TIPS

Tikrit Journal of Pure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

Journal Homepage: http://tjps.tu.edu.iq/index.php/tjps

Topological Features of *ic***- Open Sets**

Beyda S. Abdullah¹ , Sami Abdullah Abed² , Amir A. Mohammed¹ *¹Department of Mathematics, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq ²Department of Statistics, College of Administration and Economics, University of Diyala, , Diyala, Iraq*

ARTICLE INFO.

Article history:

-Received: 9 / 9 / 2022 -Accepted: 16 / 10 / 2022

-Available online: 25 / 12 / 2022

Keywords: *ic*-open sets; *ic*-closure; *ic*-interior; *ic*-derived; *ic*-border; *ic*-frontier; *ic*-continuous mappings; *ic*-open mappings; *ic*-irresolute mappings; *ic*-totally continuous mappings; *ic*homeomorphism.

Corresponding Author:

Name: Beyda S. Abdullah

E-mail:

Baeda[q419@unmosul.edu.iq](mailto:419@unmosul.edu.iq) samiaabed@uodiyala.edu.iq

amirabdulillah@uomosul.edu.iq

Tel:

©2022 COLLEGE OF SCIENCE, TIKRIT UNIVERSITY. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE <http://creativecommons.org/licenses/by/4.0/> ര **CC** \overline{BY}

1. Introduction

Askandar in [2] "using the idea of *i*- open sets, he introduces and examines the topological features of *i*derivatives, *i*- terms and *i*- set outward appearances. Using *ic*-open sets, we introduce and investigate the same notions in this research. a portion *H* of "is known as *ic*-open set[1] if there exists a closed set *F* $\neq \phi$, $X \in \tau^c$ such that: $F \cap H \subseteq Int(H)$, where *Int(H)* denotes the interior points of *H* and τ^c denotes the family of closed sets*.* An *ic*-closed set is the complement of an *ic*-open set.*.* We denote the family of *ic*-open set in (X, τ) by τ^{ic} . Let (X, τ^i) be a topological space. This property allows us to prove similar properties *i-* open set. Also, we define *ic*continuous mappings, *ic*-open mappings, *ic*-totally continuous mappings, *ic*- homeomorphism and

ABSTRACT

Using the idea of *ic*-open sets, we introduce and investigate the topological qualities of an *ic*-closure, *ic*interior, *ic*-limit points, *ic*-derived, *ic*-border, *ic*-frontier, and *ic*-exterior of a set. Introduce the concepts of "*ic*-continuous mappings," "*ic*-open mappings," "*ic*-irresolute mappings," "*ic*-totally continuous mappings," and "*ic*-homeomorphism," and then look into some of the properties of these mappings.

> investigate some properties of these mappings. The topological spaces (X, τ) and (Y, σ) are denoted here by *X* and *Y*, respectively, topological spaces, open sets (as opposed to closed sets) by (*os*), (*cs*), TS. Throughout this paper, topological spaces are referred to as (X, τ) and (Y, σ) . $Cl(H)$ and $Int(H)$ denote the closure and interior of a space's subset *H*, respectively. The following definitions come to mind; they are helpful in the follow-up.

Definition 1.1. A mapping $f: X \rightarrow Y$ is named

1. Continuous denoted by (comm) [4] if $f^{-1}(U)$ is (

os) in X for each (*os*) U in Y.

2. totally -continuous is denoted by (*t conm*)if [4] $f^{-1}(U)$ is (cl-os) in *X* for each (os) *U* in *Y*.

3. *ic*- continuous is denoted by (*ic- conm*)if [1]

 $f^{-1}(U)$ is *(ic-os)* in *X* for each (os) *U* in *Y*.

Theorem 1.2. [1]

- 1. Each (*os*) in TS is (*ic-os*).
- 2. Each (*conm*) is (*ic- conm*).
- **2. Applications of** *ic***- Open Sets.**

Definition 2.1. Assume *X* be a TS and let $H \subseteq X$. The *ic*- interior of *H* is defined as the union of all *(ic- os*) in *X* content in *H*, and is denoted by $Int_{ic}(H)$. It is

clear that Int_{ic} (*H*) is (*ic-os*) for any subset *H* of *X*.

Proposition 2.2. Assume (X, τ) be a TS and if *H* $\subseteq K \subseteq X$. Then

- *1.* $Int_{ic}(H) \subseteq Int_{ic}(K);$
- 2. $Int_{ic}(H) \subseteq H$;
- *3. H* is *ic* open iff $H=Int_{ic}(H)$.

Definition 2.3. Assume *X* be a TS and let $H \subseteq X$. The *ic*-closer of *H* is defined as The intersection of all *(ic-* $\mathcal{L}(cS)$ in *X* containing *H*, and is denoted by $\mathcal{CL}_{ic}(H)$. It

is clear that $CL_{ic}(H)$ is *(ic-cs)* for any subset *H* of *X*.

