Y, \{1\}, \{1,2\}\}$ Then

 $\tau^{ic} = \{\emptyset, Y, \{1\}, \{2\}, \{1, 2\}\}.$ Clearly, the identity mapping $f: X \to Y$ is (*ic-om*) but not (*om*).

Theorem 3.4. If $f: X \to Y$ is open & $g: Y \to Z$ is *ic*-open, then $gof: X \to Z$ is *ic*-open.

Proof. Suppose that $f: X \to Y$ be open & $g: Y \to Z$ is ic-open. Let G be an (os) in X. Since, f is an open, then f(G) is an (os) in Y. Since, each (os) is (ic-os), then f(G) is (ic-os) in Y. Since, g is (ic-os), then (gof)(G) = g(f(G)) is (ic-os) in Z. Therefore; $gof: X \to Z$ is *ic*-open.

Theorem 3.5. If $f: X \to Y$ is *(ic-conm)* and $g: Y \to Z$ is *(conm)*, then $gof: X \to Z$ is *(ic-conm)*.

Proof. Assume $f: X \to Y$ be (*ic-conm*) & $g: Y \to Z$ is (*contm*). Let G be an (*os*) in Z. Since, g is (*conm*), then $g^{-1}(G)$ is an (*os*) in Y. Since, f is (*ic-conm*), then $f^{-1}(g^{-1}(G)) = (gof)^{-1}(G)$ is (*ic-os*) in X. Therefore; $gof: X \to Z$ is (*ic-conm*).

Definition 3.6. Amapping $f : X \to Y$ is named *ic*-irresolute is denoted by *(ic-irrem)*, if the inverse image of every *(ic-os)* of *Y* is *(ic-os)* in *X*

Example 3.7. If $X = Y = \{2,4,6\}$ and $\tau = \{\emptyset, X, \{2\}, \{2,4\}\}, \sigma = \{\emptyset, Y, \{2\}\}$ Then

 $\tau^{ic} = \{\emptyset, X, \{2\}, \{4\}, \{2, 4\}\}.$

 $\sigma^{ic} = \{\emptyset, Y, \{2\}\}\$

Clearly, the identity mapping $f: X \rightarrow Y$ is (*ic-irrem*) **Proposition 3.8.** Each (*ic-irrem*) is (*ic-conm*).

Proof: Suppose that $f: X \to Y$ be (*ic-irrem*) & V any (*os*) in Y. Since each (*os*) is (*ic-os*) and since f is *ic-*irresolute, then $f^{-1}(V)$ is (*ic-os*) in X. Therefore; f is (*ic-conm*).

Theorem 3.9. Each (*conm*) is (*ic-irrem*) but not conversely.

Proof. Suppose that $f: X \to Y$ be (conm) & V any (*ic-os*) in Y. Since f is (conm), then $f^{-1}(V)$ is (os) in X. Since each (os) is (*ic-os*), then $f^{-1}(V)$ is (*ic-os*) in X. Therefore; f is (*ic-irrem*).

Let $X = Y = \{2,4,6\}$ and $\tau = \{\emptyset, X, \{2\}, \{2,4\}\}, \sigma = \{\emptyset, Y, \{4\}\}$ Then

 $\tau^{ic} = \{\emptyset, X, \{2\}, \{4\}, \{2, 4\}\}.$

 $\sigma^{ic} = \{\emptyset, Y, \{4\}\}$

Clearly, the identity mapping $f: X \to Y$ is (*ic-irrem*) but not (*conm*)

Theorem 3.10. If $f: X \to Y$ is (*ic-irrem*) & $g: Y \to Z$ is (*ic-conm*), then $gof: X \to Z$ is (*ic-irrem*). **Proof.** Let $f: X \to Y$ is (*ic-irrem*) and $g: Y \to Z$ is (*ic-conm*). Let U be an (*os*) in Z. Then U is (*ic-os*) because each (*os*) is (*ic-os*). Since, g is (*ic-conm*), then $g^{-1}(U)$ is (*ic-os*) in Y. Since, f is (*ic-irrem*), then $f^{-1}(g^{-1}(U))=(gof)^{-1}(U)$ is (*ic-os*) in X. Therefore; $gof: X \to Z$ is (*ic-irrem*).