Proposition 2.4. Assume (X, τ) be a TS and if $H \subseteq K \subseteq X$. Then

- *1.* $CL_{ic}(H) \subseteq CL_{ic}(K);$
- 2. $H \subseteq CL_{ic}(H);$
- *3. H* is *ic* closed if and only if $H = CL$ ^{*ic*} (*H*)*.*

Example 2.5. If $X = \{1, 3, 5\}$ and $\tau =$ $\{\emptyset, X, \{3\}, \{1, 3\}\}\$ Then $\tau^{ic} = \{\emptyset, X, \{1\}, \{3\}, \{1, 3\}\}\$ Let $H = \{3\}$, $K = \{1, 3\}$ and $\{3\} \subseteq \{1, 3\} \subseteq X$. Then *1.* $Int_{ic}(H) = \{3\} \subseteq Int_{ic}(K) = \{1, 3\};$ 2. $Int_{ic}(H) = \{3\} \subseteq H = \{3\};$

3.*H* = {3} is ic- open if and only if $H = \{3\} = Int_{ic}$ *(H)={3}.*

 $C(\tau^{ic})$ =

Let $H = \{3\}$, $K = \{1, 3\}$ and $\{3\} \subseteq \{1, 3\} \subseteq X$. Then *1.* CL_{ic} (*H*)= {3, 5} $\subseteq CL_{ic}$ (*K*)=*X*;

2. $H = \{3\} \subseteq CL_{ic}$ $(H) = \{3, 5\};$

3.H = {5} *is ic-* closed if and only if $H = \{5\} = CL_i$ *(H)={5}.*

Definition 2.6. Let *H* be a subset of a TS *X*. A point $n \in X$ is named *ic* – limit point of *H* if it satisfies the following assertion:

 $(\forall G \in \tau^{ic})$ $(n \in G \implies G \cap (H\setminus\{n\}) \neq \emptyset)$

The set of all *ic*-limit points of *H* is named *ic*-derived set of *H* and is denoted by $D_i(f)$ Note that for a subset *H* of *X*, a point $n \in X$ is not *ic*-limit point of *H* iff there exists (*ic* - os) *G* in *X* s.t. $n \in G$ & *G* \bigcap (*H*\{n}) = ϕ or equivalently, $n \in G$ and $G \cap H = \phi$ or $G \cap H = \{n\}$ or equivalently, $n \in G$ and $G \cap H \subseteq \{n\}$

Theorem 2.7. let *H* be a subset X , and $n \in X$. Then the following are equivalent:

- *(1)* $(\forall G \in \tau^{ic})$ *(n*∈*G* $\Rightarrow G \cap H \neq \emptyset$ *).*
- (2) $n \in CL_{ic}(H)$

Proof. (1) \Rightarrow (2) if $n \notin CL_{ic}(H)$, then there exists (*iccs*) *F* s.t. $H \subseteq F$ and $n \notin F$. Hence $X \setminus F$ is (*ic-os*) containing *n* and $H \bigcap (X \setminus F) \subseteq H \bigcap (X \setminus H) = \phi$. This is contradiction, and hence (2) is valid.

(2) \implies (1) straightforward. ■

Theorem 2.8. If (X, τ) be a TS and let $A \subseteq B \subseteq X$. Then

- *1.* $CL_{ic}(A) = A \cup D_{ic}(A)$.
- 2. A is ic-closed iff $D_{ic}(A) \subseteq A$
- 3. $D_{ic}(A) \subseteq D_{ic}(B)$
- 4. $D_{ic}(A) \subseteq D(A)$
- *5.* $CL_{ic}(A) \subseteq CL(A)$.

Proof. Let $n \notin CL_{ic}(A)$. Then there is *(ic-cs) F* in *X* s.t. $A \subseteq F$ and $n \notin F$. Hence $G=X-F$ is $(ic-os)$ s.t. $n \in G$ and $G \cap A = \emptyset$. Therefore $n \notin A$ and $n \notin A$ $D_{ic}(A)$, then $n \notin A \cup D_{ic}(A)$.

Thus $A \cup D_{ic}(A) \subseteq CL_{ic}(A)$. On the other hand, $n \notin A \cup D_{ic}(A)$ implies that there exists (*ic-os*) *G* in *X* s.t. $n \in G$ and $G \cap A = \emptyset$. Hence $F=X-G$ is *(ic-cs)* in *X* s.t. $A \subseteq F$ and $n \notin F$. Hence $\notin D_{ic}(A)$. Thus $CL_{ic}(A) \subseteq A \cup D_{ic}(A)$. Therefore; $CL_{ic}(A) = A \cup$ $D_{ic}(A)$.

For (2) , (3) , (4) and (5) the proof is easy.

Example 2.9. Let $X = \{1, 2, 3\}$ and $\tau =$ $\{\emptyset, X, \{1\}, \{1, 2\}\}\$ Then

- 1. $\tau \subseteq \tau^i$
- 2. If $H = \{1, 3\}$, then $D(H) = \{3\}$ and $D_{ic}(H) = \emptyset$
- *3.* If $K = \{1, 2\}$, then $D(K) = \{2, 3\}$ and $D_{ic}(K) = \{3\}$

Theorem 2.10. let τ_1 and τ_2 be topologic on X s.t.

ic $\tau_1^{ic} \subseteq \tau_2^{ic}$ τ_2^{μ} . For any subset *H* of *X*, each *ic*-limit point of *H* with respect to τ_2 is *ic*- limit point of *H* with respect to τ_1 .

Proof. Assume *n* be *ic* -limit point of *H* with respect to τ_2 . Then $G \bigcap (H \setminus \{n\}) \neq \emptyset$ for each $G \in \tau_2^{ic}$ τ_2^w s.t. *n* \in *G*. But τ_1^{ic} $\tau_1^{ic} \subseteq \tau_2^{ic}$ τ_2^{ic} , so in particular, $G \bigcap (H \setminus \{n\}) \neq$ ϕ for each $G \in \tau_1^{ic}$ τ_1^{ic} s.t. $n \in G$. Hence n is *ic*-limit point of *H* with respect to τ_1 .

Theorem 2.11. If *H* is a subset of a discrete topological space X, then $D_{ic} (H) = \phi$

Proof. Assume *n* be any element of *X*. Recall that each subset of *X* is (os) and so (*ic-os*). In particular the singleton set $G: = \{n\}$ is *(ic-os)*. But $n \in G$ & *G* $\bigcap H = \{n\}$ $\bigcap H \subseteq \{n\}$. Hence *n* is not *ic*-limit point of *H*, and so $D_i(H) = \phi$.

Theorem 2.12. Let *H* and *K* be subsets of X . If $H \in$ τ^{ic} and τ^{ic} is a topology on **X**, then $H \bigcap CL_{ic}(K) \subseteq CL_{ic}(H \bigcap K).$

Proof. Assume $n \in H \cap CL_{ic}(K)$. Then $n \in H$ and $n \in CL_{ic}$ (*K*)= *K* $\bigcup D_{ic}$ (*K*). If $n \in K$, then $n \in H \bigcap K$ \subseteq CL_{ic} (*H* \cap *K*). If $n \notin K$, then $n \in D_{ic}$ (*K)* and so $G \bigcap K \neq \phi$ for all $(ic - os) G$ containing *n*. Since *H* $\in \tau^{ic}$, $G \cap H$ is also (*ic-os*) containing *n*. Hence *G* $\bigcap (H \bigcap K) = (G \bigcap H) \bigcap K \neq \emptyset$, and consequently *n* $\in D_{ic}$ *(K*) \cap *H*) \subseteq *CL*_{*ic*} *(H* \cap *K*). Therefore *H* $H\bigcap$ $CL_{ic}(K) \subseteq CL_{ic}(H \cap K).$

Definition 2.13. For any subset *H* of *X*, the set b_{ic}

 $(H) = H\left(\frac{Int}{C}H\right)$ is called the *ic*- border of *H*

Proposition 2.14. For a subset A of a space X , the following statements hold:

1. b_{ic} (*A*) \subset *b*(*A*) where *b*(*A*) denotes the border of *A;*

- 2. $A = Int_{ic}(A) \bigcup b_{ic}(A);$
- 3. Int_{ic}(A) $\bigcap b_{ic}(A) = \phi$;
- 4. *A* is an ic- open set if and only if b_{ic} (*A*) = ϕ ;
- 5. b_{ic} ($Int_{ic}(A)$)= ϕ ;
- 6. Int_{ic} $(b_{ic}(A)) = \phi$;
- 7. $b_{ic} (b_{ic} (A)) = b_{ic} (A);$

Proof.

(1) Since $Int(A) \subset Int_{ic}(A)$, we have $b_{ic}(A)=A\$ $Int_{ic}(A) \subseteq A\backslash Int(A) = b(A).$

(2) & (3). Straightforward.

(4) Assume $Int_{ic}(A) \subseteq A$, it follows from proposition

2.2 (3). That *A* is $(ic\text{-}os) \Leftrightarrow A = Int_{ic}(A) \Leftrightarrow b_{ic}$ $(A)=A\setminus Int_{ic}(A)=\phi$.

(5) Assume $Int_{ic}(A)$ is (*ic*-os), it follows from (4) that b_{ic} ($Int_{ic}(A)$) = ϕ .

(6) If $n \in Int_{ic} (b_{ic} (A))$, then $n \in b_{ic} (A)$. On the other hand, since $b_{ic}(A) \subset A$, $n \in Int_{ic}(b_{ic}(A)) \subset A$

*Int*_{ic}(*A*). Hence, $n \in Int_{ic}(A) \cap (b_{ic}(A))$, which contradicts (3). Thus $Int_{ic} (b_{ic} (A)) = \phi$.

(7) Using (6), we get b_{ic} $(b_{ic}$ $(b_{ic}$ $(A))=$ b_{ic} (A) Int_{ic} (b_{ic} *(A)*)= b_{ic} *(A)*.