Theorem 3.11. The composition of two (*ic-irrem*) is also (*ic-irrem*).

Proof. Assume $f: X \to Y$ & $g: Y \to Z$ any two (*ic-irrem*). Suppose that U be any (*ic-os*) in Z. Since, g is (*ic-irrem*), then $g^{-1}(U)$ is (*ic-os*) in Y. Since, f is (*ic-irrem*), then $f^{-1}(g^{-1}(U))=(gof)^{-1}(U)$ is (*ic-os*) in X. Therefore; $gof: X \to Z$ is (*ic - irrem*).

Definition 3.12. Let *X* and *Y* be *TS*, a bijective map $f: X \rightarrow Y$ is named *ic*-homeomorphism is denoted by (*ic-homm*) if *f* is (*ic-conm*) and (*ic-om*).

Theorem 3.13. If $f: X \rightarrow Y$ is (*homm*), then f is (*ic-homm*) but not conversely.

Proof: Since each (conm) is (ic-conm) by Theorem 1.2 (2). Also, since each (om) is (ic-om) by proposition (3.3) Further, since f is bijective. Therefore, f is (ic-homm).

Let $X = Y = \{1,2,3\}$ and $\tau = \{\emptyset, X, \{1\}, \{2,3\}\}, \sigma = \{\emptyset, Y, \{2\}, \{1,3\}\}$ Then

 $\tau^{ic} = \{ \emptyset, X, \{1\}, \{3\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 3\} \}.$

 $\sigma^{ic} = \{ \emptyset, Y, \{1\}, \{3\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 3\} \}.$

Clearly, the identity mapping $f: X \to Y$ is (*ic-homm*) but not (*homm*)

Definition 3.14. Amapping $f: X \to Y$ is named *ic*-totally continuous is denoted by *(ic-tconm)*, If each's reverse, *(ic-os)* of *Y* is *(cl-os)* in *X*.

Theorem 3.15. Each *(ic-tconm)* is totally continuous but not conversely.

Proof. Suppose that $f : X \to Y$ be (*ic-tconm*) and V be (*OS*) in Y, since each (*OS*) is (*ic-os*), then V is (*ic-os*) in Y. Since f is (*ic-tconm*), then, $f^{-1}(V)$ is (*cl-os*) in X. Therefore, f is (*tconm*).

Let $X = Y = \{1,2,3\}$ and $\tau = \{\emptyset, X, \{1\}, \{2,3\}\}, \sigma = \{\emptyset, Y, \{2,3\}\}$ Then

 $\sigma^{ic} = \{\emptyset, Y, \{2\}, \{3\}, \{2, 3\}\}.$

Clearly, the identity mapping $f: X \to Y$ is (*tconm*) but not (*ic-tconm*)

Theorem 3.16. Each *(ic-tconm)* is *(ic-irrem)* but not conversel.

Proof: Assume that $f: X \to Y$ be (*ic-tconm*) and V be (*ic-os*) in Y. Since f is (*ic-tconm*), then $f^{-1}(V)$ is (*cl-os*) in X, which implies, $f^{-1}(V)$ is (*os*), it follows $f^{-1}(V)$ is (*ic-os*) in X. Therefore; f is (*ic-irrem*).

Let $X = Y = \{1,3,5\}$ and $\tau = \{\emptyset, X, \{1\}, \{1,3\}\}, \sigma = \{\emptyset, Y, \{3\}\}$ Then

 $\tau^{ic} = \{\emptyset, X, \{1\}, \{3\}, \{1, 3\}\}.$

 $\sigma^{ic} = \{\emptyset, Y, \{3\}\}$

Clearly, the identity mapping $f: X \to Y$ is (*ic-irrem*) but not (*ic-tconm*)

Theorem 3.17. The two's *(ic-tconm)* composition is also *(ic-tconm)*.