Example 2.15. From example 2.5. If *A= {1, 5}* be a subset of *X*. Then $Int_{ic}(A) = \{1\}$, and so $b_{ic}(A) = A\}$ *Int*_{ic}(A)={1, 5}\{1}={5}, and b(A)=A\Int(A)={1, 5}\ $\phi = \{1, 5\}$. Hence, $b(A) \not\subset b_{ic}(A)$, Therefore, the converse of proposition 2.14 (1) may not always be true.

Definition2.16. Fr_{ic} (*H*)= CL_{ic} (*H*)\ Int_{ic} (*H*) is called the *ic*- frontier of *H.*

Not that if *H* is *(ic-cs)* of *X*, then $b_{i c}$ *(H)*= $Fr_{i c}$ *(H)*.

proposition 2.17. These propositions are true for a subset *A* of a space *X :*

1. $Fr_{ic}(A) \subseteq Fr(A)$ where $Fr(A)$ denotes the frontier of *A;*

- 2. $CL_{ic}(A) = Int_{ic}(A) \cup Fr_{ic}(A);$
- 3. Int_{ic}(A) \bigcap $Fr_{ic}(A) = \phi$;
- 4. $b_{i c} (A) \subset Fr_{i c} (A);$
- 5. $Fr_{ic}(A) = b_{ic}(A) \cup D_{ic}(A);$
- 6. If A is an *ic* open set then $Fr_{ic}(A) = D_{ic}(A)$;
- *7.* $Fr_{ic}(A) = CL_{ic}(A) \cap CL_{ic}(X \setminus A);$
- 8. $Fr_{ic}(A) = Fr_{ic}(X \setminus A);$
- 9. $Fr_{ic}(A)$ is *ic*-closed;
- *10.* Fr_{ic} $(Fr_{ic}$ $(A)) \subset Fr_{ic}$ (A) ;
- *11.* Fr_{ic} ($Int_{ic}(A)$) $\subset Fr_{ic}(A)$;
- *12.* $Fr_{ic} (CL_{ic}(A)) \subset Fr_{ic}(A);$
- *13. Int*_{*ic*} (*A*)*=A* \sum *Fr*_{*ic*} (*A*)*.*

Proof.

(1) Since $CL_{ic}(A) \subseteq Cl(A)$ and $Int(A) \subseteq Int_{ic}(A)$, it follows that $Fr_{ic}(A) = CL_{ic}(A) \setminus Int_{ic}(A) \subseteq Cl(A)$ $Int_{ic}(A) \subseteq Cl(A) \setminus Int(A) \subseteq Fr(A).$

- (2) $Int_{ic}(A) \cup Fr_{ic}(A) = Int_{ic}(A) \cup (-CL_{ic}(A))$ *Int*_{*ic*} (*A*)= CL _{*ic*} (*A*).
- (3) $Int_{ic}(A) \cap Fr_{ic}(A) = Int_{ic}(A) \cap (CL_{ic}(A))$ $Int_{ic}(A)) = \phi$.
- (4) Since $A \subseteq CL_{ic}(A)$, we have $b_{ic}(A) = A \setminus Int_{ic}(A)$ \subseteq CL_{ic} (A)\ Int_{ic} (A)= Fr_{ic} (A)
- (5) Since $Int_{ic}(A) \cup Fr_{ic}(A) = Int_{ic}(A) \cup b_{ic}(A)$

$$
\bigcup D_{ic}(A), Fr_{ic}(A) = b_{ic}(A) \bigcup D_{ic}(A).
$$

(6) Assume that *A* is (*ic-os*). Then $Fr_{ic}(A) = b_{ic}(A)$

$$
\bigcup \left(D_{ic}(A) \backslash Int_{ic}(A) \right) = \phi \bigcup \left(D_{ic}(A) \backslash A \right) =
$$

 $D_{ic}(A) \cap A = b_{ic}(X \cap A)$, by using (5), proposition 2.2 (3), proposition2.14(4)

- (7) $Fr_{ic}(A) = CL_{ic}(A) \text{ } Int_{ic}(A) = CL_{ic}(A) \text{ }$ CL_{ic} ($X \setminus A$)).
- (8) It follows from (7).
- (9) CL_{ic} (Fr_{ic} (A))= CL_{ic} (CL_{ic} (A)) \cap (CL_{ic} (X) $\langle A \rangle$) $\subset CL_{ic} (CL_{ic} (A)) \cap CL_{ic} (CL_{ic} (X \setminus A))$ = $Fr_{ic}(A)$. Hence, $Fr_{ic}(A)$ is *ic*- closed.

Tikrit Journal of Pure Science Vol. 27 (6) 2022

TIPS

(10) Fr_{ic} $(Fr_{ic} (A)) = CL_{ic} (Fr_{ic} (A)) \cap (CL_{ic} (X))$ *\ Fric (A)) CLic (Fric (A))= Fric (A).* (11) Since $Int_{ic}(Int_{ic}(A))=Int_{ic}(A)$, we get Fr_{ic} (Int_{ic} (A))= CL_{ic} (Int_{ic} (A))\ Int_{ic} (Int_{ic} (A)) \subseteq $CL_{ic}(A)$ $Int_{ic}(A) = Fr_{ic}(A)$. (12) Fr_{ic} (CL_{ic} (A))= CL_{ic} (CL_{ic} (A))\ Int_{ic} (CL_{ic} $(L) = CL_{ic}(A) \setminus Int_{ic}(CL_{ic}(A)) =$ $\emph{CL}_{ic}\left(A\right)$ *Int*_{*ic*} (*A*)= Fr_{ic} (*A*). (13) $A \ F r_{ic} (A) = (A \ C L_{ic} (A)) \ \ Int_{ic} (A) = Int_{ic} (A).$

■ **Example 2.18.** Assume that TS (X, τ) provided in Example 2.5, If $A = \{1, 3\}$ be a subset of *X*. Then *Int*_{ic} (*A*)={ 1, 3}, and so b_{ic} (*A*)=*A**Int*_{ic} (*A*)={1, *3* $\frac{1}{4}$, 3 $\frac{1}{2} = \phi$. Since $A = \{5\}$ is *ic*-closed, $CL_{ic}(A) = \{5\}$ and thus Fr_{ic} (A)= CL_{ic} (A) Int_{ic} (A)={5}\{1, 3}= ϕ .

Theorem 2.19. For a subset H of X , H *is (ic-cs)* iff Fr_{ic} (*H*) \subseteq *H*

Proof. Assume that *H* is *(ic-cs)*. Then Fr_{ic} (H)= $CL_{ic}(H) \setminus Int_{ic}(H) = H \setminus Int_{ic}(H) \subseteq H.$

Conversely suppose that Fr_{ic} (*H*) \subseteq *H*. Then CL_{ic}

 $(H) \sim Int_{ic}(H) \subseteq H$, and so $CL_{ic}(H) \subseteq H$. Since

 $Int_{ic}(H) \subseteq H$. Noticing that $H \subseteq CL_{ic}(H)$, we have *H* = CL ^{*ic*} (*H*). Therefore; *H* is (*ic-cs*). ■

Definition 2.20. For a subset *H* of *X*, $Ext_{ic} (H) =$

*Int*_{ic} (*X* *H*) is said to be an *ic*-exterior of *H*.

Example 2.21. Assume (X, τ) be a TS in Example 2.9 For subset $H = \{2\}$ and $K = \{1\}$ of X, we have *Ext*_{*ic*} (*H*)={1} and *Ext*_{*ic*} (*K*)={2}.

Proposition 2.22.These propositions are true for a subset *A* of a space *X:*

- *1.* $Ext_{ic}(A)$ is *ic* open;
- 2. $Ext_{ic}(A) = Int_{ic}(X \setminus A) = X \setminus CL_{ic}(A);$
- 3. If $A \subseteq B$, then $Ext_{ic}(A) \supset Ext_{ic}(B)$;
- *4.* $Ext_{ic} (A \cup B) \subset Ext_{ic} (A) \cap Ext_{ic} (B);$
- 5. $Ext_{ic}(A \cap B) \supset Ext_{ic}(A) \cup Ext_{ic}(B);$
- 6. $Ext_{ic}(X) = \phi$;
- *7. Ext*_{*ic*} (ϕ)= *X* ;
- 8. $Ext_{ic}(A) = Ext_{ic}(X \setminus Ext_{ic}(A));$
- *9.* $X = Int_{ic}(A) \cup Ext_{ic}(A) \cup Fr_{ic}(A)$.

Proof. (1) and (2) straightforward.

(3) Assume that $A \subseteq B$. Then $\mathbb{E}xt_{ic}(B) = \mathbb{I}nt_{ic}$ (X $\forall B$) \subseteq *Int*_{ic} $(X \setminus A) = Ext_{ic}(A)$ (4) $Ext_{ic} (A \cup B) = Int_{ic} (X \setminus (A \cup B)) = Int_{ic} ((X \setminus B)) = int_{ic}$ \exists *(A)* $\bigcap (X \setminus B)$) \subseteq *Int*_{ic}((X \A)) \bigcap *Int*_{ic}((X \B))= $Ext_{ic}(A) \cap Ext_{ic}(B)$. (5) $Ext_{ic} (A \cap B) = Int_{ic} (X \setminus (A \cap B)) = Int_{ic} ((X$ $\bigcup (X \setminus B)$ \supset $Int_{ic}((X \setminus A)) \cup Int_{ic}((X \setminus B)) =$ $Ext_{ic}(A) \cup Ext_{ic}(B)$. (6) and (7) Straightforward. (8) $Ext_{ic} (X \setminus Ext_{ic} (A)) = \int Ext_{ic} (X \setminus Int_{ic} (X))$ $\langle A \rangle$) = \int *Int*_{ic} ($X \setminus (It$ _{ic} ($X \setminus A)$)) = *Int*_{ic} (*X* \A))= Int_{ic} (*X* \A)= Ext_{ic} (*A*). (9) Straightforward. **Example 2.23.** If $X = \{1, 2, 3\}$ and $\tau =$ $\{\emptyset, X, \{1\}, \{1, 2\}\}\$ Then τ^i 1. If $H=\{1\}$, $K=\{2\}$. Then $Ext_{ic}(H \cup K)=\emptyset$, $Ext_{ic}(K)=\{1\}, \qquad Ext_{ic}(H) \cap$ $Ext_{ic} (H)=2$, $Ext_{ic}(K) = \emptyset$, so $Ext_{ic}(H \cup K) \subset Ext_{ic}(H) \cap$ Ext_{ic} (K) 2. If $H = \{1, 2\}$, $K = \{2\}$. Then Ext_{ic} ($H \cap K$) = {1}, Ext_{ic} *(H)*= \emptyset *, Ext_{ic}</sub> (K)*=*{1}, Ext_{ic}</sub> <i>(H)* $\qquad \cup$ *Ext_{ic}*