Proof: Suppose that $f: X \to Y$, $g: Y \to Z$ be any two (*ic-tconm*). Assume V be any (*ic-os*) in Z. Since, g is (*ic-tconm*), then $g^{-1}(V)$ is (cl - os) in Y, which implies $f^{-1}(V)$ is (os), it follows $f^{-1}(V)$ is (*ic-os*). Since, f is (*ic-tconm*), then, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is (cl - os) in X. Therefore, $gof: X \to Z$ is (*ic-tconm*).

Theorem3.18. If $f: X \to Y$ be (*ic-tconm*) and $g: Y \to Z$ be (*ic-irrem*), then $g \circ f: X \to Z$ is (*ic-tconm*).

Proof: Assume that $f: X \to Y$ be (*ic-tconm*) and $g: Y \to Z$ is (*ic-irrem*). Let V be (*ic-os*) in Z. Since g is (*ic-irrem*) then $g^{-1}(V)$ is (*ic-os*) in Y. Since f is (*ic-tconm*), then $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is (cl - os) in X. Therefore, $g \circ f: X \to Z$ is (*ic-tconm*).

Theorem3.19. If $f: X \to Y$ is (ic-tconm)and $g: Y \to Z$ is(ic-conm), then $g \circ f: X \to Z$ is (tconm).

References

[1] Abdullah. B.S, Askander.S,W and Mohammed. A.A, "*New Class of Open Sets in Topological Space*", Turkish Journal of Computer and Mathematics Education, Vol. 13, No. 03(2022), 247-256.

[2] Askander, S.W and Mohammed, A.A." *i-Open Sets in bi-Topological Spaces*", AL Rafidain Journal of Computer Sciences and Mathematics, 12 (2018), 13-23. **Proof:** Let $f: X \to Y$ be (*ic-tconm*) and $g: Y \to Z$ is (*ic-conm*), let V be(os) in Z. Since, g is (*ic-conm*), then, $g^{-1}(V)$ is (*ic-os*) in Y. Since, f is (*ic-tconm*), then, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is (cl - os) in X. Therefore, $g \circ f: X \to Z$ is (tconm).

[3] Njastad. O. (1965) "On some classes of nearly open sets". Pacific Journal of Mathematics, **15**, 961-970. https://doi.org/10.2140/pim.1965.15.961.

[4] Levine. N. (1963) "Semi-open sets and semicontinuity in topological spaces". The American Mathematical Monthly, **70**, 36-41. <u>https://doi.org/10.2307/2312781</u>

السمات التبولوجية لمجموعات مفتوحة من النمط-ic

بيداء سيهل عبدالله ¹ ، سامي عبد الله عبد² ، عامر عبدالاله محد¹ ، معامر عبدالاله محد¹ ، معامر عبدالاله محد¹ ¹قسم الرياضيات ، كلية التربية للعلوم الصرفة ، جامعة الموصل ، الموصل ، العراق ²قسم الاحصاء ، كلية الادارة والاقتصاد ، جامعة ديالي ، ديالي ، العراق

الملخص

باستخدام فكرة المجموعات المفتوحة من النمط, ic - نقدم ونتحقق من الصفات التبولوجية للانغلاق من النمط - ic الداخل من النمط - ic ، نقاط الحد من النمط - ic المشتقة من النمط - ic الحدود من النمط - ic والجزء الخارجي من النمط - ic للمجموعة . قدم مفاهيم التطبيقات المستمرة من النمط , ic والتطبيقات المفتوحة من النمط - ic التطبيقات المذبذبة من النمط - ic التطبيقات المستمرة تماما من النمط – ic والتشاكل من النمط - ic ثم ننظر في بعض خصائص هذه التطبيقات.