 $EK = \{1\}$, so $Ext_{ic}(H \cap K) \supset Ext_{ic}(H) \cup Ext_{ic}$ *(K).*

3. ic- **Continuous Mappings and** *ic***-Homeomorphism**

This section is devoted to introduce *ic*-open map, *ic*irresolute map, *ic*-totally continuous map, *ic*homeomorphism and discussed the relationships between the other known existing map.

Definition 3.1. A mapping $f : X \rightarrow Y$ is named *ic*open denoted by $(ic\text{-}om)$, if $f(U)$ is $(ic\text{-}os)$ in *Y* for each (*os*) *U* in *X*.

Example 3.2. Let $X = Y = \{3, 5, 7\}$ and $\tau =$ $\{\emptyset, X, \{3,5\}\}, \sigma = \{\emptyset, Y, \{3\}, \{3,5\}\}\$ Then

 $\tau^{ic} = \{\emptyset, Y, \{3\}, \{5\}, \{3, 5\}\}.$ Clearly, the identity mapping $f: X \rightarrow Y$ is (*ic-om*)

Proposition 3.3. Any *(om)* is *(ic-om)* but not conversely**.**

Proof. Assume $f: X \rightarrow Y$ be (*om*) and *H* be (*os*

) in *X*. Since, *f* is open, then $f(H)$ is (*os*) in *Y*. Since, each (OS) is $(ic-os)$ then, $f(H)$ is $(ic-os)$ in *Y*. Therefore, *f* is (*ic-om*). ■

If $X = Y = \{1,2,3\}$ and $\tau = \{\emptyset, X, \{2\}, \{1,2\}\},\$ $\sigma = \{\emptyset, Y, \{1\}, \{1,2\}\}\$ Then

 $\tau^{ic} = \{\emptyset, Y, \{1\}, \{2\}, \{1, 2\}\}.$ Clearly, the identity mapping $f: X \to Y$ is (*ic-om*) but not (*om*).

Theorem 3.4. If $f: X \rightarrow Y$ is open & is *ic*-open, then $gof: X \rightarrow Z$ is *ic*-open.

Proof. Suppose that $f: X \to Y$ be open & $g: Y \to Z$ is ic-open. Let *G* be an (*os*) in *X*. Since, *f* is an open, then *f(G)* is an (*os*) in *Y*. Since, each (*os*) is (ic -*os*), then $f(G)$ is (ic - *os*) in *Y*. Since, g is (ic -*os*), then $(g \circ f)(G) = g(f(G))$ is $(ic\text{-}os)$ in Z. Therefore; $gof: X \rightarrow Z$ is *ic*-open. ■

Theorem 3.5. If $f: X \rightarrow Y$ is (*ic-conm*) and $g: Y \to Z$ is (*conm*), then $gof: X \to Z$ is (*ic-conm*).

Proof. Assume $f: X \rightarrow Y$ be (*ic-conm*) &

 $g: Y \rightarrow Z$ is (*contm*). Let *G* be an (*os*) in *Z*. Since, *g* is (*conm*), then $g^{-1}(G)$ is an (*os*) in *Y*. Since, *f* is (*icconm*), then $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is (*ic- os*) in *X*. Therefore; $gof: X \rightarrow Z$ is (*ic-conm*). ■

Definition 3.6. Amapping $f: X \rightarrow Y$ is named *ic*irresolute is denoted by (*ic-irrem*), if the inverse image of every (*ic-os*) of *Y* is (*ic-os*) in *X*

Example 3.7. If $X = Y = \{2, 4, 6\}$ and $\tau =$ ${\emptyset, X, \{2\}, \{2,4\}\}\$, $\sigma = {\emptyset, Y, \{2\}\}\$ Then

 $\tau^{ic} = \{\emptyset, X, \{2\}, \{4\}, \{2, 4\}\}.$

 σ^i

Clearly, the identity mapping $f: X \rightarrow Y$ is (*ic-irrem*) **Proposition 3.8.** Each *(ic-irrem)* is *(ic-conm).*

Proof: Suppose that $f: X \rightarrow Y$ be (*ic-irrem*) & *V* any (*os*) in *Y*. Since each (*os*) is (*ic-os*) and since *f* is *ic*-irresolute, then $f^{-1}(V)$ is (*ic-os*) in *X*. Therefore; *f* is (*ic-conm*). ■

Theorem 3.9. Each *(conm)* is *(ic-irrem)* but not conversely.

Proof. Suppose that $f: X \rightarrow Y$ be (*conm*) & *V* any $(ic-OS)$ in *Y*. Since *f* is (*conm*), then $f^{-1}(V)$ is (*os*) in *X*. Since each (*os*) is (*ic-os*), then $f^{-1}(V)$ is (*ic-os*) in *X* . Therefore; *f* is (*ic-irrem*). ■

Let $X = Y = \{2, 4, 6\}$ and $\tau = \{\emptyset, X, \{2\}, \{2, 4\}\},\$ $\sigma = {\emptyset, Y, \{4\}}$ Then

 $\tau^{ic} = \{\emptyset, X, \{2\}, \{4\}, \{2, 4\}\}.$

 σ^i

Clearly, the identity mapping $f: X \rightarrow Y$ is (*ic-irrem*) but not (*conm*)

Theorem 3.10. If $f: X \rightarrow Y$ is (*ic-irrem*) & $g: Y \to Z$ is (*ic-conm*), then $gof: X \to Z$ is (*ic-irrem*). *Proof.* Let $f: X \rightarrow Y$ is (*ic-irrem*) and $g: Y \rightarrow Z$ is (*ic-conm*). Let *U* be an (os) in *Z*. Then *U* is (*ic-os*) because each (os) is $(ic-os)$. Since, g is $(ic-conn)$, then $g^{-1}(U)$ is (*ic-os*) in *Y*. Since, *f* is (*ic-irrem*), then $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is (*ic- os*) in *X*. Therefore; $qof: X \rightarrow Z$ is *(ic-irrem)*. \blacksquare

Theorem 3.11. The composition of two *(ic-irrem)* is also *(ic-irrem).*

Proof. Assume $f : X \rightarrow Y$ & $g: Y \rightarrow Z$ any two *(ic-irrem)*. Suppose that *U* be any (ic-*os*) in *Z*. Since, g is (*ic-irrem*), then $g^{-1}(U)$ is (*ic-os*) in *Y*. Since, f is $(ic\text{-}irrem)$, then $f^{-1}(g^{-1}(U))=(gof)^{-1}(U)$ is $(ic-$ *(ic-triem)*, uicin $f(x)$ ($g(x)$) $(g(x))$ ($g(y)$) ($g(x)$) is (ic
 os) in X. Therefore; gof: $X \rightarrow Z$ is (ic – irrem).

Definition 3.12. Let *X* and *Y* be TS , a bijective map $f: X \to Y$ is named *ic*-homeomorphism is denoted by (*ic-homm*) if *f* is (*ic-conm*) and (*ic-om*).

Theorem 3.13. If $f: X \rightarrow Y$ is *(homm),* then f is *(ic-homm)* but not conversely.

Proof: Since each (*conm*) is (*ic-conm*) by Theorem 1.2 (2). Also, since each (*om*) is (*ic-om*) by proposition (3.3) Further, since *f* is bijective. Therefore, *f* is (*ic-homm*). ■

Let $X = Y = \{1,2,3\}$ and $\tau = \{\emptyset, X, \{1\}, \{2,3\}\},\$ $\sigma = \{ \emptyset, Y, \{2\}, \{1, 3\} \}$ Then

 $\tau^{ic} = \{\emptyset, X, \{1\}, \{3\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 3\}\}.$

 $\sigma^{ic} = \{\emptyset, Y, \{1\}, \{3\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 3\}\}.$

Clearly, the identity mapping $f: X \rightarrow Y$ is (*ic-homm*) but not (*homm*)

Definition 3.14. Amapping $f: X \rightarrow Y$ is named *ic-*totally continuous is denoted by (*ic-tconm*), If each's reverse, (*ic-os*) of *Y* is (*cl-os*) in *X*.

Theorem 3.15. Each *(ic-tconm)* is totally continuous but not conversely*.*

Proof. Suppose that $f: X \rightarrow Y$ be (*ic-tconm*) and *V* be (OS) in *Y*, since each (OS) is (*ic-os*), then *V* is (*icos*) in *Y*. Since *f* is (*ic-tconm*), then, $f^{-1}(V)$ is (*cl-os*) in *X*. Therefore, *f* is (*tconm*). ■

Let $X = Y = \{1,2,3\}$ and $\tau = \{\emptyset, X, \{1\}, \{2,3\}\},\$ $\sigma = {\emptyset, Y, {2, 3}}$ Then

 $\sigma^{ic} = \{\emptyset, Y, \{2\}, \{3\}, \{2, 3\}\}.$

Clearly, the identity mapping $f: X \to Y$ is (*tconm*) but not (*ic-tconm*)

Theorem 3.16. Each *(ic-tconm)* is *(ic-irrem)* but not conversel.

Proof: Assume that $f: X \rightarrow Y$ be (*ic-tconm*) and *V* be (*ic-os*) in *Y*. Since *f* is (*ic-tconm*), then $f^{-1}(V)$ is $(cl-os)$ in *X*, which implies, $f^{-1}(V)$ is (os) , it follows $f^{-1}(V)$ is (*ic-os*) in *X*. Therefore; *f* is (*icirrem*). ■

Let $X = Y = \{1,3,5\}$ and $\tau = \{\emptyset, X, \{1\}, \{1,3\}\},\$ $\sigma = {\emptyset, Y, {3}}$ Then

 $\tau^{ic} = \{\emptyset, X, \{1\}, \{3\}, \{1, 3\}\}.$

 σ^i

Clearly, the identity mapping $f: X \rightarrow Y$ is (*ic-irrem*) but not (*ic-tconm*)

Theorem 3.17. The two's *(ic-tconm)* composition is also *(ic-tconm).*

Proof: Suppose that $f: X \rightarrow Y$, $g: Y \rightarrow Z$ be any two (*ic-tconm*). Assume *V* be any (*ic-os*) in *Z*. Since, g is (*ic-tconm*), then $g^{-1}(V)$ is $(cl - os)$ in *Y*, which implies $f^{-1}(V)$ is (*os*), it follows $f^{-1}(V)$ is (*ic-os*). Since, f is (*ic-tconm*), then, $f^{-1}(g^{-1}(V)) =$ $(g \circ f)^{-1}(V)$ is $(cl - os)$ in *X*. Therefore, $g \circ f : X \to Z$ is (*ic-tconm*).

Theorem3.18. If $f: X \rightarrow Y$ be *(ic-tconm)* and $g: Y \to Z$ *be* (*ic-irrem*), then $g \circ f: X \to Z$ *is (ic-tconm).*

Proof: Assume that $f: X \rightarrow Y$ be (*ic-tconm*) and $g: Y \rightarrow Z$ is (*ic-irrem*). Let *V* be (*ic-os*) in *Z*. Since g is (*ic-irrem*) then $g^{-1}(V)$ is (*ic-os*) in *Y*. Since f is (*ic-tconm*), then $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is ($cl - os$) in *X*. Therefore, $g \circ f : X \to Z$ is (*ictconm*). ■

Theorem3.19. If $f: X \rightarrow Y$ is (ic-tconm) and $g: Y \to Z$ *is(ic-conm),* then $g \circ f: X \to Z$ *is (tconm*)*.*

References

[1] Abdullah. B.S, Askander.S,W and Mohammed. A.A, "*New Class of Open Sets in Topological Space*", Turkish Journal of Computer and Mathematics Education, Vol. 13, No. o3(2022), 247-256.

[2] Askander,S.W and Mohammed,A.A." *i-Open Sets in bi-Topological Spaces"*, AL Rafidain Journal of Computer Sciences and Mathematics, 12 (2018), 13-23.

Proof: Let $f: X \rightarrow Y$ be (*ic-tconm*) and $g: Y \to Z$ is (*ic-conm*), let *V* be(*os*) in *Z*. Since, is (*ic-conm*), then, $g^{-1}(V)$ is (*ic-os*) in *Y*. Since, *f* is $(ic\text{-}tconn)$, then, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is ($cl - os$) in *X*. Therefore, $g \circ f : X \to Z$ is (*tconm*). ■

[3] Njastad. O. (1965) *"On some classes of nearly open sets"*. Pacific Journal of Mathematics, **15**, 961- 970[. https://doi.org/10.2140/pim.1965.15.961.](https://doi.org/10.2140/pim.1965.15.961)

[4] Levine. N. (1963) "*Semi-open sets and semicontinuity in topological spaces"*. The American Mathematical Monthly, **70**, 36-41. <https://doi.org/10.2307/2312781>

السمات التبولوجية لمجموعات مفتوحة من النمط-ic

 μ يداء سيهل عبدالله¹ ، سامي عبد الله عبد² ، عامر عبدالاله محد¹ ¹قسم الرياضيات ، كلية التربية للعلوم الصرفة ، جامعة الموصل ، الموصل ، العراق قسم الاحصاء ، كلية الادارة والاقتصاد ، جامعة ديالى ، ديالى ، العراق 2

الملخص

باستخدام فكرة المجمهعات المفتهحة من النمط, *ic* - نقدم ونتحقق من الرفات التبهلهجية لالنغالق من النمط- *ic* الداخل من النمط-*ic* ، نقاط الحد من النمط- ic المذتقة من النمط- ic الحدود من النمط- - ic والجزء الخارجي من النمط- *ic* للمجمهعة . قدم مفاهيم التطبيقات المدتمرة من النمط , *ic*- والتطبيقات المفتهحة من النمط- ic التطبيقات المذبذبة من النمط- ic التطبيقاات المداتمرة تماماا مان الانمط- *ic* والتذاالل مان الانمط- *ic* ثام ننظار في بعض خرائص هذه التطبيقات.